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Abstract

Generating free-text rationales is a promising
step towards explainable NLP, yet evaluating
such rationales remains a challenge. Existing
metrics have mostly focused on measuring the
association between the rationale and a given
label. We argue that an ideal metric should fo-
cus on the new information uniquely provided
in the rationale that is otherwise not provided
in the input or the label. We investigate this re-
search problem from an information-theoretic
perspective using conditional V-information
(Hewitt et al., 2021). More concretely, we pro-
pose a metric called REV (Rationale Evaluation
with conditional V-information), to quantify
the amount of new, label-relevant information
in a rationale beyond the information already
available in the input or the label. Experiments
across four benchmarks with reasoning tasks,
including chain-of-thought, demonstrate the ef-
fectiveness of REV in evaluating rationale-label
pairs, compared to existing metrics. We fur-
ther demonstrate REV is consistent with hu-
man judgments on rationale evaluations and
provides more sensitive measurements of new
information in free-text rationales. When used
alongside traditional performance metrics, REV
provides deeper insights into models’ reasoning
and prediction processes.1

1 Introduction

Model explanations have been indispensable for
trust and interpretability in natural language pro-
cessing (NLP) (Ribeiro et al., 2016, 2020; Lipton,
2018; Chen et al., 2020, 2021a). Free-text ratio-
nales, which explain a model prediction in natural
language, have been especially appealing due to
their flexibility in eliciting the reasoning process be-
hind the model’s decision making (Camburu et al.,

∗Work done during an internship at AI2.
1Our code is publicly available at https://github.com/

HanjieChen/REV

2018; Narang et al., 2020; Rajani et al., 2019; Ku-
mar and Talukdar, 2020; Brahman et al., 2021),
making them closer to human explanations. How-
ever, existing metrics for free-text rationale eval-
uation remain narrowly focused on the extent to
which a rationale can help a (proxy) model predict
the label it explains (i.e., accuracy based) (Hase
et al., 2020; Wiegreffe et al., 2021). These metrics
offer little understanding of the new information
contained in the rationale, as added to the original
input, that could explain why the label is selected—
the very purpose a rationale is designed to serve.
For instance, the two rationales r∗1 and r̂1,a in Fig.
1 would be considered equally valuable under ex-
isting metrics, even though they supply different
amount of novel and relevant information.

In this paper, we overcome this shortcoming by
introducing an automatic evaluation for free-text ra-
tionales along two dimensions: (1) whether the ra-
tionale supports (i.e., is predictive of) the intended
label, and (2) how much new information does it
provide to justify the label, beyond what is con-
tained in the input. For example, rationale r̂1,b in
Fig. 1 violates (1) because it is not predictive of
the label, “enjoy nature”. Rationale r̂1,a does
support the label but contains no new information
that justifies it, beyond what is stated in the input
x; thus, it violates (2). Rationale r

∗
1 is satisfied

along both dimensions: it supports the label and
does so by providing new and relevant information,
beyond what is in the input. Our proposed eval-
uation is designed to penalize both r̂1,a and r̂1,b,
while rewarding rationales like r

∗
1 .

We introduce REV
2, which adapts an

information-theoretic framework from Xu
et al. (2020) for evaluating free-text rationales
along the two dimensions mentioned above. Specif-
ically, REV is based on conditional V-information

2For Rationale Evaluation with conditional V-information.
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Figure 1: Our evaluation framework for different free-text rationales (r). r∗1 is a human-written rationale, r̂1,a and
r̂1,b are two generated rationales for the true label y1. Our metric, REV, based on CVI (Hewitt et al., 2021) is able
to distinguish all three rationales by measuring how much new and label-relevant information each adds over a
vacuous rationale, b; performance-based evaluations can only distinguish between r̂1,a and r̂1,b. For an (arguably)
incorrect label, y2, REV still gives a positive score highlighting that r̂2 is able to provide new information for why it
supports y2. Prediction accuracy can be augmented with REV to provide a fuller interpretability of model decisions.

(Hewitt et al., 2021), which quantifies the degree of
information contained in a representation beyond
another (baseline) representation, accessible to a
model family V . As our baseline representation,
we consider any vacuous rationale which simply
(and declaratively) combines an input with a
given label, without providing any new infor-
mation relevant to answering why the label was
chosen. REV adapts conditional V-information
to evaluate rationales, where we compare two
representations—one from an evaluation model
trained to produce the label given the input and the
rationale, and the other from another evaluation
model for the same task but considering only the
input (disguised as a vacuous rationale). Other
metrics do not take into consideration vacuous
rationales, and are hence unable to measure new
and label-relevant information in rationales.

In our experiments, we present evaluations with
REV for rationales under two reasoning tasks, com-
monsense question-answering (CQA; Talmor et al.,
2019) and natural language inference (NLI; Bow-
man et al., 2015), across four benchmarks. Several
quantitative evaluations demonstrate the capabili-
ties of REV in providing evaluations along new di-
mensions for free-text rationales, while also being
more consistent with human judgements compared
to existing metrics. We also provide comparisons
to demonstrate the sensitivity of REV to various
degrees of input perturbations. Additionally, evalu-
ation with REV offers insights into why rationales
obtained through chain-of-thought prompting (Wei
et al., 2022) do not necessarily improve prediction
performance.

2 REV: Information-Theoretic
Evaluation of Rationales

We introduce a new metric, REV, Rationale
Evaluation with conditional V-information, for
evaluation of free-text rationales on the proposed
dimensions (§2.2), based on the framework of con-
ditional V-information (§2.1).

We consider the setting where we have input
X ∈ X , label Y ∈ Y , and free-text rationale
R ∈ R generated for label Y . A common strat-
egy to evaluate rationale R is through an evaluator
function f ∶ Z → Y , which maps a variable Z
to a label distribution. Here, Z can be defined
based on the evaluation framework; e.g., Z can be
a concatenation of X and R, or contains only X .
These metrics evaluate the utility of R based on
how much R helps f predict Y . The evaluator f
is typically trained on a set of input, label and ra-
tionale triples Dtrain = {(xj , yj , rj)}, and applied
to Dtest = {(xi, yi, ri)} for evaluation. The utility
of R is formulated as the difference between the
performance of the evaluator on predicting Y with
R, and without it, i.e.

Perf[f(Y ∣X,R)] − Perf[f(Y ∣X)], (1)

where a larger performance gap indicates a bet-
ter rationale. Existing metrics (Hase et al., 2020;
Wiegreffe et al., 2021) compute the performance
gap based on prediction accuracies.

However, accuracy-based evaluation can only
indicate whether or not a rationale is predictive of
a label, but cannot quantify how much new infor-
mation the rationale provides to justify the label.
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Figure 1 illustrates this issue via an example. Here,
accuracy-based evaluation can distinguish between
r̂1,a and r̂1,b since r̂1,a supports y1 and r̂1,b does
not. However, it is unable to distinguish between
r
∗
1 and r̂1,a (since both are predictive of y1), de-

spite the fact that r̂1,a does not provide any unique
and relevant information to answer why the label
should be y1. In practice, vacuous rationales such
as r̂1,a are commonly seen in model generations
(Sun et al., 2022; Wiegreffe and Marasovic, 2021).
This calls for an evaluation metric which is able to
identify and penalize such vacuous rationales.

2.1 An Information-Theoretic Perspective on
Rationale Evaluation

The key quantity of interest for our evaluation of
rationale R is the amount of new information ex-
pressed in R (e.g., background knowledge, reason-
ing process) that can justify a label Y . The mutual
information between R and Y , I(Y ;R), can be
helpful for evaluating this quantity. However, we
are not interested in the information that is already
captured in the input X . A vacuous rationale, such
as r̂1,a in Fig. 1—which simply combines the input
X and the label, Y declaratively—captures all the
information in X and Y without specifying any
new information to help understand why Y has
been chosen for X . We denote such rationales as
B. Thus, we argue that a good evaluation metric
must be able to measure the amount of new and
label-relevant information contained in a rationale
beyond what is contained in any vacuous rationale,
B, that leads to the prediction of Y . Then the new
information in R beyond what is available in B can
be grounded with conditional mutual information
(Shannon, 1948) as follows,

I(Y ;R ∣ B) = I(Y ;R,B) − I(Y ;B), (2)

where the difference of two information quantities
demonstrates the performance gap in Equation 1.

Directly computing mutual information, how-
ever, is challenging because true distributions of
random variables are usually unknown, and we do
not have unbounded computation. A recently intro-
duced information-theoretic framework called V-
information circumvents this by restricting the com-
putation to certain predictive model families, V (Xu
et al., 2020). Given a model family V that maps two
random variables R and Y , V-information defines
the usable information that can be extracted from
R by models in V to predict Y , i.e. IV(R → Y ).

If V generalizes to the set of all possible functions,
then V-information is mutual information (Shan-
non, 1948). In practice, it is feasible to estimate
the usable information from R about Y by select-
ing any neural model without frozen parameters as
V .3 Our approach to evaluate rationales builds on
a modification of this framework for conditional
information by Hewitt et al. (2021), as described
below.

Conditional V-information Following condi-
tional mutual information in information theory
(Cover and Thomas, 2006), V-information has been
extended to conditional V-information (CVI; He-
witt et al., 2021). CVI quantifies the V-usable in-
formation in R about Y conditioned on a variable
B, i.e.

IV(R → Y ∣ B) = HV(Y ∣ B)−HV(Y ∣ R,B).
Here B is any vacuous rationale that leads to the
prediction of Y . In this work, we consider B sim-
ply as the declarative combination of X and Y .
HV(⋅ ∣ ⋅) is the conditional V-entropy (Xu et al.,
2020; Hewitt et al., 2021; Ethayarajh et al., 2022),
defined as

HV(Y ∣ B) = inf
f∈V

E[− log f[b](y)] (3)

HV(Y ∣ R,B) = inf
f∈V

E[− log f[r, b](y)], (4)

where f[b] and f[r, b] produce a probability dis-
tribution over the labels given b and [r, b] as inputs
respectively.4 Further, given g

′
, g ∈ V which opti-

mize Equations 3 and 4 respectively, we consider
pointwise CVI for individual triples (r, y, b):

− log g
′[b](y) + log g[r, b](y). (5)

2.2 Computing REV for Rationale Evaluation
Building on the framework of CVI, we propose
a new metric REV, for Rationale Evaluation with
conditional V-information. We compute REV over
a given test set, Dtest = {(xi, yi, ri)}, by estimating
CVI over the set with evaluation models, g, g′ ∈ V .
For a test example (x, y, r), the REV score denoted
as REV(x, y, r) is computed based on Equation 5,
where b is constructed by combining x and y. ,

REV(x, y, r) = − log g
′[b](y) + log g[r, b](y).

3Please see Xu et al. (2020) for a detailed discussion of
properties such as optional ignorance that a predictive family
V must follow.

4[r, b] is the concatenation of r and b. Please see Appendix
A for further details on CVI.
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The REV score for the entire test corpus Dtest, is
given by the average pointwise REV score:

REVD = 1∣Dtest∣
∣Dtest∣
∑
i=1

REV(xi, yi, ri). (6)

Algorithm 1 Computing REV Scores

1: Input: evaluation models g and g
′, test set

Dtest = {(xi, yi, ri)}
2: Initialize an empty list S
3: for (xi, yi, ri) ∈ Dtest do
4: Construct the baseline rationale bi
5: REV(xi, yi, ri)

= − log g
′[bi](yi) + log g[ri, bi](yi)

6: S.add(REV(xi, yi, ri))
7: end for
8: REVD = mean(S)
9: Output: S , REVD

Algorithm 1 shows the process of computing
both pointwise and aggregate REV scores. The
higher the REV score, the more additional (new
and relevant) information the rationale r contains
to explain the label beyond the baseline rationale
b. REV(xi, yi, ri) can take positive, negative, or
zero values. When REV(xi, yi, ri) > 0, the ra-
tionale supplies additional new information for
supporting the label (e.g., r∗1 in Fig. 1); when
REV(xi, yi, ri) = 0, the rationale provides no ad-
ditional information beyond the baseline (e.g.,
r̂1,a in Fig. 1); and when REV(xi, yi, ri) < 0, the
rationale does not support the label (e.g., r̂1,b in
Fig. 1). REV can assign a positive score to a ra-
tionale for an incorrect prediction as long as the
rationale supports it and provides additional infor-
mation beyond a vacuous baseline rationale (e.g.,
r̂2 in Fig. 1). Thus, REV cannot be seen as a re-
placement for prediction accuracy, but rather as an
orthogonal metric to interpret the usefulness of a
generated rationale for the model decision.

3 Experimental Setup

We outline our experimental setup by describing
the reasoning tasks and datasets (§3.1), followed
by the task and evaluation models (§3.2), and the
baseline metrics for comparison (§3.3). Additional
details on the setup are provided in Appendix B.

3.1 Datasets
We explore two reasoning tasks, namely Common-
senseQA (CQA) and Natural Language Inference

(NLI) across four datasets, all containing human-
annotated free-text rationales. For CQA task, we
use ECQA (Aggarwal et al., 2021), CoS-E (v1.11;
Rajani et al., 2019) and QuaRTz (Tafjord et al.,
2019). For both ECQA and CoS-E, each com-
monsense question is paired with five candidate
choices and the task is to select an answer from the
candidates. ECQA contains higher quality human-
written rationales compared to CoS-E (Aggarwal
et al., 2021; Sun et al., 2022). QuaRTz is for open-
domain reasoning about textual qualitative relation-
ships, and the task is to select an answer from two
options to the question based on the textual qual-
itative knowledge (rationale). For the NLI task,
we use the e-SNLI (Camburu et al., 2018) dataset
containing explanations for SNLI (Bowman et al.,
2015), where the task is given a premise to predict
if a hypothesis entails, contradicts or is neutral to it.
More details on the datasets are in Appendix B.1.

3.2 Task and Evaluation Models
Task models We choose T5 Large (Raffel et al.,
2020) as the task model (finetuned on ground-
truth labels and rationales) to produce generated
rationale-label pairs under three settings:

• XY∗→R: Given an input text and the ground-
truth label, generate a rationale.

• X→YR: Given an input text, generate a label
followed by a rationale. Since T5 decodes
tokens sequentially, each R is generated con-
ditioned on the predicted Y.

• X→RY: Given an input text, generate a ratio-
nale followed by a label. Here, we compute a
likelihood for each candidate Y conditioned
on R, and then select the most probable can-
didate. This operation can improve the model
prediction accuracy, while weakening the con-
sistency and relevance between the generated
rationales and predicted labels.

After training, we collect three types of rationale-
label pairs by applying the three task models on
the test set of each dataset. In addition to these
three settings, we also evaluate ground-truth labels
paired with crowd-sourced rationales (Y∗;R∗).

Constructing a Baseline with Vacuous Ratio-
nales Given an input x and a label y (ground-
truth or model-generated), we construct a baseline
rationale b by declaratively combining x and y into
a sentence. For the CQA task, we adopt a T5-3B
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Task Input Label Vacuous Baseline Rationale

CQA Where can personal mushrooms be kept
fresh?

refrigerator Personal mushrooms can be kept fresh in
the refrigerator.

NLI Premise: A dog running in the surf.
Hypothesise: A dog is at the beach.

entailment A dog running in the surf indicates a dog is
at the beach.

Table 1: Examples of constructed vacuous baseline rationales for CQA and NLI tasks. For NLI, the vacuous baseline
rationale was obtained after paraphrasing.

model fine-tuned on a set of (question, answer,
declarative sentence) tuples (Demszky et al., 2018)
following Chen et al. (2021b).5 For the NLI task,
we first use a template to convert (premise, hypoth-
esis, label) tuple into a baseline rationale: “premise
implies / contradicts / is not related to
hypothesis”. Then we paraphrase these templated,
vacuous NLI rationales using a pre-trained model 6

in order to prevent the evaluators from learning the
template patterns. Table 1 shows some examples
of constructed vacuous baseline rationales.

Training Evaluation Models, g and g
′ We train

two evaluation models, g and g
′, which take [r, b]

and b as inputs, respectively (see Equation 5 in §2).
Both evaluators are based on fine-tuning T5 Large
(Raffel et al., 2020) models. We use the training set
Dtrain = {(x, y∗, r∗)}, where {y∗} and {r∗} are
gold labels and human-annotated rationales, respec-
tively. We construct baseline rationales {b∗} based
on {(x, y∗)}. The objective is to maximize the log-
likelihood of y∗ given [r∗, b∗] or b∗. After train-
ing, the evaluation models are applied to evaluate
a rationale-label pair (y, r) w.r.t. an input x. The
rationale-label pair (y, r) can be model-generated
and the label may not be ground-truth (e.g., y2 in
Fig. 1), while REV is able to provide an assessment
on the rationale along the two dimensions (§1). We
refer readers to the Appendix B.3 for results of us-
ing T5 Base, BART Large (Lewis et al., 2020), and
GPT-2 Large (Radford et al., 2019) as evaluation
model architectures.

3.3 Other Metrics for Rationale Evaluation

We compare with two existing automatic metrics
for free-text rationale evaluation: LAS (Hase et al.,
2020) and RQ (Wiegreffe et al., 2021). Analo-
gous to our evaluation models, both approaches
use proxy models; we use the same architecture

5
https://github.com/jifan-chen/

QA-Verification-Via-NLI
6
https://huggingface.co/humarin/chatgpt_

paraphraser_on_T5_base

(T5 Large) across metrics in our reported results.

Leakage-Adjusted Simulatability (LAS) Hase
et al. (2020) evaluate the quality of free-text ra-
tionales via a proxy model, trained with the task
model outputs as labels and original input texts
combined with rationales as input sequences. The
metric computes the difference between its pre-
diction accuracy on the predicted label when the
rationale is included into the input vs. when it is
not, 1[ŷ ∣ x, r̂] − 1[ŷ ∣ x], averaged over exam-
ples grouped based on whether they leak labels or
not. The final LAS score is given by the macro
average across groups.

Rationale Quality (RQ) Wiegreffe et al. (2021)
propose a variant of the simulatability in Hase et al.
(2020). The main difference is that gold labels are
used to train the model proxy and evaluate rationale
quality. Specifically, the quality of a rationale r̂ is
measured as 1[y∗ ∣ x, r̂] − 1[y∗ ∣ x], where y

∗

is the gold label. RQ is the average score over all
test examples without considering label leakage.

4 Evaluating REV

We first compare REV with existing metrics (§4.1)
and human judgments (§4.2) on the ECQA dataset,
as well as show REV on other CQA and NLI bench-
marks. We then test the sensitivity of different met-
rics to input perturbations (§4.3). Next, we apply
REV to generations via few-shot prompting (4.4).
Additional experiments are listed in Appendix C.

4.1 Comparison Between Evaluation Metrics

We compare REV with LAS and RQ, in evaluat-
ing different rationale-label pairs on the ECQA
dataset. In addition to XY∗→R, X→YR, X→RY,
and (Y∗;R∗), we also explore the evaluation on the
vacuous baseline rationales (Y∗;B) that are con-
structed with ground-truth labels. LAS, RQ and
REV are not directly comparable due to different
comparison scales and criteria (e.g., log-probability
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Figure 2: Left: Automatic evaluation results of LAS, RQ and REV for rationale-label pairs on the ECQA test set.
Right: Human evaluation for rationale-label pairs on 230 randomly selected examples from the ECQA test set.

vs. accuracy); hence, our focus remains on the rank-
ing over different sources of rationale-label pairs.

Results are shown in Figure 2 (left panel). All
three metrics rank the crowdsourced rationales
(Y∗;R∗) in ECQA the highest. While by definition,
REV for vacuous rationales (Y∗;B) is low, both
LAS and RQ scores for these rationales are quite
high, showing that these metrics are incapable of
measuring the amount of additional information in
rationales. Intuitively, we expect weaker rationale-
label consistency in X→RY setting compared to
X→YR, as the labels are forcefully selected among
the candidates as opposed to being freely gener-
ated by the task model (§3.2). While REV is able
to capture this intuition and ranks X→YR higher
than X→RY, LAS and RQ have a different rank-
ing. Qualitative results comparing all three metrics
are provided in Table 4 in Appendix C.1; Table 8
qualitatively analyzes rationales with negative REV

scores.

We additionally analyze REV for “input-
irrelevant rationales”: sentences extracted from a
knowledge base that contain the ground-truth la-
bels but do not necessarily explain the labels w.r.t.
the inputs. Results in Appendix C.2 show that REV

penalizes such irrelevant rationales.

Next, we apply REV to evaluate crowdsourced
and model generated rationale-label pairs (Y∗;R∗,
XY∗→R, X→YR, X→RY) across different
datasets. For each dataset, the evaluation models
are trained on the training set with gold labels and
crowdsourced rationales. The results are shown
in Table 2. We observe that the gold rationales in
the ECQA dataset achieve higher REV score than
those in CoS-E. This observation is in line with the
known quality issues of crowdsourced rationales in
CoS-E (Aggarwal et al., 2021; Sun et al., 2022). In-
terestingly, model-generated rationales (XY∗→R)
have higher REV score than crowdsourced ratio-
nales for CoS-E (see examples in Table 7). Please

Datasets
Rationale-label pairs

Y∗;R∗ XY∗→R X→YR X→RY

ECQA 0.7943 0.7806 0.5840 0.5599
CoS-E 0.2415 0.4050 0.2308 0.1198

QuaRTz 1.3919 1.3696 1.3449 1.0170

e-SNLI 0.0752 0.0079 0.0055 0.0047

Table 2: REV scores of different types of rationale-label
pairs on the four datasets.

see Appendix C.3 for a qualitative analysis on CoS-
E rationales. QuaRTz has better quality of ratio-
nales compared to ECQA, CoS-E, and e-SNLI. In
the case of e-SNLI, the problem is severe as most
of the crowdsourced or generated rationales do not
provide reasoning but rather follow a label-specific
template e.g., A implies (that) B (Kumar and Taluk-
dar, 2020; Brahman et al., 2021).

4.2 Human Evaluation

We collect crowdworker judgments via Amazon
Mechanical Turk to understand how REV corre-
lates with human judgments of rationales. We ran-
domly sample 230 examples from the ECQA test
set and ask workers to evaluate the four types of
rationale-label pairs (Y∗;R∗, XY∗→R, X→YR,
X→RY) for each example.7 We present workers
with a question (input text), an answer (label) and
an explanation (rationale), and ask them whether
the explanation justifies the answer (yes/no). If
they answer yes, we further ask them to evaluate
the amount of additional information supplied by
the explanation that explains why the answer might
have been chosen for the question by choosing
from none / little / some / enough, corresponding to
a 4-point Likert-scale (0/1/2/3). We collect 3 anno-
tations per instance and use majority vote to decide
whether the rationale can justify the label. If yes,

7We do not consider (Y∗;B) because we have trained work-
ers to recognize baseline rationales as vacuous.
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Figure 3: Sensitivity test results of REV, LAS and RQ for X→RY and X→YR on the ECQA dataset. The X-axis
shows different levels of noise (σ2). We plot the curve of Accuracy (model prediction accuracy) vs. Noise in gray
dashed line. We also separate the evaluation results on populations on which the model predictions are correct
(“Correct”) or incorrect (“Incorrect”) in addition to the overall evaluation on all test examples (“Overall”).

we take the average over the 3 human-annotated
scores as the amount of information. Otherwise,
we give a score of -1. More details of human evalu-
ation are in Appendix C.4.

Results are shown in the right panel of Fig. 2,
where the ranking of the four types of rationale-
label pairs is Y∗;R∗ > XY∗→R > X→YR >
X→RY. While LAS and RQ rank X→RY bet-
ter than X→YR (see the left part of Fig. 2), the
ranking from REV is more consistent with human
judgments, suggesting its effectiveness in evaluat-
ing rationales.

4.3 Is REV sensitive to input perturbations?

A robust metric should be sensitive to the change of
rationale-label pairs and reflect their relationships
under input perturbations. We test the sensitivity
of all automatic metrics to input (X) perturbations
in the task model, under two settings: X→YR and
X→RY. Following Wiegreffe et al. (2021), we add
zero-mean Gaussian noise N (0, σ2) to input word
embeddings during inference, inducing task mod-
els to produce progressively degenerate rationales
and labels. Results in Fig. 4.3 indicate that REV

(b) and RQ (c) follow similar trends as for X→RY.
However, LAS is less sensitive to noise for both
joint models, X→RY (a) and X→YR (d). Since
the proxy model for LAS was trained on the task
models’ predicted labels and generated rationales,
it can overfit to the degenerate rationale-label pairs
under input perturbations, hence being less sensi-
tive to input noise during inference. The largest
differences between REV and RQ are for X→YR.

We observe the task model can predict incorrect
labels and then make up reasonable-sounding ra-
tionales for its wrong predictions under certain in-
put perturbations; prior work also reports this find-
ing (Narang et al., 2020; Wiegreffe et al., 2021).
REV does not drop under a certain amount of in-
put perturbations (e.g., σ2 ≤ 20) in Fig. 3 (f),
likely because the generated rationales still provide
new information for describing both correct and
incorrect labels (also see the example in Table 6).
However, as the noise exceeds the certain level,
REV decreases indicating that the task model is no
longer able to make up rationales for very noisy
inputs. On the other hand, the behavior of RQ in
Fig. 3 (e) is quite different to REV. Since RQ is
computed based on gold labels (§3.3), it has re-
duced sensitivity to input perturbations. When the
prediction accuracy decreases, the overall evalua-
tion of RQ is dominated by the results on incorrect
predictions, as shown in Fig. 3 (e). We refer read-
ers to the Table 6 in Appendix C.5 for qualitative
analysis on sensitivity test.

4.4 Evaluating Rationales in Few-shot
Prompting

We test the ability of REV in evaluating rationales
generated by few-shot prompting, and get insights
into the reasoning and prediction processes of large
language models (e.g., GPT-3).

GPT-3 Rationales for Gold Labels Wiegreffe
et al. (2022) collected 250 high quality free-text
rationales generated by few-shot prompting with
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GPT-3 (Brown et al., 2020) for CQA (given gold la-
bels). Each example was assessed by 3 crowdwork-
ers. We focus on two aspects of their annotations:
“supports the gold label” and “amount of informa-
tion”. Crowdworkers provide a yes / no answer to
justify whether a rationale supports the correspond-
ing gold label. Only when the answer is yes, they
are further asked to evaluate the amount of infor-
mation contained in the rationale for justifying the
label. The amount of information is roughly cat-
egorized into 3 levels: “Not Enough”, “Enough”,
“Too Much”, each annotated with a Likert-scale
score.8 In Fig. 4, we compare human annotation
scores for amount of information9 with the point-
wise scores obtained by three automatic metrics,
LAS, RQ, and REV. For automatic metrics, the
evaluation models of REV and the proxy models of
LAS and RQ are trained on the ECQA training set
with gold labels and human-annotated rationales
(§3.2). We observe that REV provides finer-grained
assessment of the information contained in ratio-
nales compared to LAS and RQ which only take{-1, 0, 1} values. When LAS and RQ are zero, it is
unclear whether the rationale supports the label or
not because the model proxy may predict the label
based on the input only. The judgments of REV on
whether rationales support labels (REV > 0 ) are
close to human judgments (i.e., 80% agreement).
The support rates of LAS and RQ are relatively low,
i.e. 35% and 23%, while a large portion (56% and
60% respectively) corresponds to a zero LAS / RQ
score.
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Figure 4: Histograms of human-annotated amount of
information and pointwise REV, LAS and RQ scores on
GPT-3 few-shot prompted rationales for gold labels.

8The original human-annotated scores w.r.t. the three lev-
els are: -1, 0, 1. Since Wiegreffe et al. (2022) suggest “a value
of 0 is preferred to a value of 1”, we map the scores {-1, 0,
1} to {0, 1, 2} accordingly. The value “-1” is then given to
examples annotated as “not supporting gold labels”.

9We take majority vote to decide “supports the gold label",
and average “amount of information" over 3 workers.
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Figure 5: Distributions of REV for rationales w.r.t. cor-
rect and incorrect predictions produced by GPT-3 and
LaMDA respectively. The average REV scores over all
instances, correctly predicted instances and incorrectly
predicted instances are marked by gray, blue and red
dashed lines respectively.

Chain of Thought Rationales Wei et al. (2022)
propose chain of thought prompting to teach large
language models to produce intermediate reason-
ing steps (rationales) before prediction, which im-
proves their prediction performance on a range of
reasoning tasks (e.g., arithmetic and symbolic rea-
soning). However, the reported improvement is
trivial for CQA (Wei et al., 2022), which moti-
vates us to evaluate the intermediate rationales w.r.t.
model predictions. We apply REV to analyze the
generated rationales during intermediate reason-
ing steps and final predicted labels from GPT-3
text-davinci-002 (Brown et al., 2020) and LaMDA
137B (Thoppilan et al., 2022).10

Figure 5 shows the distributions of REV for
correctly and incorrectly predicted instances from
GPT-3 and LaMDA, respectively. For both GPT-3
and LaMDA, the REV distributions of correct and
incorrect predictions are similar and most instances
have positive REV scores. The average REV scores
over correct and incorrect predictions (blue and
red dashed lines, resp.) are close, especially for
GPT-3. This is consistent with our observation
that most generated rationales from the two models
are describing their predicted labels. The predic-
tion accuracy of GPT-3 is much higher than that of
LaMDA (77% vs. 59%), while the average REV

scores over all instances (gray dashed lines) are
close (0.92 vs. 0.99). An insight we obtain is that
the generated intermediate reasoning steps (ratio-
nales) support models’ predictions (consistent REV

scores), but cannot guarantee their correctness (dis-
crepant accuracies between GPT-3 and LaMDA).
This partially explains the minor improvement of

10Available at https://github.com/jasonwei20/
chain-of-thought-prompting
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chain of thought prompting on CQA.

5 Related Work

Model rationales broadly fall into two categories:
extractive rationales and free-text rationales. Ex-
tractive rationales contain some important features
extracted from input texts that make models pro-
duce final predictions (Lei et al., 2016; DeYoung
et al., 2020; Jain et al., 2020; Schulz et al., 2020).
Free-text rationales are produced by generative
models in the form of natural language. Compared
to extractive rationales, free-text rationales explain
model predictions in a more human-like way and
fill the gap in explaining reasoning tasks (Camburu
et al., 2018; Narang et al., 2020; Rajani et al., 2019;
Kumar and Talukdar, 2020; Brahman et al., 2021).

Evaluations on extractive rationales have been
well studied, generally from two perspectives —
faithfulness and plausibility (DeYoung et al., 2020;
Pruthi et al., 2022; Chan et al., 2022b). Faithful-
ness measures to which extent rationales reflect the
true reasoning process of models, while plausibility
evaluates how convincing rationales are to humans
(Jacovi and Goldberg, 2020). Other perspectives
include the ability of rationales in helping a student
model simulate a teacher model (Pruthi et al., 2022)
or bridging the communication between a classifier
and a layperson (Treviso and Martins, 2020). Ex-
isting automatic metrics for free-text rationales fo-
cus on rationale-label association, and measure the
utility of a rationale based on how much it helps a
model proxy predict the given label (inspired by hu-
man simulatability (Doshi-Velez and Kim, 2017))
(Hase et al., 2020) or the gold label (Wiegreffe
et al., 2021) given the input. Chan et al. (2022a) fur-
ther propose a framework to evaluate the automatic
metrics. However, none of them consider measur-
ing the amount of additional new information in
free-text rationales. Sun et al. (2022) conduct a
human study on the additional knowledge provided
by free-text rationales. This work is the first that
proposes an automatic metric to quantify the new
information in free-text rationales.

6 Conclusion

We introduce REV, an information-theoretic mea-
sure to evaluate the amount of new, label-relevant
information in free-text rationales, beyond the in-
formation contained in the input. We empirically
demonstrate the advantage of REV compared to
existing metrics focusing simply on label-rationale

association, and show that REV is more consistent
with human judgments. REV also offers insights
into evaluating rationales generated via few-shot
prompting. While we recommend the usage of REV

alongside traditional performance metrics, future
work might explore a combined metric to measure
the correctness of a prediction as well as the infor-
mativeness of the rationale towards this prediction.
Ultimately, free-text rationales are for the benefit
of human users and there exist multiple criteria
for human utility of rationales (Joshi et al., 2023),
beyond label relevance and informativeness.

Limitations

In its current formulation, REV might reward a ra-
tionale for an incorrect prediction as long as the
rationale supports the prediction with relevant ad-
ditional information. Additionally, our metric does
not consider the factuality of rationales. Future
work might explore evaluation that penalizes ra-
tionales which support incorrect predictions, thus
bridging together predictive performance with inter-
pretability metrics. We considered a single declara-
tive construction for baseline rationales and leave
analyzing how different baseline construction im-
pacts our metric to future work. Another limitation
is that the utility of REV depends on the quality of
crowd-sourced rationales used to train the evalua-
tor. Building a good automatic metric REV requires
high-quality rationales that provide sufficient new
information (e.g., commonsense knowledge) to ex-
plain the corresponding labels. The architecture
of evaluation models also has an impact on REV

evaluation. Using different evaluator architectures
may result in varying REV scores, as discussed in
Appendix B.3.

Ethics Statement

All datasets used in this work are public, and deal
with situations encountered in daily life; these are
the examples provided for human annotation. Gen-
erated rationales sometimes contain non-factual
statements or misinformation. While it is plausi-
ble that some rationales generated by the model or
some data instances might contain offensive ma-
terial, to the best of our knowledge we did not
encounter such examples. We did not collect any
personal information (e.g. demographics and iden-
tities) of participants in any of the human evalua-
tion experiments.
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2021. Measuring association between labels and
free-text rationales. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 10266–10284, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stew-
art, and Stefano Ermon. 2020. A theory of usable
information under computational constraints. In In-
ternational Conference on Learning Representations.

2018

https://arxiv.org/pdf/2201.08239.pdf
https://arxiv.org/pdf/2201.08239.pdf
https://doi.org/10.18653/v1/2020.blackboxnlp-1.10
https://doi.org/10.18653/v1/2020.blackboxnlp-1.10
https://doi.org/10.18653/v1/2020.blackboxnlp-1.10
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.18653/v1/2022.naacl-main.47
https://doi.org/10.18653/v1/2022.naacl-main.47
https://doi.org/10.18653/v1/2022.naacl-main.47
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper-round1.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.804
https://doi.org/10.18653/v1/2021.emnlp-main.804
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=r1eBeyHFDH
https://openreview.net/forum?id=r1eBeyHFDH


A Properties of Conditional V-information

As proved by Hewitt et al. (2021), CVI has several useful properties:

1. Non-Negativity: IV(R → Y ∣ B) ≥ 0.

2. Independence: If Y and B are jointly independent of R, then IV(R → Y ∣ B) = 0.

3. Monotonicity: If U ⊆ V , then HV(Y ∣ B) ≤ HU(Y ∣ B).

An implication from Monotonicity is complex models (e.g., pre-trained language models) might do better
than simpler ones (e.g., linear models) in estimating V-usable information. Since CVI measures the
additional V-usable information in R about Y beyond what’s already extracted from B by models in V , it
grounds the goal of the proposed metric REV.

B Additional Details on the Experimental Setup

B.1 Datasets
For CQA task, we use ECQA (Aggarwal et al., 2021), CoS-E (v1.11) 11 (Rajani et al., 2019) and QuaRTz
(Tafjord et al., 2019). Both ECQA and CoS-E originate from the CommonsenseQA dataset (Talmor et al.,
2019), where each commonsense question is paired with 5 candidate choices and the task is to select an
answer from the candidates. ECQA contains higher quality free-text rationales compared to CoS-E, in
terms of comprehensiveness, coherence, non-redundancy, etc. (Aggarwal et al., 2021; Sun et al., 2022).
QuaRTz is an open-domain reasoning task about textual qualitative relationships. Each instance contains
a situated qualitative question, two answer options and a knowledge statement. The task is to select an
answer from the two options to the question based on the textual qualitative knowledge. We use the
knowledge statement as a free-text rationale since it explains why the answer is to the question. For NLI
task, we use e-SNLI (Camburu et al., 2018) which is an extension of SNLI (Bowman et al., 2015) with
augmented free-text human-written rationales. The task is to predict the entailment relationship between a
premise and a hypothesis. Figure 6 shows the summary statistics of the four datasets.12

B.2 Models

Datasets #train #dev #test

ECQA 7598 1090 2194
CoS-E 8766 975 1221

QuaRTz 2696 384 784
e-SNLI 54933 9842 9824

Figure 6: Summary statistics of the
datasets, where # counts the number of
examples in the train/dev/test sets.

We use Huggingface Transformers (Wolf et al., 2020) to access
all task and evaluation models. We train each model for up to
20 epochs with a learning rate 5e − 6 and a batch size 8. All
experiments were performed on a single NVIDIA RTX 8000
GPU. Table 3 shows input-output formattings of different task
models for different tasks.

B.3 Comparison Between Evaluator Architectures
We apply REV to evaluate different types of free-text rationales
w.r.t. labels on the ECQA dataset. Figure 7 shows REV scores
of the four types of rationale-label pairs evaluated by four eval-
uator architectures. The ranking of the four groups of rationale-
label pairs is consistent across the four evaluators, i.e. Y∗;R∗

> XY∗→R > X→YR > X→RY. This ranking is also consistent with human evaluation in §4.2. Since
ECQA contains high-quality crowdsourced rationales (Aggarwal et al., 2021), it is expected that the
REV of gold rationale-label pairs (Y∗;R∗) is the highest. The REV of XY∗→R is close to that of
Y∗;R∗, indicating the task model (T5 Large) can produce good quality rationales when it is prompted
with ground-truth labels. All four evaluators agree that the generated rationales of X→YR contain

11We use the version v1.11 where each question is paired with 5 answer choices, for comparison with ECQA.
12Since CoS-E does not provide rationales for instances in the test set, we use the original development set as the test set and

hold out 10% of training data as the new development set. For e-SNLI, we follow Hase et al. (2020) and randomly sample 10%
of training data to form the training set for finetuning our models.
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Type Input Output

XY∗→R CQA: [question] question [choice] choice-1 ... [choice] choice-n
[answer] gold label [rationale] rationale <eos>

NLI: [premise] premise [hypothesis] hypothesis [answer] gold
label [rationale]

X→YR CQA: [question] question [choice] choice-1 ... [choice] choice-n
[answer] label [rationale] rationale <eos>

NLI: [premise] premise [hypothesis] hypothesis [answer]

X→RY CQA: [question] question [choice] choice-1 ... [choice] choice-n
[rationale] rationale [answer] label <eos>

NLI: [premise] premise [hypothesis] hypothesis [rationale]

Table 3: The input-output formatting of different task models.

more additional background information for explaining the predicted labels than those of X→RY. This
is consistent with our design of the X→RY in §3.3, where the generated rationales and labels have
weakened relevance. For each type of rationale-label pairs, the four evaluators capture different amount of
conditional V-information, while T5 Large consistently outperforms other three models. In the reported
experiments §4, we use T5 Large as the evaluation model.

C Additional Experiments

C.1 Qualitative Analysis of Different Metrics on ECQA

Figure 7: REV for evaluating rationale-label pairs on the
ECQA dataset with different evaluator architectures.

Table 4 shows the qualitative analysis of differ-
ent metrics on the four types of rationale-label
pairs (Y∗;R∗, XY∗→R, X→YR, X→RY) on
the ECQA dataset. REV provides more accurate
evaluations on those examples than LAS and RQ.

C.1.1 Qualitative
Analysis of Negative REV Scores in ECQA
Table 8 shows some examples of X→RY with
negative REV scores on the ECQA dataset. When
REV < 0, we observe in most cases the rationale
does not support the given label, while indicating
other labels, or something even beyond the label
candidates (e.g., “helicopter" in the second exam-
ple), or they could repeat the input (e.g., the first
example). The same observation holds for other types of rationale-label pairs.

C.2 Additional Analysis on Label-Related But Input-Irrelevant “Rationales”

In some cases, a rationale contains the given label and provides new information related to the label,
but does not necessarily explain why the label is selected for the input. To evaluate such rationales, we
randomly select 250 gold labels in ECQA and extract their related sentences from a large-scale knowledge
base—GenericsKB (Bhakthavatsalam et al., 2020). Those sentences contain the labels, while might
provide little or irrelevant new information to explain the labels w.r.t. the inputs. We use them as trivial
rationales for evaluation. The average REV scores for those trivial rationales and their crowdsourced
counterparts are 0.26 and 1.14 respectively, indicating the effectiveness of REV in identifying the new and
relevant information in rationales. Table 5 shows the REV scores of some examples and the corresponding
crowdsourced rationales. The results show that REV can distinguish the new information in different
rationales and penalize meaningless rationales. Overall, REV gives higher scores to crowdsourced
rationales than trivial sentences from GenericsKB.
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C.3 Qualitative Analysis of CoS-E Rationales
Table 7 shows the exemplar of REV scores for crowdsourced and model-generated (XY∗→R) rationales
for CoS-E. The main observation is model-generated rationales (XY∗→R) generally support labels,
though provide limited new information, while many crowdsourced rationales in CoS-E are noisy or
uninformative. Specifically, compared to the crowdsourced rationales in CoS-E, we observe that XY∗→R
can produce better rationales that support the labels, which also corresponds to higher REV scores.
However, the new information contained in those rationales is still limited (please see examples). A
possible reason is the task model (XY∗→R) hardly learns to produce more informative rationales when
trained using lower quality rationales from CoS-E, known quality issue as reported in prior work (Aggarwal
et al., 2021; Sun et al., 2022).

C.4 Human Evaluation Details
We randomly select 230 examples from the ECQA test set and conduct human evaluation on the four types
of rationale-label pairs (Y∗;R∗, XY∗→R, X→YR, X→RY) w.r.t. each example through the Amazon
Mechanical Turk (AMT). We select workers located in Australia, Canada, the UK, or the US, with a past
HIT approval rate of >98% and >5000 HITs approved. Each instance is assessed by 3 workers. We pay
the workers $0.08 for assessing each instance.

Figure 8 shows the instructions we provide to workers. In Figure 9, we show three examples, illustrating
when the explanation (rationale) does not justify the answer (label), when the explanation supports the
answer while not supplying additional information, and when the explanation supports the answer and
provides additional information. Figure 10 shows the interface of the actual hit for human evaluation.

For each instance, we provide a question (input), an answer (label), and an explanation (rationale), and
ask the workers to answer the following two questions:

1. Does the Explanation justify the given Answer? (yes or no) The question is to ask workers to judge
whether the rationale supports the label or not.

2. If yes, how much additional information does the Explanation have to justify the Answer beyond just
reiterating what is stated in Question and Answer? (No additional info, Little additional info, Some
additional info, Enough additional info) We only ask this question if the workers choose “yes” for
the first question. We design this question to ask workers to evaluate the extent to which the rationale
provides additional information for justifying the label beyond repeating it w.r.t. the input.

C.5 Qualitative Results of Sensitivity Test
Table 6 shows some examples from the sensitivity test in §4.3.
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Figure 8: The instructions of human evaluation in the user interface on AMT.

2022



Type Question Label Rationale Metric

REV LAS RQ

Y∗;R∗
If you have a ticket and you are
planning to eat hot dogs, where

would you go?

baseball
stadium

Hot dogs can be eaten at
baseball stadium. When you go
to a baseball stadium, you have
a ticket and you may plan to eat

hot dogs.

0.32 0 0

How does a person go to space? space
shuttle

People go to space by a vehicle
specially designed to travel to
space. That vehicle is called a

space shuttle.

0.32 0 0

What is a dangerous outdoor
activity for children?

sun
themselves

Sunning themselves is a
dangerous activity Children
should not sun themselves

0.28 1 1

XY∗→R
Where are old pictures kept? attic Attic is a place where old

pictures are kept.
0.34 1 0

What would you be if you
comfort friend?

friendly Comforting friend is a good
thing.

0.43 0 1

What do customers do to a
waiter after the waiter serves

customers?

pay to Paying to a waiter is the action
of paying. Waiters get paid to

serve customers.

0.10 -1 0

X→YR
Where is there likely to be more

than one desk drawer?
desk Desk drawer is a drawer used

for storing office supplies.
There is likely to be more than

one desk drawer in office.

-4.75 -1 1

What leads to someone’s death
when they are very depressed?

suicide Suicide is the act of committing
suicide. When someone is very
depressed, suicide leads to their

death.

0.57 0 0

Where are you normally when
you take a bath?

hotel room Hotel room is a place where
people stay. Bathing is

normally done in hotel rooms.

0.32 0 -1

X→RY
What is likely heard by those

going to a party?
laughter People go to a party to meet

new people. People are likely to
hear laughter at the party.

-0.10 1 0

What would you do if you have
excitement and do not want to

stay in your house?

go to gym Go to gym is to go to a place
where you can express

information. If you have
excitement and do not want to
stay in your house, then you

would go somewhere.

0.53 1 0

If you’re caught committing
murder, an injection can lead to

your own what?

die An injection can lead to one’s
own death. If you’re caught

committing murder, you can be
injected into your own body

and die.

1.46 0 0

Table 4: Pointwise evaluation of REV, LAS and RQ on different types of rationale-label pairs. Incorrect labels are
colored red.
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Input Label Crowdsourced Rationale REV Input-Irrelevant GenericsKB
Sentence

REV

What form of government is
most associated with

kingdoms?

monarchy Monarchy is a form of
government with the monarch

at the head. Monarchy is a form
of government mostly

associated with kingdoms.

0.65 Monarchies are countries. -0.94

Bailey liked playing games
against other people. He found

it exhilarating. What might
Bailey like about games?

competitiveness When a game is played against
someone, it is a competition and

it promotes competitiveness.
Games are competitive in

nature when it involves people
against each other.

0.37 Competitiveness also means
education, research and

innovation including in the area
of environment.

-0.14

How is a dog likely to
communicate with another dog?

bark Bark is the sharp explosive cry
of a dog, fox, or seal. The dog
is likely to communicate with

another dog with a bark.

2.11 Bark is covering. -4.37

Where would you put a car
near your house?

driveway Driveway is a place near the
house. A car can be put in the

driveway.

0.48 Driveways are located in cars. 0.43

Table 5: Exemplar of REV scores for crowdsourced rationales and label-related but input-irrelevant sentences
containing the ground-truth label from GenericsKB for ECQA.
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X→YR
Question: What is likely to happen if you’re doing housework all day?
Choices: boredom, tiredness, get tired, backache, get a clean house
Gold label: get tired
Gold rationale: Get tired means no longer wanting someone or wanting to do something because you
are bored with it or annoyed by it. Get tired is likely to happen if you’re doing housework all day.

σ
2 = 0, REV = 1.36

Output: get tired [rationale] If you’re doing housework all day, it’s likely to happen if you are getting
tired.

σ
2 = 5, REV = 1.36

Output: get tired [rationale] If you’re doing housework all day, it’s likely to happen if you are getting
tired.

σ
2 = 10, REV = 1.36

Output: get tired [rationale] If you’re doing housework all day, it is likely to happen if you are getting
tired.

σ
2 = 15, REV = 1.29

Output: backache [rationale] Backache is a condition of being tired. You are likely to get tired if you’re
doing housework all day.

σ
2 = 20, REV = 0.72

Output: boredom [rationale] Boredom is a state of being or being unable to do something. People tend
to get bored easily when they are bored.

σ
2 = 25, REV = 1.33

Output: backache [rationale] Backache is the state of being unable to move backwards or forwards in a
straight line. One cannot move forward if they are not able to do so.

σ
2 = 30, REV = 0

Output: banishing oneself from one’s own body by removing it from the body of another person. This is
a way of preventing one from being harmed by other people. It is possible to get rid of people from their
own bodies if they are living in the same house. That is why they have to live together.

X→RY
Question: What happens when not paying attention when bathing?
Choices: dry skin, using soap, reading newspaper, shampoo, slip and fall
Gold label: slip and fall
Gold rationale: Bathing is generally done in a bathroom. Bathrooms could be slippery due to water. If
not careful slipperiness can cause one to slip and fall.

σ
2 = 0, REV = 1.28

Output: Bathing can cause slip and fall when one is not paying attention. Slip and Fall is a common
occurrence when people do not pay attention when bathing. [answer] slip and fall

σ
2 = 5, REV = 1.28

Output: Bathing can cause slip and fall when one is not paying attention. Slip and Fall is a common
occurrence when people do not pay attention when bathing. [answer] slip and fall

σ
2 = 10, REV = 1.24

Output: Bathing can cause slip and fall when not paying attention. Slipping and falling is a result of not
being attentive when bathing. [answer] slip and fall

σ
2 = 15, REV = 1.20

Output: Bathing is a process of washing the body. Not paying attention means not paying enough
attention to the bathing process. [answer] slip and fall

σ
2 = 20, REV = −0.15

Output: Bathing is a process of washing and rinsing. Paying attention means paying attention to
something. [answer] reading newspaper

σ
2 = 25, REV = −0.17

Output: Paying attention to what you are doing is a sign of being aware of what is going on around you.
Knowing what to do is to pay attention. [answer] dry skin

σ
2 = 30, REV = −0.85

Output: Paying attention to one’s own needs is a basic human need. One needs to be aware of the needs
of others in order to meet them...engavengendersengendoenv -end-engagingendentenant [answer] slip
and fall

Table 6: Examples of the two task models’ outputs under different levels of noise in sensitivity test.
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Type Input Label Rationale REV

Crowdsourced
The goal was to hit the target,
but a projectile ball can’t hit
anything if it isn’t in what?

motion if you stand still you get hit -0.14

When you get together with
friends to watch film, you might

do plenty of this?

have fun when the working day is
done

-0.27

They dealt with combustible
mixtures in their experiments,

this is why they kept a fire
extinguisher where?

chemistry lab mixtures mixing fruitsa -0.17

XY
∗ → R

The goal was to hit the target,
but a projectile ball can’t hit
anything if it isn’t in what?

motion a projectile ball can’t hit
anything if it’s not in

motion

0.09

When you get together with
friends to watch film, you might

do plenty of this?

have fun when you get together with
friends to watch film, you

might do plenty of fun

1.47

They dealt with combustible
mixtures in their experiments,

this is why they kept a fire
extinguisher where?

chemistry lab chemistry labs deal with
combustible mixtures in

their experiments.

0.74

Table 7: Exemplar of REV scores for crowdsourced and model-generated (XY∗→R) rationales for CoS-E.

Input Label Rationale REV

What do people call it when
they are going for run?

falling down People call it run when they are
going for run.

-1.06

What enables most people to
transport themselves?

own cars People who believe in god are
able to transport themselves

through helicopter.

-0.19

Where would you expect to
find popcorn in a public place?

movie theater Popcorn can be found in a
public place.

-1.27

What are you usually at when
you sit on a bench on a curb?

city Ohio is a state in the United
States. You are usually at street
corner when you sit on bench

on curb.

-0.27

Table 8: Exemplar of negative REV scores for rationale-label pairs from X→RY on the ECQA dataset.
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Figure 9: Exemplars provided to worker in the user interface on AMT.
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Figure 10: The actual hit of human evaluation in the user interface on AMT.
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