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Abstract

State-of-the-art translation Quality Estimation
(QE) models are proven to be biased. More
specifically, they over-rely on monolingual fea-
tures while ignoring the bilingual semantic
alignment. In this work, we propose a novel
method to mitigate the bias of the QE model
and improve estimation performance. Our
method is based on the contrastive learning be-
tween clean and noisy sentence pairs. We first
introduce noise to the target side of the paral-
lel sentence pair, forming the negative samples.
With the original parallel pairs as the positive
sample, the QE model is contrastively trained
to distinguish the positive samples from the
negative ones. This objective is jointly trained
with the regression-style quality estimation, so
as to prevent the QE model from overfitting to
monolingual features. Experiments on WMT
QE evaluation datasets demonstrate that our
method improves the estimation performance
by a large margin while mitigating the bias1.

1 Introduction

Quality Estimation (QE) aims to predict the qual-
ity of machine translation automatically in the ab-
sence of reference translations. State-of-the-art QE
model mostly falls into Pre-Trained Model (PTM)-
based paradigm. In the latest QE evaluation tasks
(Zerva et al., 2022), nearly all top-performing sys-
tems adopt Multilingual PTMs as backbone.

Good as the PTM based QE performance is, re-
cent researches (Sun et al., 2020; Behnke et al.,
2022) reveal that state-of-the-art QE models are
biased. To be specific, the models largely rely
on spurious monolingual features, such as the flu-
ency of the target sequence, or the complexity of
the source sequence, without really capturing the

†Contribution during internship at ByteDance Inc.
‡Corresponding Authors.
1Codes are available at https://github.com/

HuihuiChyan/AwesomeQE-contrast

Figure 1: An example of the bias in QE. Notice the first
sentence pair is unrelated.

bilingual semantic alignment. Such monolingual
features do not have a casual impact on the trans-
lation quality, and bias the QE results to a large
extent. For example, as shown in Figure 1, a fluent
and uncomplicated translation might be assigned
with a high quality score even it does not resemble
the actual semantics of the source sentence, while
an adequate translation with complicated structure
might be assigned as bad translation.

Sun et al. (2020) recommends to counter with the
bias by using a metric that represents adequacy well
as labels. However, in their such annotated dataset,
the bias is still striking, as revealed by Behnke et al.
(2022). As an alternative, Behnke et al. (2022) ex-
plores several multitask architectures, to support
the QE task and discourage the model from learn-
ing the bias. In spite of their success on alleviating
the bias in QE, the overall estimation performance
is degraded. In other words, they mitigate the bias
at the cost of QE performance.

In this work, we present a new strategy to mit-
igate the bias of QE and meanwhile improve QE
performance. Our method is based on contrastive
learning between clean and noisy sentence pairs.
Firstly, we add noise to the target side of the par-
allel sentence pair. We corrupt the target sentence
with hand-crafted rules, and then use another mono-
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lingual pre-trained model to restore it. Secondly,
with the original sentence pair as the positive sam-
ple and the noisy sentence pairs as the negative
samples, contrastive learning is assigned to the QE
model as an auxiliary task. In this procedure, the
proposed method reassures the QE model to focus
on the bilingual alignment in addition to monolin-
gual features, therefore mitigating the bias while
upholding the QE performance.

We perform experiments on MLQE-PE dataset
(Fomicheva et al., 2020) and WMT19 QE evalua-
tion dataset (Fonseca et al., 2019), including both
high-, medium- and low-resource language pairs.
Our method is confirmed to improve the QE accu-
racy by a large as well as margin mitigate the bias.
In particular, we further provide in-detail analysis
about the bias of QE by creating two adversarial
test sets. Examination on these data reveals that our
method strikes a compromise between QE perfor-
mance and bias mitigation, avoiding bias mitigation
from overriding the QE objective.

Our contributions can be summarized as follows:
1. We propose to use contrastive learning as a

regularizer for QE training, to mitigate the bias and
focus the model on bilingual semantic alignment.

2. We propose to create effective negative sam-
ples for contrastive learning by firstly corrupting
the reference text and then reconstructing it with a
pre-trained model.

3. Our bias mitigation method improves the
QE performance by a large margin, while previous
method would lead to performance degradation.

4. We provide in-detail and informative analysis
about the bias mitigation of QE by creating two
adversarial test sets.

2 Related Work

In contrast to the automatic MT evaluation metrics
which is good at system level, QE is usually con-
ducted in either sentence-level or word-level. In
this work, we mainly concentrate on sentence-level
QE, where the translation quality is measured with
different schemes, such as Human-Targeted Error
Rate (HTER) (Snover et al., 2006) or Direct As-
sessment (DA) (Graham et al., 2015), and the QE
model is supposed to provide a quality score for
each MT output with its source alongside.

Quality Estimation was proposed as early as in
2004 (Blatz et al., 2004). After the emergence of
BERT, Pre-Trained Models (PTMs) become popu-
lar in the area of QE (Fonseca et al., 2019). By pre-

training on massive multilingual text, PTMs have
learned various linguistic knowledge, and can be
adapted to quality estimation task without further
adjustment. In WMT21 and WMT22 QE evalua-
tion tasks (Specia et al., 2021; Zerva et al., 2022),
nearly all top-performing team build the system
on multilingual PTMs, e.g. XLM-RoBERTa (Con-
neau et al., 2020), Multilingual BERT (Devlin et al.,
2019), etc. PTM-based method has become the de-
facto paradigm.

Despite the breakthroughs made in QE, the pre-
diction of QE model is revealed to be biased to
spurious features. Sun et al. (2020) showed that
QE models have a tendency to over-rely on spuri-
ous correlations, which is partially due to skewed
label distributions and statistical artifacts in QE
datasets. In particular, they show the existence of
a partial input bias, i.e. the tendency to predict
the quality of a translation based on just the target
sentence (Poliak et al., 2018). To this end, they
annotate and release a new dataset, but as shown in
subsequent results of Behnke et al. (2022), the bias
is still striking in their newly-released dataset.

The most correlated work with us is Behnke et al.
(2022), who also aims to investigate the bias mit-
igation of QE model. They find that the model as
well as the annotators tend to over-rate the quality
of fluent but inadequate translations. Accordingly,
they propose four auxiliary tasks to perform bias
mitigation, two approaches use additional data to
inform and support the main task, while the other
two are adversarial to discouraging the model from
learning the bias. Although their methods could al-
leviate the bias, the estimation accuracy (measured
with Pearson Correlation Coefficient) of the QE
model is degraded in most cases.

Another correlated work is Huang et al. (2021),
who firstly propose to apply contrastive learning
on QE. But the contrastive learning is solely per-
formed in a zero-shot manner, and they did not
apply their method to mitigate the bias of QE.

3 Approach

3.1 Contrastively Regularized QE

To compromise between bias mitigation and quality
estimation, we propose Contrastively Regularized
QE (ConRegQE), as shown in Figure 2.

The core idea of our method is the contrast be-
tween clean sentence pairs (deemed as positive)
and noisy sentence pairs (deemed as negative). We
start from parallel sentence pairs, and introduce
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Figure 2: Our proposed Contrastively Regularized QE. Left denotes the negative sample generation process, where
the reference is firstly corrupted by hand-crafted rules, and then reconstructed via a pre-trained reconstructor
(encoder-only or encoder-decoder). Right denotes the multi-task training architecture, with source-reconstruction
serving as the negative pair, and source-reference as the positive pair, and QE model is trained to distinguish the
positive pair from negative ones. src, mt, ref are short for source, machine translation, reference respectively. Notice
the contrastive learning module enclosed in dashed lines is omitted in inference phase.

noise to the target side to create semantic disalign-
ment. Notice that the noising scheme can be ap-
plied to the same positive pair multiple times, lead-
ing to multiple negative pairs according to each
positive pair. After that, the positive pairs and the
negative pairs are all fed to the QE model, which
is trained to distinguish them with InfoNCE (Oord
et al., 2018) objective defined as:

LCL =
es(q,k

+)/τ

es(q,k+))/τ +
∑n

i=1 e
s(q,k−i )/τ

(1)

where τ is a temperature coefficient, n is the nega-
tive sample number, (q, k+) is the positive pair and
(q, k−) is the negative pair, and s(·, ·) denotes the
predicted logit for a sentence pair provided by the
QE model as follows:

s(q, k) = FCCL(Φ(q, k)) (2)

where FCcl is a fully-connected layer, and Φ is the
pre-trained XLM-RoBERTa.

This contrastive objective is jointly trained with
the regression-style QE objective as follows:

LMSE = ∥FCreg(Φ(q, k))− l(q, k))∥2 (3)

Ltotal = LMSE + λ× LCL (4)

where FCreg is a fully-connected layer, and l(q, k)
denotes the human annotated score, and λ is a fac-
tor to balance the two loss functions. Notice we
use two separate classification heads to perform the
contrastive and regression training, to avoid them
from disrupting each other.

Without this contrastive regularizer, the encoder
would only accept one single src-mt pair as in-
put, and is trained to assign a quality label in a
regression style, in which it would leverage ev-
ery possible feature to fit the annotation, such as
monolingual complexity, fluency, etc. Since cur-
rent PTMs are mostly trained with monolingual
data, therefore it is much easier for the model to
capture monolingual features than bilingual align-
ment, leading to the bias. But in the meantime, the
features which could be utilized to finish estimation
is quite limited, especially when only thousands of
training samples are provided. Therefore, strictly
filtering all spurious monolingual features would
undoubtedly lead to performance degradation (as
can be seen in the results of Behnke et al. (2022)).
Our contrastive regularizer claims a decent com-
promise in this dilemma, and therefore making the
most of bias mitigation as a supplement.
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Figure 3: Knowledge Distillation from the to-be-
evaluated MT model to the pretrained reconstructor.
Notice the corruption follows the pre-training strategy
of different PTMs (e.g. random masking for BERT).

3.2 Negative Sample Generation

To create negative samples for contrastive learning,
we propose the method of Denoising Reconstruc-
tion, as shown in Figure 2. Our method starts with
parallel sentence pairs, and the reference is noised
by the following two steps:

1. Randomly corrupt the reference sentence by
the combination of different human-crafted rules,
including masking, insertion, deletion, infilling and
replacement, etc2;

2. Restore the corrupted reference with monolin-
gual pre-trained models;

We introduce two kinds of pre-trained recon-
structors, namely encoder-only model (such as
BERT (Devlin et al., 2019)), and encoder-decoder
model (such as BART (Lewis et al., 2020)) to re-
cover the target sequence. Both models are pre-
trained with first corrupt the text and then recon-
struct it, making them naturally adapted to perform
the reconstruction. Since the input information is
corrupted, the recovered version would unavoid-
ably contain noise which is unaligned with the
source sentence. Meanwhile, the reconstructions
are generated by the language model, thus the re-
sults will not be unnatural or outrageous. This is
in line with the real noise distribution. While most
of previous works rely on hand-crafted rules or
machine translation (Wu et al., 2020; Briakou and
Carpuat, 2020; Tuan et al., 2021) to create negative
samples for contrastive training in natural language
processing, this does not apply to our scenario,
since both rule-based corruption and MT decoding
have specific patterns and can be easily detected3.

To further imitate the noise distribution, we

2More detailed illustration is presented in the Appendix A.
3An example is presented in the Table 8 of the Appendix.

resort to knowledge distillation (Kim and Rush,
2016) to transfer the decoding space of the to-be-
evaluated MT model to the reconstructor, as shown
in Figure 3. We first use the MT model to translate
text in the source language, and then the pre-trained
reconstructor is further tuned on the generated tar-
get sequences. The generated sequence would con-
tain the decoding patterns of the to-be-evaluated
model, and after knowledge distillation, the recon-
structor could introduce noise with more consistent
distribution. This is also helpful to regularize the
model to focus on quality-related features.

4 Experiments

4.1 Setup

We mainly work with the MLQE-PE dataset
(Fomicheva et al., 2020), which formed the basis
for the WMT21 QE evaluation task. Seven lan-
guage pairs are involved, including high-, medium-
and low-resource languages4. The translations
were generated using Transformer-based Neural
MT models, and each source sentence is accompa-
nied with a human post-edited reference. For each
language, train, dev and two test sets (Test20 and
Test21) were annotated on two different scales:

• Task1: Direct Assessment (DA) Prediction;

• Task2: Human-Targeted Error Rate (HTER)
Prediction;

We also experiment on the WMT19 QE dataset
(Fonseca et al., 2019), which includes HTER pre-
diction data for two language pairs5.

We mainly compare with the work of Behnke
et al. (2022), which is build based on M-TransQuest
(Ranasinghe et al., 2020), and explore the following
four strategies to mitigate the QE bias:

• bilingual: train with different language pair
(Romanian-English) which is less biased;

• augmented: train with additional translations,
which are shuffled to form “bad” translations;

• adversarial: train to predict the score based
on only target-input with gradient reversed;

• focal: train with revised debiased focal loss;

4English-German, English-Chinese, Romanian-English,
Estonian-English, Russian-English, Sinhala-English and
Nepali-English.

5English-German and English-Russian.
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Method
EN-DE EN-ZH RO-EN ET-EN RU-EN SI-EN NE-EN avg

Test20 Test21 Test20 Test21 Test20 Test21 Test20 Test21 Test20 Test21 Test20 Test21 Test20 Test21

Task1: DA Prediction

TransQuest 0.370 0.375 0.426 0.469 0.847 0.851 0.684 0.657 0.725 0.717 0.584 0.501 0.681 0.719 0.615
+bilingual 0.385 0.355 0.411 0.467 - - 0.690 0.660 0.726 0.715 0.592 0.515 0.675 0.713 0.614
+augmented 0.401 0.353 0.409 0.454 0.831 0.826 0.675 0.644 0.729 0.717 0.576 0.501 0.665 0.709 0.606
+adversarial 0.198 0.177 0.403 0.412 0.624 0.630 0.625 0.604 0.593 0.584 0.404 0.394 0.631 0.666 0.496
+focal 0.318 0.294 0.427 0.461 0.803 0.810 0.665 0.633 0.682 0.694 0.464 0.420 0.655 0.682 0.572

OpenKiwi 0.280 0.248 0.405 0.483 0.836 0.843 0.663 0.653 0.679 0.683 0.562 0.479 0.687 0.732 0.588
COMET 0.406 0.393 0.405 0.508 0.814 0.812 0.654 0.611 0.683 0.702 0.574 0.484 0.667 0.720 0.602
ConRegQE 0.452 0.454 0.445 0.504 0.867 0.865 0.727 0.701 0.736 0.732 0.598 0.547 0.722 0.780 0.652

TASK2: HTER Prediction

TransQuest 0.475 0.520 0.336 0.301 0.831 0.813 0.639 0.680 0.398 0.423 0.598 0.582 0.537 0.605 0.553
+bilingual 0.465 0.507 0.321 0.228 - - 0.624 0.657 0.394 0.415 0.605 0.591 0.531 0.598 0.541
+augmented 0.469 0.500 0.329 0.286 0.818 0.807 0.629 0.671 0.383 0.403 0.593 0.573 0.542 0.605 0.543
+adversarial 0.449 0.458 0.297 0.246 0.687 0.666 0.564 0.596 0.343 0.359 0.573 0.552 0.468 0.543 0.486
+focal 0.445 0.455 0.332 0.287 0.796 0.780 0.602 0.646 0.375 0.403 0.583 0.585 0.528 0.589 0.529

OpenKiwi 0.388 0.418 0.281 0.237 0.792 0.801 0.637 0.662 0.379 0.378 0.524 0.497 0.491 0.590 0.505
COMET 0.487 0.483 0.301 0.262 0.788 0.791 0.622 0.649 0.380 0.389 0.574 0.570 0.484 0.570 0.525
ConRegQE 0.507 0.569 0.372 0.311 0.836 0.832 0.671 0.727 0.459 0.496 0.623 0.613 0.556 0.610 0.584

Table 1: PCC on MLQE-PE test sets. All methods are implemented on the pre-trained model of XLMR-base. Avg
means averaged PCC among seven test sets. Light font denotes degraded results caused by bias mitigation. Notice
we try our best to reproduce the results of Ranasinghe et al. (2020), but the results still differ a lot from their release.
Similar case is also reported in Behnke et al. (2022) (Please refer to their Appendix A).

Method Model EN-DE EN-RU avg

TransQuest XLMR-base 0.4438 0.5094 0.4766
OpenKiwi XLMR-base 0.4155 0.4462 0.4309
COMET XLMR-base 0.4243 0.4925 0.4584
ConRegQE XLMR-base 0.4595 0.5609 0.5102

TransQuest mBERT 0.4815 0.4857 0.4836
OpenKiwi mBERT 0.4549 0.5218 0.4884
COMET mBERT 0.4312 0.4751 0.4532
ConRegQE mBERT 0.4812 0.5686 0.5249

TransQuest mBERT+TLM 0.5317 0.4876 0.5097
Kepler et al.† mBERT+TLM 0.5070 0.5170 0.5120
ConRegQE mBERT+TLM 0.5386 0.5654 0.5520

Table 2: PCC on WMT19 QE test sets. Avg means
averaged PCC among two test sets. Results with † are
taken from the submission of Kepler et al., which is
the winning system of WMT19 QE Evaluation Task.
TLM denotes the pre-trained encoder further fine-tuned
with Translation Language Modeling, and we follow the
TLM settings of Kepler et al..

We also compare with two competitive systems
of OpenKiwi (Kepler et al., 2019b) and COMET
(Rei et al., 2020), both are based on multilingual
pre-trained models. To make a fair comparison,
we implement all systems based on the same pre-
trained model (XLM-RoBERTa-base or Multilin-

gual BERT) with their released codes6.
We use monolingual BERT (Devlin et al., 2019)

for the backbone of the encoder-style reconstruc-
tor7. For Chinese, we also tried encoder-decoder
style pre-trained model CPT (Shao et al., 2021)8.

To apply knowledge distillation for the recon-
structor, we randomly sample 500k sentences from
WikiMatrix (Schwenk et al., 2019) for English and
CC100 (Conneau et al., 2020) for other languages.
Notice our proposed method only entails monolin-
gual data, therefore we are able to perform knowl-
edge distilation even for low-resource languages.

Pearson Correlation Coefficient (PCC) between
the prediction and the human annotation is taken
as the major metric, and Spearman’s Rank Corre-

6It should be addressed that we did not use any released
checkpoint provided by these quality estimation systems, since
we want to make a fair comparison in the same data setting,
and it is not clear what data augmentation technique is used in
training their checkpoints. We train all systems based on the
same pre-trained model and the same data, and we use their
default settings (we also tried to tune the hyper-parameters of
their systems but found no gain). Therefore, our comparison is
fair and can be used to verify the effectiveness of our proposed
method.

7https://huggingface.co/{bert-base-cased, hfl/chinese-bert-
wwm-ext, dbmdz/bert-base-german-cased, DeepPavlov/rubert
-base-cased}

8We also tried mBART (Liu et al., 2020), but to our sur-
prise, the model can hardly perform complex reconstructions.
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lation Coefficient (SRCC) is also reported. All ex-
periments are run with five different random seeds
and we report the averaged results.

The temperature τ in InfoNCE loss is set as 0.3,
and each positive sample is contrasted with 20 neg-
ative samples. For more detailed settings about
contrastive learning and negative sample genera-
tion, please refer to the Appendix A.

4.2 Main Results

As shown in Table 1 and 2, we can see that our
proposed method could improve the estimation ac-
curacy by a large margin, consistently among dif-
ferent language pairs and annotation flavors. On
the contrary, the bias mitigation methods proposed
by Behnke et al. (2022) could lead to little im-
provement or even degradation in most cases. This
indicates that the biased features should not be
harshly restricted or even ruled out, since the trans-
lation quality is a whole and can not be simply
decoupled. In contrast, our method applies a softer
restriction to the representation, focusing it on the
semantic alignment while not directly disturbing
the regression-style prediction, therefore making
the most use of bias mitigation as a supplement.

We also report the model performance in cross-
annotation scenario, to demonstrate their robust-
ness and generalizability. In MLQE-PE dataset,
each sentence pair has two different quality anno-
tations, namely DA (Task1) and HTER (Task2).
While they focus on different aspects of transla-
tion quality, they are both evaluation metrics and
are inherently correlated. Therefore, we believe a
well-trained model on one annotation could also
function on another annotation. We apply different
models on the test set with different annotations,
and the results are shown in Table 3.

As can be seen, our model improves the cross-
annotation robustness of both models on both
tasks. By contrast on noised parallel sentences,
our method force the model to focus on seman-
tic alignment, making it more general in different
quality annotations, while the baseline system re-
lies too much on spurious monolingual features and
can not generalize well. And the methods proposed
by Behnke et al. (2022) again lead to degradation
in most cases, showing that their methods are too
restrictive and deviate from the QE objective.

Experiment
Test20 Test21

PCC SRCC PCC SRCC

Train on Task1 and test on Task2

TransQuest 0.3331 0.3287 0.3828 0.3745
COMET 0.3406 0.3516 0.3601 0.3628
ConRegQE 0.3827 0.3348 0.4058 0.3822

Train on Task2 and test on Task1

TransQuest 0.4107 0.4294 0.3830 0.4083
COMET 0.3932 0.4098 0.3732 0.3885
ConRegQE 0.4506 0.4374 0.4259 0.4306

Table 3: Comparison experiments in cross-annotation
setting on MLQE-PE En-De Direction.

5 Analysis and Discussion

5.1 QE model bias: an illustration

As discussed in previous sections, the major bias of
QE model is heavily based on monolingual features
(e.g. complexity and fluency), without modeling
the bilingual alignment. We further investigate this
issue by constructing two adversarial test sets on
the basis of MLQE-PE dataset:

1) test-adv1 This adversarial test set is random-
ized by adjacent sample shuffling. We create this
test set by two steps: i) Sort the src-mt pairs accord-
ing to quality scores in ascending order, ii) Switch
the srcs of every two adjacent pairs while keep the
mt and quality score unmoved. In this case, all
translation pairs are unrelated, therefore the QE
results would be in random (with a minimum cor-
relation with the quality score).

Figure 4: An illustration of test-adv1.

2) test-adv2 This adversarial test set is perfected
with post-edit results. We create this test set by
simply substitute the mt in test set with its corre-
sponding post-edit. In this case, all translations
could be regarded as fully fluent and adequate, and
the QE score would possibly reach the maximum
value (and also with a minimum correlation with
the quality score).

We train the QE model on the original training
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Figure 5: PCC on the three versions of Test20, one
original and two adversarial.

set and evaluate on three test sets, one original and
two adversarial. As shown in Figure 5, the QE
model could claim even higher correlation score on
test-adv1, despite all sentence pairs are unrelated
and the estimation results should have fallen into
random. We attribute this to the fact that two adja-
cent pairs should have roughly the same complex-
ity and fluency after sorting with respect to quality
scores, which are captured as the major classifica-
tion feature by the biased QE model. This demon-
strates the QE model is biased towards monolingual
features (complexity, fluency, etc) while ignoring
the bilingual semantic alignment.

Meanwhile, the QE model could provide a
strong correlation score on test-adv2, especially on
TASK1 (84.25% on ENDE and 85.43% on ENZH).
This demonstrates that the monolingual complexity
is a major bias for QE model, since in test-adv2,
all target sequence are fluent and adequate, and the
only feature that can be utilized now is the com-
plexity in both sides.

In a nutshell, the bias of QE can be deems as
a multi-aspect notion influenced by a lot of fac-
tors, for example, the complexity of the syntactic
structure, the amount of low-frequency words, the
fluency of the target sequence, and so on. However,
none of these monolingual factors has a casual ef-
fect on the translation quality. The QE model is
expected to be able to handle such cases as the MT
model provide a decent translation for a compli-
cated sentence, or the translation result is fluent but
unadequate and should be classified as low quality.

5.2 Compromise in bias mitigation

Based on the discussion in Section 5.1, we report
the results on test-adv1 as a measurement of bias
mitigation. We compare our methods with the
methods proposed by Behnke et al. (2022), and

the results are shown in Table 4.

Data Method Task1 Task2

EN-DE

TransQuest 0.4859 0.5128
+bilingual 0.1672 0.3521
+augmented -0.0185 0.4367
+adversarial 0.2612 0.5070
+focal 0.4324 0.3754

Ours 0.3162 0.3214

EN-ZH

TransQuest 0.4514 0.3778
+bilingual 0.4057 0.2746
+augmented 0.0903 0.1593
+adversarial 0.4014 0.2983
+focal 0.4348 0.3519

Ours 0.4483 0.2482

Table 4: PCC of different bias mitigation methods on
test20-adv1, lower is better.

As can be seen, our method do mitigate the bias
by a large margin. Although we do not achieve the
minimal correlation compared with some versions
of Behnke et al. (2022), we would like to deem
this as a compromise between bias mitigation and
estimation accuracy. Our model do not over empha-
size bias mitigation and exclude the monolingual
features since they (such as fluency) are important
factors in translation quality. We verify this by ad-
justing the extent of bias mitigation with different
λ in Equation 4, and the variation of PCC on the
original and adversarial sets is shown in Figure 6.

Figure 6: The variation of PCC with λ on original and
adversarial Test20 of EN-DE TASK1.

As can be seen, as the correlation with adver-
sarial set is decreasing, the correlation with the
original set would increase first and then decrease.
Bias mitigation, to a certain extend, is helpful to
avoid overfitting and obtain higher accuracy, but
too much bias mitigation would harm the model-
ing of monolingual featues and eventually do harm
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to the estimation accuracy. We believe claiming
a zero-correlation with our adversarial test set is
not the final objective. Rather, the final objective
of bias mitigation is also to improve the model
performance, and our method is supplementary to
achieving more accurate estimation, obtaining a
compromise between bias mitigation and QE.

5.3 Contrastive learning vs. data
augmentation

Data Experiment Test20 Test21

EN-DE

ConRegQE 0.5068 0.5687

augmented-joint 0.4695 0.5492
augmented-split 0.4907 0.5413

EN-ZH

ConRegQE 0.3718 0.3107

augmented-joint 0.2838 0.2672
augmented-split 0.2675 0.2491

Table 5: Comparison of the contrastive learning and data
augmentation methods on MLQE-PE Task2. Notice
both methods use the same data. augment-joint denotes
using the same classification head for both synthetic
and real data, while augment-split denotes using two
different heads respectively.

In contrastive learning, each sentence pair would
be augmented with multiple negative samples,
which may make people deem that it is the data
augmentation rather than the contrastive objective
taking effect. To verify the necessity of contrastive
learning, we use the generated synthetic data di-
rectly as data augmentation on MLQE-PE Task2.
The noised reference is deemed as synthetic mt,
and the HTER score between mt and pe is calcu-
lated with the official provided scripts9, leading to
140K (src-mt-hter) triplets for each direction. Then
the original training set is mixed with the synthetic
data, to be used for regression-style training. No-
tice the original training set is upsampled to make
sure the synthetic and real data have roughly the
same amount.

As shown in Table 5, the results would be de-
graded if directly use the augmented data as the
regression objective. This is because the subtle
distribution produced by MT decoding and crowd-
sourced human annotation, which is hard to be imi-
tated by automatic data augmentation methods. We
can not create an unbiased objective for regression
automatically, but the noised pair is undoutedly

9http://www.cs.umd.edu/ snover/tercom/

worse translation, therefore the learning objective
of contrastive learning is unbiased. Another prob-
lem is, for other annotations such as DA, there is
no automatic script to calculate the quality score.
Despite QE being a generally-agreed data-sparse
task, data augmentation is not so easy to be directly
applied on it.

5.4 Different ways for negative sample
generation

As discussed in Section 3.2, while most of previ-
ous works rely on hand-crafted rules or machine
translation to create negative samples for QE, we
propose to generate synthetic data by Denoising
Reconstruction, both by encoder-only model and
by encoder-decoder model. For both models, we
choose to apply knowledge distillation, to transfer
the noise pattern from the to-be-evaluated NMT
model to the pre-trained reconstructor.

Data Method Test20 Test21

EN-DE

baseline 0.4679 0.5176

Rule-based 0.4419 0.5073
MT-based 0.4027 0.4790

BERT 0.5068 0.5687
– KD 0.4821 0.5473

EN-ZH

baseline 0.3221 0.2929

Rule-based 0.3014 0.2764
MT-based 0.1505 0.1478

BERT 0.3718 0.3107
– KD 0.3644 0.3042

CPT 0.3659 0.3035
– KD 0.3338 0.2876

Table 6: Comparison of different negative sample gen-
eration methods on MLQE-PE Task2. – KD denotes
PTM-based negative samples without knowledge distil-
lation. Notice for German, we do not find an appropriate
monolingual encoder-decoder model.

Table 6 provides a comparison of different nega-
tive sample generation methods. The results show
that both rule-based and MT-decoded negative sam-
ples are disruptive and would lead to performance
degradation, since both of them have specific pat-
terns and can be easily detected (Examples are
provided in Table 8 in the Appendix). Especially
for MT-decoded samples, most of them are correct
translations with different syntactic structures, or
else to say, they are not really “negative”.

It is also noticed that for PTM-based negative
samples, knowledge distillation plays an important
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role. This is because different models have dif-
ferent decoding space, leading to different noise
distribution. Without knowledge distillation, the
decoding space of the reconstructor would deviate
from the to-be-evaluated MT model, which would
be utilized as spurious features for contrastive learn-
ing, leading to performance degradation.

6 Conclusion

In this paper, we propose to improve translation
quality estimation with bias mitigation. We first use
pre-trained model to generate contrast samples, and
then the QE model is trained to distinguish positive
and negative samples. While previous methods
mitigate the bias at the cost of estimation accuracy,
our method achieves a compromise between bias
mitigation and quality estimation.

While current state-of-the-art QE models being
proved to be biased to monolingual features, the
bias could not be simple ruled out for the sake of
overall estimation accuracy. In the future, we will
dig deeper into this problem, to improve the robust-
ness and generalizability of QE in real applications.

Limitations

Our work still has some limitations: 1) Due to the
lack of research about the bias mitigation of QE,
there is only one directly related work in this area,
which serves as the main baseline in our experi-
ments. Since the bias of QE is a conspicuous prob-
lem, we hope there will be more related work in the
future. 2) Although our experiments are on WMT
QE datasets, we do not implement the complicated
data augmentation or model ensemble techniques
as described in Specia et al. (2021) and Zerva et al.
(2022), therefore our results can not compete with
the best results of the WMT QE evaluation tasks. 3)
Also, our method requires reference as the positive
sample. Although most QE data includes reference,
there are still chances that the QE data is annotated
without the absence of reference, and our method
would be hard to apply to such cases.
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A Hyperparameters of Contrastive
Learning

Previous research on contrastive learning finds that
the amount of negative samples has a significant
impact on the contrastive learning performance
(He et al., 2019; Chen et al., 2020). In contrastive
learning, the positive sample is pushed apart from
all negative samples, and introducing more con-
trast samples could help to learn a uniform rep-
resentation space, and also possibly incorporat-
ing harder contrast to learn more complicated se-
mantics. Therefore, previous research often set a
large batch size (sometimes leveraging the memory
bank) for contrast. Also, an adjustable temperature
τ is also believed conducive to contrastive learning
(Wang and Isola, 2020). A lower temperature value
could generate peaky logit distribution and punish
the model more on harder samples. We tune both
hyperparameters on MLQE-PE Task2.

Figure 7: PCC on Test20 of MLQE-PE TASK2 with
different numbers of negative samples.

temp
ENDE ENZH

PCC SRCC PCC SRCC

0.01 0.4847 0.4323 0.3704 0.3647
0.03 0.4928 0.4485 0.3656 0.3607
0.1 0.4875 0.4379 0.3704 0.3635
0.3 0.5068 0.4508 0.3718 0.3655
1.0 0.4814 0.4203 0.3787 0.3682

Table 7: Experiment results on Test20 of TASK2, with
different temperatures (abbreviated as temp).

As shown in Figure 7, while too few negative
samples would lead to performance degradation,
the model could not get further improvement after
more than 20 negative samples. We think this is be-
cause our carefully choreographed noising scheme,
enabling us to introduce harder contrast samples
without a large batch size. Besides, as shown in

Table 7, the temperature does not have a significant
influence on the result. We think it is because we
are using contrastive learning in a multi-task ar-
chitecture, therefore the loss would not drastically
change when tuning the temperature value. In the
end, we decide to set negative sample number as
20 and temperature as 0.3 in all experiments.

B Hyperparameters of Data Generation

Algorithm 1 Text Corruption

Input: Input sentence x with N tokens, mask ratio
rm ∈ [0, 1], random ratio rr ∈ [0, 1], insertion
ratio ri ∈ [0, 1], and deletion ratio ri ∈ [0, 1].

Output: Corrupted sentence x′.
1: Draw J text spans from x with totally M to-

kens, where M = N × rd.
2: for i = 1, 2, ..., J do
3: Delete i-th text span.
4: end for
5: Draw K positions from x, where K = (N +

1)× ri.
6: for i = 1, 2, ...,K do
7: Generate a random number f ∈ [0, 1].
8: if f > rr then
9: Insert i-th position with MASK token.

10: else
11: Insert i-th position with a random token.
12: end if
13: end for
14: Draw L positions from x with totally M to-

kens, where M = N × rm.
15: for i = 1, 2, ..., L do
16: Generate a random number f ∈ [0, 1].
17: if f > rr then
18: Replace i-th text span with MASK token.
19: else
20: Replace i-th text span with a random to-

ken.
21: end if
22: end for

In this section, we would elaborate on the de-
tailed hyperparameters for the data generation. As
depicted in Section 3.2, we use denoising recon-
struction to create negative samples, where we first
use rules to corrupt the sequence, and then use a
pre-trained reconstructor to restore it.

For the corruption of the text, we use the com-
bination of five rules, including masking, replace-
ment, insertion, deletion and infilling. Detailed
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source De la Watnall au mai fost trimise în misiune încă patru escadrile.
reference Four more squadrons were sent on mission from Watnall.
Rule-based fascinate more squadrons were sent ball on mission from.
MT-based Since Watnall, four more squadrons have been sent to the mission.
DR-based Four more gifts were sent on trip from Watnall.

source Фортуна велика, да ума мало.
reference More money than sense.
Rule-based More money mature sense.
MT-based The fortune is great, but the mind is not enough.
DR-based More money than meaning.

Table 8: Negative samples created via rules, the provided machine translation (abbreviated as MT) model, and
Denoising Reconstruction (abbreviated as DR). Red denotes noise. Notice the rule-based sample is disfluent and
unnatural, while the machine translated sample is actually a correct translation with different syntactic structure.

corruption procedure is depicted in Algorithm 1.
Notice “replacement” is actually masking with a
random token, and "infilling" is actually insertion
with MASK token.

We try out different combinations of hyperpa-
rameters on MLQE-PE Task2, and the results are
shown in Table 10. As can be seen, both the inser-
tion/deletion and the replacement/infilling opera-
tion is helpful, since they can generate more diverse
noise compared with only masking. Also, when set
the noise ratio too high or too low, the model perfor-
mance would degrade, since too much noise would
make the reconstructed text outrageous and deviate
from real MT noise, while too little noise would
make the reconstruction too easy and the generated
negative samples might be actually positive.

Current pre-trained models are mostly based on
subword segmentation. As discussed in previous
research (Cui et al., 2021), corruption on whole
word level might be more consistent with the se-
mantic structure and therefore draw further gain.
When performing masking, replacement and dele-
tion operation, we try three corruption strategies
on subword level, word level and span level re-
spectively (with length drawn from a Poisson dis-

Strategy
ENDE ENZH

PCC SRCC PCC SRCC

subword 0.5068 0.4508 0.3718 0.3655
wholeword 0.4875 0.4446 0.3514 0.3432
poisson (λ=2) 0.4819 0.4351 0.3604 0.3493
poisson (λ=3) 0.4798 0.4436 0.3272 0.3320
poisson (λ=4) 0.4905 0.4524 0.3535 0.3441

Table 9: Experiment results on Test20 of TASK2, with
different corruption levels.

Data rr rm ri rd PCC SRCC

ENDE

0.20 0.05 0.05 0.50 0.4897 0.4319
0.30 0.10 0.10 0.50 0.4804 0.4378
0.40 0.15 0.15 0.50 0.4959 0.4541
0.50 0.20 0.20 0.50 0.5068 0.4508
0.60 0.25 0.25 0.50 0.4830 0.4486

0.40 0.0 0.0 0.50 0.4903 0.4471
0.40 0.15 0.15 0.0 0.4819 0.4422

ENZH

0.20 0.05 0.05 0.50 0.3320 0.3217
0.30 0.10 0.10 0.50 0.3645 0.3572
0.40 0.15 0.15 0.50 0.3718 0.3655
0.50 0.20 0.20 0.50 0.3679 0.3603
0.60 0.25 0.25 0.50 0.3352 0.3268

0.50 0.0 0.0 0.50 0.3375 0.3346
0.50 0.20 0.20 0.0 0.3658 0.3583

Table 10: Experiment results on Test20 of MLQE-PE
TASK2, with different combinations of corruption rules
and ratios. Notice to make sure the corrupted sequence
has roughly the same length with the original sequence,
we always set the insertion ratio ri and deletion ration
rd the same.

tribution). As shown in Table 9, the result is the
best when performing corruption on subword level,
which is beyond our expectation. It is possibly be-
cause subword-level corruption can generate more
diverse noise, providing more contrast examples.

In a nutshell, when generating negative samples
for contrastive learning, the primary concern is
to keep the noise distribution both consistent and
diverse.

C Is target fluency the largest bias?

Behnke et al. (2022) claims that the major bias in
QE is partial input bias, where the model relies too
much on target fluency. We think this claim is not
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accurate, and to verify this, we conduct three sets
of experiments on only the target side of the data.

1) train-mt: Train on the original training set
and infer on the original test set (only mt);

2) train-mt-bow: Train on the Bag-of-Words
style training set and infer on the original test set.
We shuffle each mt sentence on token level, there-
fore the fluency information is excluded. An exam-
ple is as follows:

mt A man is fishing on the bank .

mt-bow is bank a fishing on man the .

3) train-pe: Train on the pes of training set and
infer on the original test set. We simply substitute
the mt in training set with its corresponding pe.

Figure 8: PCC on Test20 under different settings with
target-side input.

To make the most of partial input, we use mono-
lingual BERT model for German10 and Chinese11.
As shown in Figure 8, the QE model could claim
strong results on both mt-BOW and pe scenarios,
in both cases fluency is excluded and can not be
utilized as feature12. This again demonstrates that
fluency is not the major factor when performing
estimation. The estimation can still be performed
when there is no fluency information. Besides, it
can also be noticed that with the help of powerful
monolingual pre-trained models, we can achieve
comparable or even higher estimation accuracy
solely relying on the target side.

To draw a conclusion, target fluency is a major
bias, but not the major bias.

10http://huggingface.co/dbmdz/bert-base-german-cased
11http://huggingface.co/hfl/chinese-bert-wwm-ext
12The only exception is TASK2-enzh trained with pe, where

the model can achieve little correlation on test set, which
deserves our future exploration.
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� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Left blank.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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