
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2259–2270

July 9-14, 2023 ©2023 Association for Computational Linguistics

From Ultra-Fine to Fine: Fine-tuning Ultra-Fine Entity Typing Models to
Fine-grained

Hongliang Dai1 and Ziqian Zeng2

1College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics

hongldai@nuaa.edu.cn
2Shien-Ming Wu School of Intelligent Engineering,

South China University of Technology
zqzeng@scut.edu.cn

Abstract

For the task of fine-grained entity typing (FET),
due to the use of a large number of entity types,
it is usually considered too costly to manu-
ally annotate a training dataset that contains
an ample number of examples for each type. A
common way to address this problem is to use
distantly annotated training examples that con-
tains incorrect labels. But the errors in the au-
tomatic annotation may limit the performance
of trained models. Recently, there are a few ap-
proaches that no longer depend on such weak
training data. However, without using sufficient
direct entity typing supervision may also cause
them to yield inferior performance. In this pa-
per, we propose a new approach that can avoid
the need of creating distantly labeled data. We
first train an entity typing model that have an ex-
tremely broad type coverage by using the ultra-
fine entity typing data. Then, when there is a
need to produce a model for a newly designed
fine-grained entity type schema, we can simply
fine-tune the previously trained model with a
small number of corresponding annotated ex-
amples. Experimental results show that our
approach achieves outstanding performance for
FET under the few-shot setting. It can also
outperform state-of-the-art weak supervision
based methods after fine-tuning the model with
only a small-size manually annotated training
set.

1 Introduction

Entity Typing is the task of assigning type labels
to entity mentions in texts. Its results have been
shown to be beneficial to downstream tasks such as
Entity Linking (Ling et al., 2015; Vashishth et al.,
2021), Coreference Resolution (Onoe and Durrett,
2020), etc.

Currently, there are mainly two forms of entity
typing tasks: Fine-grained Entity Typing (FET)
(Ling and Weld, 2012) and Ultra-fine Entity Typing
(UFET) (Choi et al., 2018; Lee et al., 2020). Table
1 and Table 2 provide a few examples for them.

Sentence with Entity Mention Labels
Police said he had been kidnapped
from his home on Tuesday.

person, victim,
man, male

He competed at the 2008 Summer
Olympics, where despite missing
the finals by .13 second, he posted

a personal best time.

event, match

Embassy Suites was owned by
Promus Hotel Corporation , a hotel

management and franchise company
from Memphis, Tennessee.

company, busi-
ness, corpora-
tion, organiza-
tion

Table 1: Examples of Ultra-Fine Entity Typing. Target
entity mentions are highlighted with yellow background.

Sentence with Entity Mention Labels
In the first RTC transaction with a
foreign buyer, Royal Trustco Ltd.,
Toronto , will acquire Pacific Sav-

ings Bank, Costa Mesa, Calif.

/location, /loca-
tion/city

The Fiero plant was viewed as a
model of union-management coop-
eration at GM before slow sales of
the Fiero forced the company to

close the factory last year .

/other,
/other/product,
/other/product/car

Table 2: Examples of Fine-grained Entity Typing. Tar-
get entity mentions are highlighted with yellow back-
ground.

The main difference between them lies in the type
schemas used. FET uses manually designed type
schemas. The entity types are usually organized
into a hierarchical structure. UFET directly uses
words and phrases as target entity types. This al-
lows it to have a much broader type coverage than
an FET task. For example, the UFET dataset con-
structed in (Choi et al., 2018) uses a type schema
of about 10k types. Moreover, it also uses context
dependent types like “victim”, “passenger”.

However, a problem of UFET is that since its
entity types are just words or phrases and there are
a large number of them, its results are difficult to be
exploited in applications. Thus, we believe that in
real-world practice, people would still prefer FET

2259

in most cases. Therefore, in this paper, FET is our
main focus.

For both UFET and FET, it is labor-intensive
to manually annotate training examples because of
the use of large entity type sets. So far, a commonly
adopted approach to address this problem is to use
automatically generated weak training data (Ling
and Weld, 2012; Choi et al., 2018). The main ap-
proach to achieve this is to perform distant labeling
with the help of a knowledge base (Ling and Weld,
2012). Such generated weak training data are used
in most of existing entity typing studies (Lin and
Ji, 2019; Dai et al., 2021). However, the automat-
ically labeled data contains errors. Thus, training
the model with them will inevitably limit the final
performance. Another problem is that, whenever
there is a new FET task with a newly designed en-
tity type schema, a new set of training data has to
be generated specifically for it. This problem is not
trivial since generating training data also requires
human effort, and it usually has to be done by an
expert.

Recently, there are a few entity typing studies
(Ding et al., 2021a; Huang et al., 2022; Li et al.,
2022) that do not rely on creating a weak training
dataset for each target entity type schema. For ex-
ample, both Ding et al. (2021a) and Huang et al.
(2022) propose approaches to learn FET models
when there are only a few training examples. Ding
et al. (2021a) employ self-supervision; Huang et al.
(2022) use automatic label interpretation and in-
stance generation. However, we think that not us-
ing a sufficient amount of entity typing supervision
may weaken the capability of the trained models.

Therefore, in this paper, we propose a new entity
typing approach that exploits the UFET training
data to avoid the requirement of having to create
large size weak training data for FET tasks. Since
the type schema used by UFET covers a very broad
range of entity types, a trained UFET model should
contain much helpful information that can bene-
fit different FET tasks, whose type schemas are
usually a lot narrower. However, to the best of
our knowledge, no existing work has studied to
fine-tune a UFET model into an FET model.

The general procedure of our approach is in Fig-
ure 1. First, we train a BERT based entity typing
model with UFET training data to obtain a UFET
model. This model can be viewed as a pretrained
entity typing model and be stored for future use.
Whenever there is a new FET task with a newly

UFET Model

FET Model

UFET Weak
Training Data

A Small Set of Human
Labeled FET Data

Initial BERT
Based Model

Figure 1: The general procedure of our approach.

designed type schema, we can simply fine-tune the
trained UFET model with only a small number of
corresponding human annotated examples to pro-
duce a well-performing model. To better exploit the
UFET data for FET, our entity typing model treats
type labels as words/phrases that can be tokenized
into sequences and then encoded into vector repre-
sentations. In this way, all the trained parameters
of the UFET model can be reused while fine-tuned
into an FET model. Moreover, this also allows the
model to use the semantic information of the type
labels.

We evaluate our approach on commonly used
UFET and FET datasets. We first verify that our
UFET model achieves favorable performance on
the dataset built by (Choi et al., 2018). Then, for
our main target, FET, on OntoNotes (Gillick et al.,
2014), Few-NERD (Ding et al., 2021b) and BBN
(Weischedel and Brunstein, 2005), our approach
yields much better performance than the existing
state-of-the-art approach under the few-shot setting.
Moreover, we also conduct experiments to show
that our FET model fine-tuned with only a small set
of human labeled data can outperform traditional
approaches that use a large set of weak training
data.

Our main contributions are summarized as fol-
lows.

• To the best of our knowledge, we are the first
to propose fine-tuning UFET models into FET
models.

• We propose an entity typing model that can be
better exploited when transferring from UFET
to FET.

• We conduct experiments on both UFET and
FET datasets to verify the effectiveness of our
approach.

Our code is available at https://github.com/

2260

https://github.com/hldai/fivefine

hldai/fivefine.

2 Methodology

2.1 General Procedure

The general procedure of our approach is illustrated
in Figure 1. Our final target is to obtain models for
FET tasks. To this end, first, we train our BERT
based entity typing model with Ultra-fine Entity
Typing data to obtain a UFET model. Note that
at this stage, we only use automatically generated
weak training examples and do not further fine-
tune the model with human annotated UFET data.
This is because if the number of manually labeled
UFET examples is not large, the generalization
ability of the model can be limited after fine-tuning
with them.

The obtained UFET model will not be directly
used in practice. Instead, it is prepared so that
when there is a target FET task, it can be further
fine-tuned into a corresponding FET model. In this
step, a small number of training examples manually
annotated for the target FET task is used to further
fine-tune the model.

2.2 Unifying Predictions for UFET and FET

One main problem in the procedure is how to fine-
tune the UFET model into an FET model, since
their type schemas are hugely different. A com-
monly used approach that can achieve this is to
simply use a different classification head for the
FET model, and only load the parameters of the
BERT encoder in the UFET model. However, us-
ing a new, untrained classification head loses the
type label information learned in the UFET model,
and may also make it difficult to exploit the loaded
parameters during fine-tuning.

Using a prompt-based approach (Ding et al.,
2021a) is one possible way to better exploit the
parameters of a trained UFET model, since the
tokens predicted by a Masked Language Model
(MLM) can be mapped to the type labels of the tar-
get FET task. However, a “[MASK]” location only
corresponds to one token, which limits the ability
of the model to predict multi-word type labels (e.g.,
/organization/sports_team). Moreover, an MLM is
essentially performing multi-class single label clas-
sification, while UFET and FET tasks are usually
multi-class multi-label classification.

Therefore, we propose a new entity typing model
to address the above problems. The main idea
is that we make the model capable of outputting

a score when given any entity type word/phrase
(Note that this type word/phrase is not necessary
from a UFET type schema, or any other type
schemas). The output score indicates whether this
entity type word/phrase is correct for the mention.
The model itself is “unaware” of the existence of
type schemas.

Specifically, let x be a target entity mention ex-
ample, and t be an entity type word/phrase. The
model produces a score s(x, t; θ). With this model,
denote TU as the type set used by the UFET data in
our general procedure, and TF as the type set of the
target FET task. For UFET, since the types are al-
ready words or phrases, the model can directly com-
pute scores for the types in TU and thus be trained
on the data. Benefiting from the broad type cover-
age of UFET, training the model on the UFET data
allows it to learn about a wide variety of both entity
mention examples and entity type words/phrases.
For the target FET task, however, the original en-
tity types in TF are labels organized into a hier-
archical structure instead of words/phrases. To
make the model “recognize” them more easily, we
map each type label t ∈ TF to a type word/phrase
t∗ ∈ T ∗

F . Then we use s(x, t∗; θ) as the score for
t instead. For example, the type label /organiza-
tion/company can simply be mapped to the word
“company”. Then for FET, the model predicts type
words/phrases in T ∗

F instead of directly predict-
ing labels in TF . Below are are a few examples
of mapping an FET type label to a corresponding
word/phrase:

/person/athlete → athlete
/organization/sports_team → sports team
/other/body_part → body part

It can be seen that the mapping is easy to construct
since in most cases we simply use the last part of
the type label as its corresponding word/phrase.

2.3 Entity Typing Model

Our entity typing model is illustrated in Figure 2.
For an entity mention in a sentence, we first con-
struct the following sequence and feed it to a BERT
encoder:

<lcxt> [<mstr>] (Type: [MASK]) <rcxt>
where <mstr> denotes the mention string; <lcxt>
and <rcxt> denote the context text to the left and
the right of mention, respectively. For example, the
following sentence:
FedEx is a major player in the package
delivery market.

2261

https://github.com/hldai/fivefine

[FedEx] (Type : [MASK]) is a major player in the package delivery market .

BERT

location

sports

author author

location

sports teamteam [PAD]

[PAD] [PAD]

[PAD] [PAD]

...

score for author

score for location

score for sports team

vector representation of [MASK]

......

: Self Attention

Figure 2: Our entity typing model. Each type word/phrase is tokenized into a sequence. Then, they are padded to
same length for convenience of implementation and faster computation.

where “FedEx” is the target mention will be trans-
formed into:
[FedEx] (Type: [MASK]) is a major player
in the package delivery market.

Denote the target example (consists of both the
target mention and its context) as x. We feed its
corresponding sequence to BERT and obtain the
last layer hidden states of the “[MASK]” token.
Denote this vector as h∗

x ∈ Rd, where d is the
hidden size of the BERT model. Then, we apply a
transformation to h∗

x to get a representation for x:

hx = LayerNorm(f(h∗
xW)), (1)

where f is a non-linear function; W ∈ Rd×d is a
trainable parameter matrix.

We also obtain a vector representation for each
entity type word/phrase. To this end, we first per-
form tokenization to each type word/phrase. This
will result in different lengths of token sequences
for different types. During training or evaluation
when the target entity type schema is fixed, we pad
all these token sequences to same length to avoid
having to encode each type separately. Each token
is assigned a vector embedding. Specifically, we
reuse the weights in the classification head of the
BERT masked language model (Devlin et al., 2019)
as type token embeddings.

Denote Xt ∈ Rn×d as the matrix formed with
the sequence of embedding vectors corresponding
to the sequence of tokens of entity type t, where
d is the dimension of type token embeddings, n is
the sequence length. We obtain a representation
for t by using multi-head self-attention (Vaswani
et al., 2017). Each head has its own sets of train-
able parameters q,Wk,Wv and computes a vector

representation with equation

Attention(Xt) = softmax(
qKT

√
d

)V , (2)

where K = XtWk,V = XtWv. Then, we use
the concatenation of the output vectors of all the
heads as the representation for type t, denote it as
gt.

After obtaining hx and gt, we use their dot prod-
uct as the score of type t:

s(x, t) = hx · gt (3)

2.4 Model Training

Both UFET and FET tasks are multi-class multi-
label classification problems. Thus, we use binary
cross-entropy loss to train the model:

LET = − 1

|X |
∑

x∈X

∑

t∈T
[yx,t · log p(x, t)

+ (1− yx,t) · log(1− p(x, t))],

(4)

where X is the training example set; T is the entity
type set used by the entity typing task; p(x, t) =
σ(s(x, t)), σ is the sigmoid function; yx,t equals to
1 if t is annotated as a type for x and 0 otherwise.

Although the UFET task covers a huge number
of entity types, some of the types may only have a
few examples in the training data. As a result, some
of the token embeddings of type words/phrases
may not get sufficiently trained. Therefore, apart
from the entity typing objective, we also use a
Masked Language Model objective while training
the model with UFET weak training data. We fol-
low the MLM setting in (Devlin et al., 2019) and

2262

obtain a corresponding loss based on the token se-
quence we construct for entity typing in Section
2.3. Note that the [MASK] token that already exists
in the constructed sequence for entity typing is not
considered as a masked token slot while computing
the MLM loss. With the MLM objective, we make
the type token embeddings in our model share the
weights as the last linear layer in the MLM classifi-
cation head. This can help learn better embeddings
for type tokens, especially for those that do not
occur frequently in the type labels of the training
examples.

Another problem the entity typing model faces
is that although we surrounded the target entity
mention with “[” and “]”, it can still be difficult for
the model to learn to distinguish the mention from
the rest of the sentence. Because the supervision
signals provided for the model are just entity type
labels. Thus, another objective we use for model
training is to let the model predict the words im-
mediately to the left and right of the mention. We
call this task Neighbor Word Prediction (NWP). To
add this objective, for a target example, we first
construct a new sequence for feeding to BERT:

<lcxt> [<mstr>] (<pos>: [MASK]) <rcxt>
where <lcxt>, <rcxt> and <mstr> are already ex-
plained in Section 2.3; <pos> is “Left” when pre-
dicting the left nearest word (i.e., the last word in
<lcxt>) and is “Right” when predicting the right
nearest word (i.e., the first word in <rcxt>). To
perform prediction, we obtain the last layer hidden
states of “[MASK]” after feeding the sequence to
BERT, and apply a new MLM classification head
to it. This MLM classification head used here is
different from the one used for the above MLM
objective since the two tasks are different. We also
use cross entropy loss for NWP.

Let LMLM be the loss for the MLM objective,
and LNWP be the loss for the NWP objective.
Then, while training our entity typing model with
the weak UFET data, we use the following final
loss to perform multi-task learning:

L = LET + λMLMLMLM + λNWPLNWP , (5)

where λMLM and λNWP are two hyperparameters
controlling the strengths of the MLM and the NWP
objectives, respectively.

For the UFET task, we follow (Dai et al., 2021)
and train our model with the full training data they
created. Smaller weights are also assigned for la-
bels generated through prompting in the loss since
they are less accurate.

When fine-tuning the trained UFET model for
FET tasks, we directly use the loss LET in Equa-
tion 4, since there are not so much training data.

3 Related Work

For both UFET and FET, due to the use of large en-
tity type sets, it is labor-intensive to manually anno-
tate training examples. Thus, different approaches
(Ling and Weld, 2012; Choi et al., 2018; Dai et al.,
2021) of automatically generating weakly labeled
training examples are proposed. Among them, the
most commonly used method is to link entity men-
tions to a knowledge base, and then use the types
of the corresponding entities as labels (Ling and
Weld, 2012; Gillick et al., 2014; Choi et al., 2018).
Additionally, Choi et al. (2018) propose to use the
head word of the mention phrase as its type label.
Dai et al. (2021) generate entity type labels for
mentions with a prompt-based method.

With different ways to create large amounts of
training data automatically, the incorrectness of
the generated labels become a problem. Many en-
tity typing studies (Ren et al., 2016; Chen et al.,
2019; Pang et al., 2022) seek to obtain better mod-
els when using weak training data. For example,
Onoe and Durrett (2019) learn a neural model to
correct noisy entity type labels and filter unuse-
ful examples. Pang et al. (2022) learn a backbone
model as a feature extractor and a noise estimator,
and perform feature cluster based loss correction
afterwards.

Recently, there are more entity typing studies
that do not follow the commonly adopted approach
of training with distantly labeled data created by
using a knowledge base. Some of them also do not
require a designated training set for each entity type
schema. For example, Li et al. (2022) exploit indi-
rect supervision from natural language inference.
Ding et al. (2021a) employ self-supervision instead
of explicit type labels. Huang et al. (2022) use au-
tomatic label interpretation and instance generation
to achieve few-shot FET.

4 Experiments

We conduct experiments on both UFET and FET
datasets. In this section, we use FiveFine to denote
our approach (Because there are five “fines” in the
title of this paper).

2263

4.1 Datasets

For UFET, we use the dataset built by Choi et al.
(2018), which to the best of our knowledge, is the
only English UFET dataset that is publicly avail-
able. Its target entity type set contains 10,331 types
that are all free-form words or phrases. Apart from
a broad type coverage, it also uses various forms of
entity mentions, including named entity mentions
like “Joe Biden”, pronoun mentions like “she”,
and nominal mentions like “the nearby university”.
Thus, it is very suitable to be used to train an en-
tity typing model that can be further fine-tuned
for specific FET tasks. This dataset contains more
than 20M distantly labeled training examples and
6,000 manually annotated examples evenly split
into train, dev and test. In addition, we also use
the labels generated by Dai et al. (2021) through
prompting, as well as the 3.7M pronoun mention
examples they produce.

For FET, we use OntoNotes (Gillick et al.,
2014), Few-NERD (Ding et al., 2021b) and BBN
(Weischedel and Brunstein, 2005).

• OntoNotes The OntoNotes dataset uses an
ontology that consists of 89 entity types. We
follow (Huang et al., 2022) and use the version
that contains 8,963 test examples and 2,202
dev examples. Both the test examples and the
dev examples are manually annotated. For
training data, we use a version provided by
(Choi et al., 2018), which contains about 0.8M
instances. OntoNotes treats entity typing as
a multi-label classification problem. This
means that an entity mention can be assigned
labels of different type paths. For example, a
university can be assigned both /organization,
/organization/university and /location.

• Few-NERD The Few-NERD dataset uses 66
entity types. We use the supervised setting
whose train, dev and test sets contain about
131K, 18K and 37K examples, respectively.
All these examples are manually annotated.
Unlike OntoNotes, Few-NERD treats entity
typing as a single-label classification problem,
which means only one fine-grained type can
be assigned to a mention. For example, a
university can be either assigned /organiza-
tion/university or /location.

• BBN The BBN dataset uses 46 entity types.
We use the version provided by Huang et al.

(2022), whose train, dev and test sets contain
about 84k, 2k, 13k examples, respectively.

These datasets will be further processed when
used for conducting few-shot FET experiments.

4.2 Experimental Settings
For BERT, we use both bert-base-cased and bert-
large-cased provided by Hugging Face1 to train
separate entity typing models.

When training the UFET model, since we mainly
follow the training procedure of (Dai et al., 2021)
most of the hyperparameters are set to be same as
them. Except for λMLM and λNWP , which are
new in our approach. We set both of them to 0.1.
Adam is used as the optimizer for all the training.

In terms of evaluation metrics, we follow ex-
isting work. While evaluating the UFET model,
we use macro-averaged precision, recall, and F1
(Choi et al., 2018). While evaluating the FET mod-
els, we use strict accuracy, micro-averaged F1 and
macro-averaged F1.

4.3 UFET Evaluation
Although FET is our main target, we still need to
verify that our UFET model performs well. Since
otherwise, it may leads to inferior results after fine-
tuned to FET.

For UFET, we compare with the following exist-
ing methods:

• MLMET (Dai et al., 2021) introduces extra
entity typing labels that are generated through
prompting. It first trains the entity typing
model with weakly labeled data, then con-
duct self-training with both human annotated
data and weak training data. The training pro-
cedure of our UFET model also follows ML-
MET.

• LITE (Li et al., 2022) uses indirect supervi-
sion from natural language inference (NLI) to
train entity typing models. A problem with
this approach is that for each entity mention,
the model has to evaluate an NLI example for
every entity type. This leads to a very long
inference time.

• MCCE (Jiang et al., 2022) adopts the cross-
encoder based architecture which concate-
nates the mention with each type and feeds
the pairs into a pretrained language model. It

1https://huggingface.co/

2264

Method P R F1
BERT-Direct 51.0 33.8 40.7
MLMET 53.6 45.3 49.1
LITE 52.4 48.9 50.6
MCCE 56.3 48.5 52.1
Box 52.8 38.8 44.8
FiveFine-Base (No MLM) 49.3 48.5 48.9
FiveFine-Base (No NWP) 53.7 46.3 49.8
FiveFine-Base 53.7 47.3 50.3
FiveFine-Large 53.0 48.6 50.7

Table 3: Macro-averaged Precision, Recall, and F1 of
different approaches on the UFET dataset. FiveFine-
Base and FiveFine-Large are our models based on
BERT-Base and BERT-Large, respectively. FiveFine-
Base (No MLM) and FiveFine-Base (No NWP) and our
models trained without the MLM objective and without
the NWP objective, respectively.

speeds up inference with a recall-expand-filter
paradigm. This approach currently yields the
best performance on the UFET dataset created
by (Choi et al., 2018).

• Box (Onoe et al., 2021) captures latent type
hierarchies with box embedding.

• BERT-Direct directly trains a BERT-Based
model by using the human annotated data.
The model feeds [CLS] <sentence> [SEP]
<mstr> [SEP] to BERT and use the output
vector of the [CLS] token for classification.

For our approach, we report the results of both
models based on BERT-Base and BERT-Large,
which are represented with FiveFine-Base and
FiveFine-Large, respectively. In addition, for
FiveFine-Base, we also report the performances
when trained without the MLM objective and with-
out the NWP objective. They are represented with
FiveFine-Base (No MLM) and FiveFine-Base
(No NWP), respectively.

The results are in Table 3. Our model based
on BERT-Large only fails to beat the most recent
approach MCCE. The favorable performance of
our model indicates that it has exploited the UFET
training data well, which we believe would help it
to achieve good performance after being fine-tuned
for specific FET tasks.

Comparing FiveFine-Base, FiveFine-Base (No
MLM) and FiveFine-Base (No NWP), first, we can
see that the performance of our model drops when
trained without the MLM objective. This verifies

the benefit of including it in the training loss. We
think MLM helps to learn better type token em-
beddings, since they share the same weights as the
final linear layer of the MLM classification head.
But the decrease in performance is much less sig-
nificant when the NWP objective is removed. We
think the reason is that since NWP only requires to
predict the neighboring words, the help it provides
for the model to learn that the entity mentions are
the targets to be classified is limited.

4.4 FET Evaluation
For evaluation on FET, we mainly follow the setting
in (Huang et al., 2022) to evaluate our approach
under the few-shot setting.

For OntoNotes and BBN, same as (Huang et al.,
2022), we filter the entity types that do not contain
enough instances to form few-shot datasets. Af-
terwards, 21 types for OntoNotes and 25 types for
BBN remain. We also follow the code released
by Huang et al. (2022) to process the test sets,
which further filters some examples that their ap-
proach has difficulty dealing with (e.g., examples
labeled with multiple type paths). This results in
3,461, 95,880 and 12,258 test instances remaining
for OntoNotes, Few-NERD and BBN, respectively.

For each dataset, we sample examples to build
5-shot train and dev sets. Both the train and the dev
sets contain 5 examples for each entity type. We
repeat five experiments for each dataset and report
the average results. Each time, different train and
dev sets are randomly sampled.

The following methods are compared:

• ALIGNIE (Huang et al., 2022) is the state-of-
the-art approach for FET under the few-shot
setting. It uses a type label interpretation mod-
ule to learn to relate types labels to tokens, and
an instance generator to produce new training
examples.

• BERT-Direct: Same as the BERT-Direct
model in Section 4.3.

Note that the results for ALIGNIE will be dif-
ferent from those reported in (Huang et al., 2022).
Because the 5-shot data are randomly sampled by
us, and the OntoNotes training data we use are also
different from theirs.

For our approach, we fine-tune the FiveFine-
Base model with the few-shot FET training data.

Table 4 presents the results. FiveFine achieves
the best performance on all three datasets. Es-

2265

OntoNotes Few-NERD BBN
Method Acc MiF1 MaF1 Acc MiF1 MaF1 Acc MiF1 MaF1
BERT-Direct 17.15 37.38 41.50 29.43 39.22 39.22 5.11 25.0 24.7
ALIGNIE 60.74 75.08 76.38 57.45 69.54 69.54 71.33 77.78 76.50
FiveFine 65.59 83.66 85.42 61.22 71.88 71.88 75.00 81.08 80.71

Table 4: FET performance under the 5-shot setting. Due to the use of different randomly sampled train and
dev examples, results for ALIGNIE are different from those reported in (Huang et al., 2022). “MiF1” means
micro-averaged F1; “MaF1” means macro-averaged F1.

Method Acc Micro-F1 Macro-F1
MLMET 67.4 80.4 85.4
ANL 67.8 81.5 87.1
BERT-Direct 50.1 67.8 74.6
FiveFine 69.3 84.8 89.4

Table 5: Performance of FiveFine and BERT-Direct on
OntoNotes trained with a small-size human annotated
dataset comparing with approaches that use large size
weak training data.

pecially on OntoNotes and BBN, it outperforms
ALIGNIE by a large margin. We think this is
because the quality of the weak training data of
OntoNotes and BBN is not good. As a result,
ALIGNIE is not able to learn a well performing
model from them. But since our model is pre-
trained with UFET data, the model itself already
possesses the power to do entity typing before it
is fine-tuned on the few-shot data. This allows it
to produce much better results when the training
data are of bad quality. In addition, we believe the
quality of the training data is also a main reason
why BERT-Direct performs poorly.

4.5 Comparing Weak Supervision and
Human Annotation

We also compare the performance of our FET
model that is fine-tuned with only a small set of hu-
man labeled data against traditional approaches that
use a large set of weak training data. To this end,
we perform human annotation for the OntoNotes
dataset by using the examples from its training and
dev set. For each type, we first select at most 100
candidate examples, and then ask the annotator
to go through the examples and find at most 10
correct ones. While selecting the 100 candidate
examples, we try to keep the word overlap num-
ber of different examples small to ensure variety.
We also randomly select at most 5 examples for
each type from the original dev set to produce a
small sized new dev set. In this way, we collect 675

training examples. Note that this constructed data
do not strictly follow the few-shot setting, because
some of the types would have less than 10 training
examples.

We compare with weak supervision based ap-
proaches MLMET (Dai et al., 2021) and ANL (Pan
et al., 2022). ANL is a state-of-the-art approach
that trains the model after automatically correct-
ing the noisy labels. Both MLMET and ANL are
trained with the original full distantly labeled data.

Apart from our approach, we also train BERT-
Direct with the manually annotated data we create
and report its performance.

The results are in Table 5. By using only a small
number of training examples, FiveFine already out-
performs the compared methods. This verifies that
instead of creating large size weak training data,
it can be more preferable to use our approach to
produce FET models with small human labeled
datasets.

5 Conclusion

In this paper, we propose the approach to fine-tune
a UFET model to FET models, which can avoid
the requirement of constructing distantly labeled
training data when an application needs to train a
model for a newly designed FET type schema. This
approach is feasible because the type schema used
by UFET have very broad type coverage, usually
much broader than FET tasks. We also propose
an entity typing model that treats target entity type
labels as words/phrases. This allows all the trained
parameters of the model to be reused when fine-
tuned from UFET to FET, so that the trained UFET
model can be better exploited. The experiments we
conduct verify the effectiveness of both our UFET
model, and the FET models that are fine-tuned from
it with small sized training sets.

2266

Limitations

We train a UFET model and then fine-tune it for
target FET tasks. In our approach, the UFET train-
ing data is the main source of limitations. First,
the large size UFET training data are automati-
cally generated, and thus may contain errors. Such
errors can propagate to the fine-tuned FET mod-
els. Another problem is that, for some entity types,
there are not many training examples. Moreover,
some types useful in specific domains (e.g., adverse
drug reaction for the biomedical domain) are not
included in the UFET type vocabulary at all. As a
result, the UFET model will not be as helpful when
applied to FET data that contain such types.

Acknowledgements

The authors would like to thank the reviewers for
their insightful comments and suggestions.

References
Bo Chen, Xiaotao Gu, Yufeng Hu, Siliang Tang, Guop-

ing Hu, Yueting Zhuang, and Xiang Ren. 2019.
Improving distantly-supervised entity typing with
compact latent space clustering. In Proceedings of
NAACL-HLT, pages 2862–2872.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In Proceed-
ings of ACL, pages 87–96.

Hongliang Dai, Yangqiu Song, and Haixun Wang. 2021.
Ultra-fine entity typing with weak supervision from
a masked language model. In Proceedings of ACL-
IJCNLP, page 1790.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of NAACL-HLT, pages 4171–
4186.

Ning Ding, Yulin Chen, Xu Han, Guangwei Xu,
Pengjun Xie, Hai-Tao Zheng, Zhiyuan Liu, Juanzi
Li, and Hong-Gee Kim. 2021a. Prompt-learning
for fine-grained entity typing. arXiv preprint
arXiv:2108.10604.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,
Xu Han, Pengjun Xie, Haitao Zheng, and Zhiyuan
Liu. 2021b. Few-nerd: A few-shot named entity
recognition dataset. In Proceedings of ACL-IJCNLP,
pages 3198–3213.

Dan Gillick, Nevena Lazic, Kuzman Ganchev, Jesse
Kirchner, and David Huynh. 2014. Context-
dependent fine-grained entity type tagging. arXiv
preprint arXiv:1412.1820.

Jiaxin Huang, Yu Meng, and Jiawei Han. 2022. Few-
shot fine-grained entity typing with automatic label
interpretation and instance generation. In Proceed-
ings of ACM SIGKDD, pages 605–614.

Chengyue Jiang, Wenyang Hui, Yong Jiang, Xiaobin
Wang, Pengjun Xie, and Kewei Tu. 2022. Recall,
expand and multi-candidate cross-encode: Fast and
accurate ultra-fine entity typing. arXiv preprint
arXiv:2212.09125.

Chin Lee, Hongliang Dai, Yangqiu Song, and Xin Li.
2020. A chinese corpus for fine-grained entity typing.
In Proceedings of LREC, pages 4451–4457.

Bangzheng Li, Wenpeng Yin, and Muhao Chen. 2022.
Ultra-fine entity typing with indirect supervision
from natural language inference. Transactions of the
Association for Computational Linguistics, 10:607–
622.

Ying Lin and Heng Ji. 2019. An attentive fine-grained
entity typing model with latent type representation.
In Proceedings of EMNLP-IJCNLP, pages 6198–
6203.

Xiao Ling, Sameer Singh, and Daniel S Weld. 2015.
Design challenges for entity linking. Transactions of
the Association for Computational Linguistics, 3:315–
328.

Xiao Ling and Daniel S Weld. 2012. Fine-grained entity
recognition. In Proceedings of AAAI, volume 12,
pages 94–100.

Yasumasa Onoe, Michael Boratko, and Greg Durrett.
2021. Modeling fine-grained entity types with box
embeddings. arXiv preprint arXiv:2101.00345.

Yasumasa Onoe and Greg Durrett. 2019. Learning to
denoise distantly-labeled data for entity typing. In
Proceedings of NAACL-HLT, pages 2407–2417.

Yasumasa Onoe and Greg Durrett. 2020. Interpretable
entity representations through large-scale typing. In
Proceedings of EMNLP, pages 612–624.

Weiran Pan, Wei Wei, and Feida Zhu. 2022. Automatic
noisy label correction for fine-grained entity typing.
arXiv preprint arXiv:2205.03011.

Kunyuan Pang, Haoyu Zhang, Jie Zhou, and Ting Wang.
2022. Divide and denoise: Learning from noisy la-
bels in fine-grained entity typing with cluster-wise
loss correction. In Proceedings of ACL, pages 1997–
2006.

Xiang Ren, Wenqi He, Meng Qu, Clare R Voss, Heng Ji,
and Jiawei Han. 2016. Label noise reduction in entity
typing by heterogeneous partial-label embedding. In
Proceedings of ACM SIGKDD, pages 1825–1834.

Shikhar Vashishth, Denis Newman-Griffis, Rishabh
Joshi, Ritam Dutt, and Carolyn P Rosé. 2021. Im-
proving broad-coverage medical entity linking with
semantic type prediction and large-scale datasets.
Journal of biomedical informatics, 121:103880.

2267

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in NIPS, 30.

Ralph Weischedel and Ada Brunstein. 2005. BBN pro-
noun coreference and entity type corpus. Linguistic
Data Consortium, Philadelphia.

2268

ACL 2023 Responsible NLP Checklist

A For every submission:
� A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Left blank.

� A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

� A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

2269

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

2270

