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Abstract

To address the problem of NLP classifiers learn-
ing spurious correlations between training fea-
tures and target labels, a common approach is
to make the model’s predictions invariant to
these features. However, this can be counter-
productive when the features have a non-zero
causal effect on the target label and thus are im-
portant for prediction. Therefore, using meth-
ods from the causal inference literature, we
propose an algorithm to regularize the learnt
effect of the features on the model’s prediction
to the estimated effect of feature on label. This
results in an automated augmentation method
that leverages the estimated effect of a feature
to appropriately change the labels for new aug-
mented inputs. On toxicity and IMDB review
datasets, the proposed algorithm minimises spu-
rious correlations and improves the minority
group (i.e., samples breaking spurious correla-
tions) accuracy, while also improving the total
accuracy compared to standard training. 1

1 Introduction

While classifiers trained on pre-trained NLP mod-
els achieve state-of-the-art accuracy on various
tasks, they have been shown to learn spurious cor-
relations between input features and the label (Du
et al., 2022). Such learned correlations impact ac-
curacy on out-of-distribution samples and in the
case of sensitive spurious features, lead to unfair
predictions (Sun et al., 2019; Ribeiro et al., 2020).
Learned spurious correlations can be over features
that are either irrelevant (e.g., tense, gender for pro-
fession classification) or relevant (e.g., emoticons
for sentiment classification, negation words for con-
tradiction). In both cases, the classifier overweighs
their importance compared to other features.

For removing spurious correlations, a common
principle underlying past work is to make a model’s
prediction invariant to the features that exhibit the

1Code: https://github.com/pbansal5/
feature-effect-augmentation

Figure 1: Example from IMDB reviews dataset show-
ing the spurious token “8/10” and its importance for
prediction on some inputs. Parts highlighted in yellow
are ambiguous in sentiment, in green are (supposedly)
positive in sentiment and red are negative.

correlation. This can be done by data augmentation
(Kaushik et al., 2019), latent space removal (Ravfo-
gel et al., 2020), subsampling (Sagawa et al., 2019,
2020), or sample reweighing (Mahabadi et al.,
2019; Orgad and Belinkov, 2022). In many cases,
however, the correlated features may be important
for the task and their complete removal can cause
a degradation in task performance. For instance,
for spurious correlation over negation tokens (e.g.,
“not”) or lexical overlap in MNLI natural language
inference tasks, Williams et al. (2017); Joshi et al.
(2022) show that correlated features are necessary
for prediction and their removal can hurt accuracy.

As another example, consider the IMDB review
dataset (Maas et al., 2011) where the task is clas-
sify the sentiment of a given review as positive or
negative. Reviewers often include a numeric rat-
ing in their text reviews, e.g., “9/10” or “1/10”.
The numeric rating is highly correlated with the
sentiment label, often regarded as a spurious cor-
relation (Pezeshkpour et al., 2021) that a model
should not rely on. In the first review of Fig. 1,
for instance, the positive rating can mislead a clas-
sifier since the review is overall negative. How-
ever, in the second example, the text is ambiguous
and the rating “8/10” can provide a helpful signal
about the reviewer’s sentiment (and removing it
may decrease classifier’s accuracy). Thus, there
exist inputs where the rating is a helpful feature for
prediction and other inputs where it can be counter-
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productive. This shows the trade-off between ac-
curacy on majority groups, (i.e., samples where
these correlations hold and constitute a majority of
samples) and minority groups (i.e., comparatively
fewer samples where these correlations break).

In this paper, we propose a general method to
resolve the above trade-off: rather than always re-
moving the effect of a feature on the model’s pre-
diction, we argue that the learned effect should be
equal to the true effect of the feature on the output
label. We define feature effect using the notion of
conditional effect from the causal inference litera-
ture (Pearl, 2009): the change in the ground-truth
label upon changing the feature, keeping all other
input features constant. To enforce the true feature
effect, we make two contributions:

1. Novel estimator of the effect of text features
on the label that is accurate even at high levels
of spurious correlation compared to past work.

2. Automated augmentation method that predicts
the labels of new samples using the estimated
feature effect and adds them to train data to
achieve the desired learned effect in a classi-
fier.

When combined with the standard accuracy loss
over training data, the proposed method, Feature
Effect Augmentation (FEAG), obtains the highest
overall accuracy compared to baselines while re-
ducing the learnt spurious correlation. For our
evaluation, we consider the practical goal of in-
creasing the accuracy on the minority groups while
not substantially reducing the accuracy over the
majority group. On comment toxicity and IMDB
review datasets, we find that existing methods tend
to increase minority group accuracy but reduce
overall accuracy, whereas FEAG obtains a good
tradeoff. In some cases, it can obtain both higher
overall accuracy and higher average group accuracy.
Moreover, by making it easy to change the target
feature effect to be enforced, FEAG provides an
interpretable control mechanism to obtain any de-
sired tradeoff between minority and majority group
accuracy (setting the feature effect to zero, e.g.,
prioritizes minority group accuracy).

More generally, our work provides a viable di-
rection for automated data augmentation. While
existing work requires manual labeling of coun-
terfactual examples for removing spurious corre-
lation (Kaushik et al., 2019; Wu et al., 2021), our
method can label new examples using estimated

feature effects. We also show how estimated fea-
ture effects can be useful for other tasks, such as
detecting annotator bias in a train set.

2 Related Work

Our work combines the debiasing NLP literature
with causal effect estimation over text.

2.1 Estimating causal effect from text

Prior work on estimating causal effect on text is
based on propensity scores, such as DragonNet
(Shi et al., 2019) and follow-up work (Veitch et al.,
2020; Gui and Veitch, 2022). However, propensity-
based estimators are known to suffer from high
variance, especially in text scenarios where overlap
may be low (Gui and Veitch, 2022). We utilize a
Riesz-based causal estimator (Chernozhukov et al.,
2022) that has recently been shown to offer a better
bias-variance tradeoff. In particular, it does not
need to estimate the full propensity but rather es-
timates the weight for each sample directly, thus
avoiding the variance issues of prior methods.

2.2 Removing spurious correlations

Latent Space Removal. These methods aim to
remove the spurious feature from model’s learnt
representation. INLP (Ravfogel et al., 2020) re-
moves spurious features by iteratively projecting
learnt representations of the classifiers onto the
null-space of the target class predictor. RLACE
(Ravfogel et al., 2022) models the objective in-
stead as a constrained minimax game. However,
recent work shows that spurious correlations are
closely entangled with rest of the sentence represen-
tation (Kumar et al., 2022; He et al., 2022), hence
latent space removal methods often unintentionally
remove task critical information too, leading to a
degradation in model’s performance.
Weighting Methods. Debiased Focal Loss (DFL)
& Product of Experts (PoE) (Mahabadi et al., 2019)
are two methods which leverage a biased model
(which relies heavily on spurious features for pre-
diction) to aid training. Specifically DFL reweighs
the samples such that samples belonging to the ma-
jority group are weighed less. PoE models the task
as product of two models, where one model is lim-
ited in capacity and hence captures the spurious
features, where as the other learns non-spurious
features. More recent versions can work without
annotations for the spurious features (Orgad and
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Figure 2: Causal Graph for text classification. C is the
intent of the writer and a hidden confounding variable.
Z is the complete text which is conceptually decom-
posed as (X,T ). T is the treatment feature (the feature
of interest) and X is rest of the text. The outcome label
Y depends on complete text Z.

Belinkov, 2022), but all methods rely on reweigh-
ing the training data.
Counterfactual Augmentation. These methods
require collection of counterfactual labeled data
that can be used to regularize a classifier (Kaushik
et al., 2019; Lu et al., 2020; Gupta et al., 2022).
Obtaining labels for the augmented data is often
prohibitively expensive.

Comparison to our work. All above techniques
are specific ways to remove the impact of a spu-
rious feature on the classifier. In comparison, we
provide a general method that allows us to control
the learned effect of a spurious feature: one can
estimate the effect of a feature on the ground-truth
label (which may or may not be zero) and enforce
that effect on the classifier. (He et al., 2022) make
a similar argument against complete removal of
spurious features in the context of gender bias and
rationale-based methods, while we focus on gen-
eral spurious correlations and general NLP clas-
sifiers. (Joshi et al., 2022) characterise spurious
correlations by necessity and sufficiency and ar-
gue for a more finegrained treatment of spurious
features. In terms of implementation, our method
can be seen as an extension to the counterfactual
augmentation method where we automatically in-
fer the labels for new inputs based on the modified
feature’s causal effect.

3 Estimating feature effects on labels

Our task is to estimate the effect of text features on
the label Y in training dataset. This is important
for many use cases : 1) regularising a text classifier
to obey the feature’s effect on the label in its predic-
tion; 2) identifying annotator artifacts (Sap et al.,
2021) for the label Y in the dataset, e.g., when the

estimated effect does not match the ground-truth
known effect of a feature. For 1), we present an au-
tomated augmentation algorithm in Sec 4 based on
the estimated feature effect. For 2), we use the fea-
ture effect estimation technique and present results
on a comment toxicity dataset in Sec 5.4.

For feature effect estimation, we assume that the
data is generated from a distribution D following
the causal graph in Fig. 2 (Joshi et al., 2022; Gui
and Veitch, 2022). The writer has some intent C,
which generates the input sentence (Z). The sen-
tence Z can conceptually be disentangled into 2
parts, 1) the feature of interest (T ∈ {0, 1}) and 2)
rest of the text X . Annotators perceive the outcome
label (Y ) from the complete text Z. The samples
{(Zi, Yi)} are drawn independently from D. Note
that the same dataset may contain multiple features
T j (j = 1...m) whose effect needs to be estimated,
leading to a different decompositions (Xj , T j).

We term the feature T as treatment, and X as
covariates, following the causality literature. Since
the variables X and T are sampled from the same
latent variable C, they are not independent of each
other. For example, in context of IMDB data, if
the intent of the writer is to write a positive review
then it is highly likely that X will contain positive
adjectives while treatment T might be the inclusion
of rating as the string 9/10. This unobserved latent
variable (intent of writer) is called the confounder
C. The correlations between treatment feature T
and rest of text X due to the presence of confounder
C can lead to the classifier model learning incorrect
effect for the treatment feature. For computing
feature effect, we leverage the causal inference
literature (Pearl, 2009; Imbens and Rubin, 2015)
and estimate Average Treatment Effect (ATE).

3.1 Background

Definitions. Propensities (Pearl, 2009) model the
probability of a covariate being treated i.e. T = 1.
They can hence be written as P(X) = P (T =
1|X). Overlap is defined as the condition when any
covariate X has a non-zero probability of T = 1
and T = 0 i.e. 0 < P (T |X) < 1 for all X .
Overlap is a necessary condition for causal effect
estimation. Counterfactual : Given an input Z =
(X,T ), a counterfactual input is defined as ZC =
(X, 1 − T ), i.e. an input with treatment flipped
and rest of the inputs kept constant. The original
sample is called the factual input.
Average Treatment Effect (ATE). It is defined
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as the change in label Y on changing treatment T
from 0 → 1 keeping everything else constant.

EX [Y |X, do(T = 1)]− EX [Y |X, do(T = 0)]

where do() is the do-operator (Pearl, 2009), im-
plying an interventional change in treatment T
while the covariates X are kept constant. As-
sume an oracle model g0 for the task, defined as
g0(X,T = t) = E[Y |X, do(T = t)]. Removing
the do notation, ATE estimate can succinctly be
written as,

ATE =
1

n

∑

i

(g0(Xi, 1)− g0(Xi, 0)) (1)

The above equation requires access to the oracle
model g0 which correctly outputs the label for coun-
terfactual inputs ZC .

An alternate formulation for computing ATE
utilises propensities (of treatment T ) i.e. P0(Xi)
instead of the oracle model. The ATE using this
formulation is EX [α0(Z)Y ] (α0 defined below in
Eq 3). Hence the ATE estimate is

ATE =
1

n

∑

i

α0(Zi)Yi. (2)

where

α0(Zi) = (
Ti

P0(Xi)
− 1− Ti

1− P0(Xi)
) (3)

are the multipliers computed from propensities.

Direct Estimate. The simplest method for esti-
mating the average treatment effect is by training a
model g(.) as an approximation of the oracle g0(.)
using the loss g = argming ED[L(Y, g(Z))]. The
direct estimate of the ATE can then be computed
by substituting g0(.) by g(.) in Eqn. 1. This gives
the direct estimate (Shalit et al., 2017),

ˆATEDirect =
1

n

∑

i

(g(Xi, 1)− g(Xi, 0)) (4)

The problem with using the direct estimate is that,
in cases where T is correlated with X under D, a
loss optimizing method might exploit spurious cor-
relations between X and T to learn a biased model
g(.). That is, the model might over(or under)-
estimate the effect of T on the output Y . This
leads to a biased ˆATE.

Propensity-based Doubly Robust (DR) Estimate.
To resolve the issue of a biased model g, DR estima-
tor (Kang and Schafer, 2007; Veitch et al., 2020)
utilises propensities. Since the true propensities
P0 are unknown we learn these propensities using
the loss PPr = argmin

P
ED[L(T,P(X))] giving

estimated multipliers αPr(Zi).

ˆATEDR,Pr = ˆATEDirect +
1

n

∑

i

αPr(Zi)(Yi − g(Zi)) (5)

The DR estimator corrects the bias in g using the
correction term (second term in Eqn 5). If g is
systematically wrong on a minority group of ex-
amples, their residual error will add up in the cor-
rection term. Also, weighing by αPr(Zi) breaks
correlation between X and T , giving an unbiased
correction.

3.2 Riesz Representer (RR) Estimator
While propensity-based methods are the most popu-
lar for estimating treatment effect, they suffer from
high variance when P (T = 1|X) is close to ei-
ther 1 or 0 (Swaminathan and Joachims, 2015),
due to the propensity terms in the denominator of
the multipliers αPr(.). This is especially a prob-
lem in high-dimensional text data, where given a
treatment T (e.g., a token) the probability of it oc-
curring with most covariate texts X may be close
to 0 (e.g., if the covariate X is about a happy inci-
dent, probability of a token like "kill" occurring in
the sentence is near 0). Therefore, we propose a
doubly robust estimator for text data based on re-
cent work (Chernozhukov et al., 2022) that avoids
estimating the propensities as an intermediate step.
Instead it models the coefficient αPr(Z) directly.

The proposed method depends on the Reisz rep-
resentation theorem (Chernozhukov et al., 2018).

Theorem (Riesz Representer Theorem). For a
square integrable function f(Z) (i.e. E[f2(Z)] <
∞), there exists a square integrable function αR(Z)
such that

E[m((Y,Z); f)] = E[αR(Z)f(Z)]

if and only if E[m((Y, Z); f)] is a continuous lin-
ear functional of f .

Since the moment functional in ATE formulation
(i.e. m((Y,Z); f) = f(X, 1)− f(X, 0)) is indeed
a continuous linear functional of f , Riesz theorem
for our purposes can be written as :

E[f(X, 1)− f(X, 0)] = E[αR(Z)f(Z)]
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for a square integrable function f . Taking f as
g0 (assuming g0 is square integrable), LHS of the
equality (E[g0(X, 1) − g0(X, 0)]) is exactly the
ATE and the RHS (E[αR(Z)g0(Z)]) can be inter-
preted as a weighted average, as in the propensity
formulation of ATE (Eqn. 2). This means that αR
serves as an alternative formulation for α0. Thus,
rather than using the inverse of learnt propensities
PPr (i.e. αPr), we can use the Riesz Representer
function αR as an approximation for α0.

The challenge now remains on how we can es-
timate the αR function. To derive an estimation
method for αR, we use its definition from the Riesz
Representation theorem, i.e., αR(Z) weighed by
any bounded function f(Z) gives E[f(X, 1) −
f(X, 0)], as done by Chernozhukov et al. (2022).

αR = argmin
α

E[(αR(Z)− α(Z))2]

= argmin
α

E[αR(Z)2 − 2αR(Z)α(Z) + α(Z)2]

= argmin
α

E[−2αR(Z)α(Z) + α(Z)2]

= argmin
α

E[−2(α(X, 1)− α(X, 0)) + α(Z)2]

The first step is a trivial equality, which
says that αR is the solution for the equation
argmin

α
E[(αR(Z) − α(Z))2]. In the third step,

αR(Z)2 can be ignored as the minimization is
over α and then we use the Riesz Representa-
tion theorem to expand the term E[αR(Z)α(Z)]
as E[α(X, 1) − α(X, 0)], thus getting rid of αR
and providing an optimization objective.

The new learnt riesz function αR can then be
used for computing our Doubly Robust estimate.
We can simply substitute αPr in the DR estimate
Eqn 5 by αR, giving us RR-based ˆATE,

ˆATEDR,R = ˆATEDirect +
1

n

∑

i

αR(Zi)(Yi − g(Zi)) (6)

4 Controlling learnt effects in a classifier

Armed with an estimator of feature effect on the
label, we now describe methods to enforce the fea-
ture effect on a predictive model’s output. Given
data {(Z, Y )} where Z are input sentences and
Y is output label, the goal is to learn a predictive
model f for Y such that the causal effect of a fea-
ture on f(Z) is the same as the true feature effect,
τ j for the jth feature. That is, τ j should be equal
to ED[f(Xj , T j = 1) − f(Xj , T j = 0)] where

Xj refers to all input features except T j and the
expectation is over the training distribution. As
discussed in Section 3, the ideal predictive func-
tion is g0 since it will ensure the correct feature
effect,τ j = ED[g0(Xj , T j = 1) − g0(X

j , T j =
0)], and will also provide high accuracy since it is
the true data generating function.

4.1 Counterfactual-based Regularisation
To approximate the oracle function g0(Z), for a
given loss L, Standard ERM loss minimisation op-
timizes, argminf ED[L(Y, f(Z))]. But machine
learning data is often underspecified (D’Amour
et al., 2020; Lee et al., 2022), leading to the ERM
returning multiple solutions f with similar accu-
racy on validation set. These different solution f
weigh different features in input text differently. As
a result, the obtained solution can be far from g0.

Therefore, we use the provided feature effect to
constraint the solution space. A first idea is to add
a regularization term that aligns the model’s learnt
feature effect with the provided effect. Suppose that
we are given a list of m binary features {T j}1...m
which are suspected to have a spurious correlation
(e.g., such features can be discovered using expla-
nation methods on an ERM model (Wang et al.,
2021)). We can conceptually decompose an input
sentence Z into m different pairs {(Xj , T j)}1...m,
where Xj is the part of the sentence Z apart from
T j . Then using the given feature effect {τ j}1...m
for each feature, we can write the regularized loss,

L+ λ
1

m

∑

j

(f(Xj , 1)− f(Xj , 0)− τ j)2 (7)

where λ is the regularisation constant.
While we proposed regularizing to τ j , some-

times one may want to completely remove a fea-
ture’s effect based on domain knowledge. For ex-
ample, a biased dataset may exhibit a non-zero
feature’s effect on the label, but due to fairness
reasons, one would like to completely remove its
effect. In that case, we can simply set τ j = 0 and
apply Equation 7. When τ j is set to zero, FEAG
can be seen as optimizing the same objective as
methods that aim to fully remove the feature’s ef-
fect (Ravfogel et al., 2020; Mahabadi et al., 2019).

4.2 Augmentations for Estimated Effect
We also consider a data augmentation alternative
to regularization. Given distribution (Z, Y ) ∼ D,
m binary features {T j}1...m, and their feature ef-
fects {τ j}1...m, we can augment along any of the

2275



τ Method
DistilBERT BERT

1% Overlap 5% Overlap 10% Overlap 1% Overlap 5% Overlap 10% Overlap

0.10
Direct 15.23 ± 5.50 5.92 ± 1.31 0.48 ± 1.65 8.38 ± 2.90 1.80 ± 4.66 1.13 ± 0.47
Propensity 5.81 ± 2.76 9.80 ± 1.52 6.59 ± 0.48 8.53 ± 3.77 9.83 ± 5.30 6.01 ± 1.04
Riesz 5.91 ± 4.35 2.04 ± 1.25 1.11 ± 0.62 2.68 ± 1.24 2.61 ± 0.24 0.88 ± 0.74

0.30
Direct 18.79 ± 6.36 13.86 ± 4.64 5.94 ± 0.83 22.06 ± 10.20 4.38 ± 4.77 4.72 ± 5.74
Propensity 23.48 ± 2.70 20.48 ± 0.45 10.23 ± 1.19 29.02 ± 5.99 23.57 ± 4.04 9.61 ± 2.79
Riesz 16.45 ± 2.17 0.21 ± 1.89 1.45 ± 0.22 0.62 ± 5.31 2.92 ± 0.81 2.60 ± 1.09

0.50
Direct 16.95 ± 3.73 11.07 ± 2.21 7.51 ± 1.56 20.36 ± 1.44 17.42 ± 1.62 11.59 ± 2.45
Propensity 61.88 ± 11.10 36.11 ± 2.73 17.09 ± 1.41 47.28 ± 11.27 31.41 ± 5.72 13.16 ± 4.02
Riesz 15.62 ± 3.28 1.50 ± 1.39 2.73 ± 0.28 1.42 ± 3.37 1.53 ± 1.62 0.11 ± 0.91

Table 1: MAE (x100) of feature effect estimate. Riesz gives lower error MAE error than Direct, across values of
overlap and true feature effect. Propensity shows high MAE error (especially in lower overlap setting).

m features to generate a counterfactual distribution.
When we augment along the j feature, the new in-
put becomes Zj,C = (Xj , 1− T j). Using the fea-
ture’s effect τ j , we can estimate the corresponding
label Y j,C for the input Zj,C . Intuitively, a higher
feature effect makes it more likely that the label
will change (see Supp H for details). We get a new
counterfactual distribution, (Zj,C , Y j,C) ∼ Dj,C .

Similarly other counterfactual distributions can
be found, giving us {Dj,C}1...m. A union can
be taken over these distributions to give us the
counterfactual distribution over these m features as
DC = ∪m

j=1Dj,C This new generated distribution
can then be included in training as counterfactual
augmentations while minimising the loss,

argmin
f

ED[L(Y, f(Z))] + λEDC [L(Y, f(Z))] (8)

where we now draw samples from the combined
distribution D + DC . λ signifies the weighting
of samples drawn from augmented counterfactual
distribution DC in the loss function.

While both regularisation and data augmentation
can help us control the learned effect of features,
owing to the scalability and ease of optimization,
we use the augmentation version of our algorithm
to present our results.

4.3 FEAG: Two-phase algorithm
To summarize, the proposed algorithm, Feature Ef-
fect Augmentation (FEAG), proceeds in two phases.
It takes as input a set of features T j : j = 1...m,
that may be suspected to be spurious, which can be
derived using an automated saliency method (e.g.,
top-k important tokens) (Pezeshkpour et al., 2022;
Wang et al., 2021) or based on domain knowledge.
Feature effect estimation. For each of the fea-
tures T j , we estimate the feature effect using the
Reisz estimator from Section 3.2. We follow the 2-
headed model architecture with shared parameters

Method
BERT DistilBERT

CC Sub. IMDB CC Sub. IMDB
Direct 18.46 ± 0.61 71.93 ± 9.36 19.07 ± 0.67 66.42 ± 9.12
Riesz 15.77 ± 0.50 52.51 ± 2.63 15.14 ± 0.63 55.37 ± 0.77
Propensity 36.25 ± 4.88 45.08 ± 10.05 24.20 ± 0.98 56.86 ± 6.75

Table 2: Riesz estimated feature effect is less than the
Direct learned feature effect, indicating that Direct
method over-weighs the treatment feature.

(Shi et al., 2019) to learn the Riesz representer αR
and the model g for Y (details are in Supp J, Fig 4).
Note that αR and g should share sentence repre-
sentation extraction module to ease learning (Cher-
nozhukov et al., 2022) (i.e., they have the same
BERT model, but different final layer linear heads).
These learnt models can be used in Eqn 6 to get fea-
ture effect estimates ({τ j}1...m) on held-out data.
Counterfactual Augmentation. Our modular
pipeline allows practitioners to change the feature
estimate τ j according to their needs before using
them for counterfactual augmentations. Using the
features and their effect estimates, we create coun-
terfactually augmented data DC as described in
Sec 4.2 and include them while training (Eqn 8) to
learn the final classifier.

5 Experiments

We have three goals for evaluation: 1) RR-based
estimators of feature effect are more accurate than
propensity-based estimators; 2) FEAG using RR-
based estimators provides better overall accuracy
while minimizing spurious correlation compared
to existing baselines for removing spurious corre-
lations; 3) Our feature effect estimator is a general
method and can be used to detect annotator bias.

5.1 Datasets

Since the true feature effect is unknown for real-
world data, we construct a semi-synthetic dataset
based on the CiviComments dataset (Borkan et al.,
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S.No. Sentence Riesz Interpretation

1. maybe it’s just burning a bunch of islamist terrorists killed in combat 1.69 T = 1 & P (T = 1|X) ↑
only arabs doing what they do best, killing other arabs. black september, darfur, isis/isil. 1.87 T = 1 & P (T = 1|X) ↑

2. "strong stated desire to kill people in the name of islamic state" that is the important part. 6.13 T = 1 & P (T = 1|X) ↓
who do you think is killing the women its the male nativees and we hear about this 6.14 T = 1 & P (T = 1|X) ↓

3. they also never tell you how often the officer doing the shooting...is black -3.75 T = 0 & P (T = 1|X) ↑
driving into crowds of people is a popular approach for muslim terrorists -4.53 T = 0 & P (T = 1|X) ↑

4. i am getting very tired about hearing anything from this neurotic woman. give it a rest. -0.56 T = 0 & P (T = 1|X) ↓
and these men give so much to charity. there is no record of trump’s charity contributions. -0.82 T = 0 & P (T = 1|X) ↓

Table 3: Examples on Kill keyword in CivilComments Subsampled dataset. Sentences having violent words (other
than kill) are assigned a lower score, while sentences having non-violent context are assigned high score.

2019). In addition, we evaluate on subsampled
versions of the CivilComments and IMDB dataset.
CivilComments Semi-Synthetic (SS). CivilCom-
ments is a toxicity detection dataset {(X,Y )},
where X are input sentences and Y is the toxic-
ity label (1 means toxic). To evaluate our methods,
we need to construct a dataset generated from the
causal graph in Fig. 2. Since the writer’s intent
(confounder) is unknown, we construct it as a prop-
erty of the input text, W = h(X) ∈ {0, 1}, leading
to the modified causal graph in Fig. 3 (Supp G). To
obtain h(X), we train a binary classifier using a
DistilBERT model on (X,Y ) pairs. Finally we
sample a new label as Y ′ ∼ Bernoulli((1− τ)Y +
τT ), giving the true feature effect as τ . The com-
plete text Z = (X,T ) is constructed by prepending
each covariate sentence X with the word Treated
if T = 1 and Untreated if T = 0.
CivilComments Subsampled. Rather than intro-
ducing a new treatment, here we subsample Civil-
Comments to introduce a spurious correlation be-
tween an existing token kill and label Y . Here
all sentences with token kill are considered as
treated, while others untreated. To exacerbate the
spurious correlation between T and Y , we subsam-
ple our data based on the learnt property W (from
above), following the causal graph in Fig 3a.
IMDB. From the IMDB reviews dataset (Maas
et al., 2011), we consider reviews that contain a
numerical rating—text string from either the set
{7/,8/,9/} or {2/,3/,4/}. To construct a binary
treatment variable, occurrences of these strings are
replaced by Treated if the rating is 7, 8, or 9 and
an empty string otherwise. The Treated token is
predictive of the sentiment with 90% accuracy.

For dataset and training details, see Supp B,
Supp A respectively. All results are run for 3 seeds.

5.2 Evaluating Feature Effect Estimation

We evaluate the performance of different estima-
tors in Sec 3 on the CivilComments SS dataset
(with different overlap ϵ and feature effects τ ). We

compare the Riesz-based DR estimator (Eqn 6)
with the Direct (Eqn 4) and Propensity-based
DR (Eqn 5) baselines. All estimators are finetuned
using either BERT or DistilBERT as base model.
See Supp ??
Quantitative Results. Table 1 shows the mean
error in estimating feature effect across τ ∈
{0.10, 0.30, 0.50} and ϵ∈ {0.01, 0.05, 0.10}. For
hyperparameter selection, see Supp. D. Across all
settings (barring 1% overlap with high τ ), Riesz is
able to estimate the effect with low error. Direct
fails to do well in high τ and low ϵ ranges, failing
for both τ=0.50 and ϵ=0.01. Due to its high vari-
ance, Propensity is unable to work well, often
producing an estimate worse than Direct.

For the two real-world datasets, true feature ef-
fect is unknown. But comparing the effect esti-
mates of Direct and Riesz, Direct tends to over-
estimate the feature effect (due to spurious correla-
tion), which is corrected to a lower value by Riesz.
Qualitative Results. To understand how the Reisz
estimator works, we show qualitative results for
Civil Comments Subsampled dataset in Table 3.
To counter the spurious correlation of token kill
(T) with other parts of text (X) that cause toxicity
(Y), the Riesz estimator provides a low weight to
sentences having features X that commonly occur
with T, and higher weight to sentences having X
that rarely occur with T. Treated samples (T=1)
have a positive Riesz value and vice versa. We
can see that sentences with violent language (in
addition to kill) are assigned a low score while
other sentences with kill are assigned a high score,
thus serving to extract the isolated feature effect of
kill (without confounding due to other tokens).

5.3 Accuracy of FEAG classifiers

We now compare FEAG classifiers based on Riesz,
FEAG(ate), and based on zero effect, FEAG(0), with
prior debiasing algorithms.
Groups. Classifiers that reduce spurious correla-
tion are expected to decrease total accuracy but
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Method Group1 Group2 Group3 Group4 Total Avg Group
Direct 99.46 ± 0.08 3.52 ± 0.80 1.61 ± 0.29 99.42 ± 0.10 87.77 ± 0.02 51.00 ± 0.17
RemoveToken 88.71 ± 0.75 28.06 ± 0.94 37.46 ± 2.36 90.69 ± 0.85 82.80 ± 0.14 61.23 ± 0.45
DFL 72.45 ± 1.33 35.62 ± 5.51 53.58 ± 2.61 82.46 ± 3.38 73.45 ± 0.76 61.03 ± 0.77
DFL-nodemog 99.22 ± 0.34 4.13 ± 1.21 3.12 ± 0.92 99.34 ± 0.18 87.75 ± 0.10 51.45 ± 0.41
POE 100.00 ± 0.00 0.18 ± 0.14 0.00 ± 0.00 99.96 ± 0.02 87.94 ± 0.01 50.03 ± 0.03
INLP 79.10 ± 3.75 73.44 ± 7.52 38.77 ± 7.53 36.35 ± 9.45 57.54 ± 2.48 56.92 ± 1.41
Subsample 85.45 ± 3.98 59.89 ± 8.49 27.59 ± 8.76 57.72 ± 9.77 68.27 ± 2.54 57.66 ± 1.55
GroupDRO 63.98 ± 4.43 43.18 ± 4.68 59.42 ± 4.75 72.19 ± 3.31 66.02 ± 0.97 59.69 ± 0.28
FEAG(0) 98.89 ± 0.48 7.48 ± 1.77 4.03 ± 1.53 97.40 ± 0.76 87.01 ± 0.34 51.95 ± 0.31
FEAG(ate) 98.30 ± 0.30 4.13 ± 0.94 7.75 ± 1.28 99.36 ± 0.18 87.62 ± 0.06 52.39 ± 0.16

Table 4: Accuracy across groups for CivilComments Semi-Synthetic (0.50 ATE,5% Overlap), trained using BERT.

Method Group1 Group2 Group3 Group4 Total Avg Group
Direct 76.72 ± 0.82 5.80 ± 1.57 81.72 ± 0.91 96.72 ± 0.35 79.38 ± 0.29 65.24 ± 0.31
RemoveToken 75.63 ± 0.79 15.22 ± 1.02 83.10 ± 0.43 90.15 ± 0.61 78.40 ± 0.23 66.02 ± 0.28
DFL 83.28 ± 0.16 9.42 ± 0.59 67.82 ± 0.66 94.09 ± 0.80 76.54 ± 0.36 63.65 ± 0.24
DFL-nodemog 78.80 ± 1.84 3.62 ± 1.18 77.82 ± 2.34 97.54 ± 0.46 78.87 ± 0.21 64.44 ± 0.20
POE 79.02 ± 0.62 10.14 ± 1.57 79.43 ± 0.66 95.24 ± 0.71 79.30 ± 0.37 65.96 ± 0.52
INLP 69.02 ± 1.04 6.52 ± 2.51 88.45 ± 0.10 95.07 ± 0.57 78.55 ± 0.34 64.77 ± 0.25
Subsample 73.99 ± 0.32 28.26 ± 2.72 83.45 ± 1.14 84.40 ± 0.97 77.25 ± 0.45 67.52 ± 0.17
GroupDRO 78.14 ± 1.32 44.93 ± 4.27 73.45 ± 5.25 71.92 ± 2.36 73.22 ± 1.79 67.11 ± 1.20
FEAG(0) 78.25 ± 0.45 11.59 ± 1.18 79.43 ± 0.25 94.25 ± 0.35 78.87 ± 0.14 65.88 ± 0.28
FEAG(ate) 78.80 ± 0.32 10.14 ± 0.59 80.34 ± 0.32 95.73 ± 0.35 79.66 ± 0.17 66.25 ± 0.22

Table 5: Accuracy across groups for CivilComments Subsampled trained using BERT model.

increase the accuracy of minority inputs that do
not exhibit those correlations. To study such ef-
fects on accuracy, we divide our evaluation data
into four groups: Group1 (Y =0, T =0), Group2
(Y = 0, T = 1), Group3 (Y = 1, T = 0), Group4
(Y =1, T =1). In addition, we report the average
group accuracy across the four groups as a measure
of debiasing/reduced spurious correlation. An ideal
model should achieve both high overall accuracy
and high average group accuracy, demonstrating its
reduced reliance on spurious features.

Baselines. We consider popular baselines from
prior work (Joshi et al., 2022; He et al., 2022;
Orgad and Belinkov, 2022): weighting methods
like DFL, DFL-nodemog, Product of Experts (Ma-
habadi et al., 2019; Orgad and Belinkov, 2022) and
latent space removal methods like INLP (Ravfogel
et al., 2020). We also include worst-group accuracy
methods like GroupDRO, Subsampling (Sagawa
et al., 2019, 2020) from the machine learning lit-
erature, and a baseline RemoveToken that removes
the treatment feature from input (see Supp C).

Results. For the semi-synthetic dataset (CivilCom-
ments SS) in Table 4, FEAG(ate) increases the av-
erage group accuracy while retaining similar over-
all accuracy as Direct. FEAG(ate) also has bet-

ter minority group accuracy (i.e. Group2,Group3)
than Direct. In comparison, FEAG(0) leads to a de-
crease in overall accuracy and also average group
accuracy compared to FEAG(ate). Other baselines
like Subsample, GroupDRO or DFL achieve a higher
average group accuracy as they improve accuracy
on the minority groups, but they suffer a substan-
tial reduction in overall accuracy, from 87 to 66-73,
which hinders usability of the model. Methods
like DFL-nodemog or POE have no impact or obtain
worse results compared to Direct. These results
show the fundamental tradeoff between total and
average group accuracy and how FEAG(ate) pro-
vides a good tradeoff between the two.

For the subsampled dataset (CivilComments
Subsampled) in Table 5, we see a similar trend,
where FEAG(ate) gives the best tradeoff between
overall and average accuracy. FEAG(0) is substan-
tially worse than FEAG(ate), showing the impor-
tance of not fully removing the effect of a spurious
token. Except POE, Subsample and GroupDRO, all
other methods obtain both lower total and aver-
age group accuracies compared to FEAG(ate). As
before, POE is near identical to Direct while the
weighting methods Subsample and GroupDRO lead
to significant decreases in total accuracy.
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Method Group1 Group2 Group3 Group4 Total Avg Group
Direct 98.53 ± 0.73 5.82 ± 2.16 20.78 ± 8.84 99.87 ± 0.05 88.98 ± 0.38 56.25 ± 2.25
RemoveToken 81.96 ± 1.69 79.37 ± 1.98 69.26 ± 1.77 76.73 ± 2.67 78.71 ± 0.82 76.83 ± 0.50
DFL 96.87 ± 1.27 8.99 ± 6.72 30.30 ± 9.52 99.28 ± 0.51 88.78 ± 0.29 58.86 ± 3.00
DFL-nodemog 94.82 ± 0.94 7.41 ± 3.54 41.56 ± 5.34 99.67 ± 0.27 88.70 ± 0.00 60.86 ± 1.71
POE 98.59 ± 0.84 14.29 ± 8.51 24.68 ± 4.25 98.82 ± 0.97 89.27 ± 0.16 59.09 ± 1.51
INLP 68.33 ± 4.57 58.73 ± 14.62 49.78 ± 6.50 50.43 ± 14.88 58.82 ± 5.45 56.82 ± 1.34
Subsample 71.53 ± 3.64 65.08 ± 1.98 74.46 ± 2.90 85.67 ± 2.94 77.51 ± 0.28 74.18 ± 0.09
GroupDRO 79.40 ± 3.67 55.56 ± 2.70 67.97 ± 1.97 90.66 ± 0.82 82.25 ± 1.34 73.40 ± 0.51
FEAG(0) 94.63 ± 0.72 33.33 ± 7.23 46.75 ± 1.84 97.30 ± 1.09 89.33 ± 0.15 68.00 ± 1.65
FEAG(ate) 95.46 ± 1.27 15.34 ± 3.03 43.29 ± 5.49 99.34 ± 0.28 89.38 ± 0.16 63.36 ± 1.75

Table 6: IMDB dataset; models trained using BERT. FEAG(ate) and FEAG(0) achieve highest average group accuracy.

Finally, we show results for IMDB where the
causal graph is unknown and our assumptions from
Fig. 3a may not be valid. Nonetheless Table 6
shows that both FEAG(ate) and FEAG(0) achieve bet-
ter average group accuracy with slightly better total
accuracy than the Direct model. Other baselines
follow their usual trend: ML weighting baselines
(Subsample, GroupDRO) suffer reductions in total
accuracy, DFL and POE methods are unable to im-
prove average group accuracy substantially, and
INLP is worse for both total and average group ac-
curacy. Besides BERT, results using DistilBERT
as a base model show a similar trend (Supp F). We
also report FEAG(propen) numbers in Supp E.

5.4 Detecting Annotator bias

Token Riesz DR P (Y |T ) Token Riesz DR P (Y |T )
gay 22.30 ± 1.03 0.66 hate 5.81 ± 0.21 0.68
racist 14.61 ± 0.97 0.75 you’re 1.99 ± 0.54 0.58
black 12.87 ± 0.36 0.69 president 0.19 ± 0.21 0.55
white 9.91 ± 0.34 0.67 guys 0.13 ± 1.24 0.58

Table 7: Tokens racist and guys show expected fea-
ture effect (1 and 0 resp.), but high feature effect for
black and gay suggests annotator bias in dataset.

While we focused on the debiasing task for clas-
sifiers, our feature effect estimator is general: we
apply it to detect annotator bias in the CivilCom-
ments dataset. If the true feature effect of a token
is known, we can compare it to the estimated ef-
fect to detect any annotator bias in the dataset. For
tokens like “racist” and “guys” where the true ef-
fect is likely to be high and zero respectively, the
estimated effect confirms the prior (see Table 7).
But for tokens like “gay” or “black”, our method
shows a significant non-zero feature effect on the
label which may indicate annotator bias, as it may
be known that these tokens should have a zero ef-
fect on the toxicity label. Compared to the naive
conditional probability (Y |T ), our effect estimator
can be used to provide a better sense of how impor-

tant certain keywords are for generating the output
label. (e.g., “guys” obtains a zero causal effect but
P (Y |T ) shows a substantial deviation from 0.5).

6 Conclusion

Rather than fully removing a feature’s effect on the
classifier, we presented a method for fine-grained
control of the feature’s effect based on causal infer-
ence. We showed how our method allows a better
tradeoff between overall accuracy and accuracy
over subgroups in the data. Our preliminary study
on annotator bias demonstrated that our method
may be useful for detecting biases in the classifica-
tion label too. As future work, a natural direction
is to combine these two threads and explore how
we can develop methods to regularize features’ ef-
fect on the debiased label, rather than the (possibly
confounded) labels provided in the dataset.

Limitations One major shortcoming of FEAG
method is the dependency on creation of counter-
factual inputs. If there is an error in counterfactual
generation, we might get a wrong feature effect es-
timate. Thus, for simplicity, our evaluation consid-
ered tokens as features. The parallel development
of counterfactual input generation methods (Wu
et al., 2021; Howard et al., 2022) would hopefully
ease this issue and allow FEAG to be used reliably
for spurious correlations on more complex features
too.
Ethics Statement This project aims to check
when methods are using spurious correlation. Iden-
tification of these spurious correlation is important
for debiasing i.e. removal of dependence of the
model on these correlations. Our work shows how
instead of complete removal of these spurious fea-
tures, regularising them might be better. At the
same time, this is early research work and shouldn’t
be used in real-world systems without further eval-
uation.
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A Training Details

Architecture All classification methods were
trained using a single linear layer on top of

BERT(/DistilBERT) [CLS] token. Riesz uses a
common BERT model for sentence reprensentation
and then uses 2 seperate linear layers for learning
αR and g seperately.

Seeds We use three seeds for our experiments.
0,11,44. All numbers are reported with mean and
std errors over these three seeds.

Optimization We use 1e-5 learning rate for
BERT parameters and 1e-4 for the final linear layer
parameters. We train with 32 batch size for all our
experiments. The learning rate linearly decays over
training iterations. We use Adam optimizer with
1e-2 weight decay for all methods.

Best Model Selection All models are trained to
completion (i.e. number of epochs specified for
particular dataset). The evaluation is done after
every epoch and the best model is chosen over all
the epochs using the validation set.

Loss Binary cross entropy loss is used for all
methods.

Tokenization We use the standard uncased tok-
enizers with max length of 256 tokens.

B Dataset Specific Details

For all datasets we set the number of epochs such
that for all methods the validation loss has bot-
tomed and starts increasing.

CivilComments Semi-Synthetic Since Civil-
Comments is heavily skewed towards the 0 label,
we resample the dataset to create a balanced data
which we use in all our experiments. Since the
writer’s intent (confounder) is unknown, we con-
struct it as a property of the input text, W =
h(X) ∈ {0, 1}, leading to the modified causal
graph in Fig. 3. This property could be something
simple like presence of a certain word like police
in text or something more complex like inferred eth-
nicity of the writer. Rather than choosing a property
manually, we train distilbert for modeling h(.) for
a few hundred iterations. We hence use W = h(X)
as the property. h(.) achieves ∼ 78% accuracy on
the task. To ensure overlap, the treatment variable
is sampled from W such that 0 < P (T |X) < 1
or equivalently 0 < P (T |W ) < 1. We do this
by using T equal to W with ϵ > 0 fraction of
samples flipped. Finally we sample a new label as
Y ′ ∼ Bernoulli((1−τ)Y+τT ), giving the true fea-
ture effect as τ . The complete text Z = (X,T ) is
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constructed by prepending each covariate sentence
X with the word Treated if T = 1 and Untreated
if T = 0. This is true for all the experiments and
datasets in our setup. This also eases counterfac-
tual generation by just changing the prepended text
from Treated to Untreated (and vice-versa). The
dataset has 7K train samples and 2K test samples.
We train the model for 10 epochs. For controlling
learnt effect, we use 0.50 ATE and 5% overlap SS.

CivilComments Subsampled Since kill
doesn’t occur often in dataset (3%) we retain only
10% of the untreated sentences.

We subsample so as to retain only 5% of the
samples having T = 1& W = 0. Samples hav-
ing T = 1,W = 1 are untouched. Samples hav-
ing T = 0 are subsampled by 10% (as mentioned
above). Our dataset has 5K train samples and 2K
test samples. We train the model for 10 epochs.

IMDB The dataset is subsampled to have equal
number of positive and negative sentiment reviews.
The Treated token is predictive of the sentiment
with 90% accuracy. The test set is constructed sim-
ilarly. The dataset has 1354 train samples and 1328
test samples. We train the model for 30 epochs.

C Method Specific Details

FEAG We use λ = 0.1 for our feature effect
augmentation, i.e. loss on augmented samples is
weighed 1e-1 times the loss on original samples.

Subsample,GroupDRO These method considers
an alternate objective of maximising worst group
accuracy as a condition for learning models ro-
bust to spurious correlations. For Subsample we
break the correlation between T and Y but main-
tain P (T = 1) and P (Y = 1) invariant (follow-
ing (Joshi et al., 2022)). i.e. for an input sample
P (T = 1, Y = 1) = P (T = 1)P (Y = 1). For
GroupDRO we sample from all the four groups (as
defined in Sec 5.3) equally, i.e. P (T = 1, Y =
1) = 0.25. Additionally we have corresponding
groups weights (following the original paper) with
step size of 0.01. We use heavy regularisation of
1e-2 with Adam optimizer (regularisation of 1e-1
led to degradation in numbers).

DFL,POE,DFL-nodemog For training the bi-
ased/weak learner model we use TinyBERT model
2. The optimization parameters for TinyBERT
model were same as that of the main model

2https://huggingface.co/prajjwal1/bert-tiny

(described above). We observed that while DFL and
POE’s weak learner was able to capture the bias,
DFL-nodemog struggled to learn main model’s
success and collapsed to constant value. For
POE we use λ = 1.0, i.e. the loss minimised is
CE(fm(X), Y ) + CE(Softmax(Log(fb(X)) +
Log(fm(X))), Y )

INLP We train INLP in post-hoc fashion i.e we
first train a Direct model, select the best model
and then apply INLP on its representation. We take
the code from the official repository 3 and run it
for 100 iterations with minimum accuracy stopping
criterion of 0.50. We tried RLACE algorithm too,
but it yeilded similar/worse results than INLP

D Best Propensity and Riesz Eval

Propensity Eval We choose λ = 1.0 as the best
value from the table below.

Dataset λ = 0.1 λ = 1.0 λ = 10.0

1% 15.50 ± 0.32 13.62 ± 0.26 13.08 ± 0.31
5% 27.31 ± 0.02 25.29 ± 0.26 25.51 ± 0.39
10% 38.97 ± 0.19 36.20 ± 0.18 36.36 ± 0.14

Table 8: Propensity validation loss for different hyper-
parameter λ. We choose λ = 1.0 as the best value.

Riesz Eval We choose λ = 0.01 as the best value
from the table below.

Dataset λ = 0.01 λ = 0.1 λ = 1.0

1% -9.71 ± 0.09 -64.76 ± 3.72 -68.74 ± 2.11
5% -17.83 ± 0.20 -17.87 ± 0.15 -17.28 ± 0.16
10% -61.42 ± 1.27 -9.93 ± 0.11 -9.38 ± 0.29

Table 9: Riesz validation loss for different hyperparam-
eter λ. We choose λ = 0.01 as the best value.

E BERT Propensity-DR based FEAG
numbers

Propensity-DR based FEAG numbers on the three
datasets are given in Table 10, Table 11 and Ta-
ble 12.

F DistilBERT FEAG numbers

We also show FEAG numbers on the three datasets
using DistilBERT as the model in Table 13, Ta-
ble 15 and Table 14

3https://github.com/shauli-ravfogel/nullspace_
projection
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Method Group1 Group2 Group3 Group4 Total Avg Group
FEAG(0) 98.89 ± 0.48 7.48 ± 1.77 4.03 ± 1.53 97.40 ± 0.76 87.01 ± 0.34 51.95 ± 0.31
FEAG(ate) 98.30 ± 0.30 4.13 ± 0.94 7.75 ± 1.28 99.36 ± 0.18 87.62 ± 0.06 52.39 ± 0.16
FEAG(propen) 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 100.00 ± 0.00 87.94 ± 0.00 50.00 ± 0.00

Table 10: Civil Comments Semi-Synthetic (0.50 ATE, 5% overlap); models trained using BERT.
Method Group1 Group2 Group3 Group4 Total Avg Group
FEAG(0) 78.25 ± 0.45 11.59 ± 1.18 79.43 ± 0.25 94.25 ± 0.35 78.87 ± 0.14 65.88 ± 0.28
FEAG(ate) 78.80 ± 0.32 10.14 ± 0.59 80.34 ± 0.32 95.73 ± 0.35 79.66 ± 0.17 66.25 ± 0.22
FEAG(propen) 77.60 ± 1.57 0.00 ± 0.00 77.93 ± 1.57 99.84 ± 0.23 78.83 ± 0.15 63.84 ± 0.12

Table 11: CivilComments Subsampled dataset; models trained using BERT.

G Alternative Causal Graphs

We present alternate version of the primary causal
graph (Fig 2) in Fig 3

H Label Flipping Algorithm

Consider treatment T , label Y . The desired effect
as τ . WLOG we can assume τ > 0 (if τ < 0, then
make T ′ = 1− T and proceed with T ′). The new
counterfacutal labels are Y C and new treatment
is TC = 1 − T (we will only use T and TC will
implicitly be 1− T )

Consider probabilities as :

P (Y = 1|T = 1) = p1

P (Y = 0|T = 1) = 1− p1

P (Y = 0|T = 0) = p2

P (Y = 1|T = 0) = 1− p2

(9)

Going from untreated to treated Since τ > 0,
changing treatment from 0 to 1, should increase the
probability of outcome label being 1 (and decrease
probability of it being 0) i.e. P (Y C = 1|T =
0) > (Y = 1|T = 0)&P (Y C = 0|T = 0) <
(Y = 0|T = 0). This can be achieved by keeping
Y C = Y whenever Y = 1 and randomly flipping
certain fraction (say η) of samples having Y = 0 to
Y C = 1 ( the other 1−η would have Y C = Y = 0)
With the goal of P (Y C = 1|T = 0) − P (Y =
1|T = 0) = τ , η can be easily computed as τ

p2
. To

verify we can compute

P (Y C = 1|T = 0) = P (Y = 1|T = 0)+

ηP (Y = 0|T = 0)

P (Y C = 1|T = 0) = P (Y = 1|T = 0) + (
τ

p2
)p2

P (Y C = 1|T = 0)− P (Y = 1|T = 0) = τ

(10)

Going from treated to untreated Similarly we
can argue that Y C = Y whenever Y = 0 and

randomly flipping τ
p2

fraction of samples having
Y = 1 to Y C = 0.

I Computational Budget

GPUs used We run our experiments on NVIDIA
RTX A6000 gpus. On an average each experiment
takes 1 hour to complete.

We use the BERT-base (110 Million parameters)
and DistilBERT model (55 Million parameters) for
computation.

J Two-Head Riesz Model

Sharing parameters between classifier and Riesz es-
timator using a two-headed model forces the shared
model (e.g. BERT) to learn representations which
are important for both classifier and Riesz model.
While this may cause a decrease in either model’s
performance, this leads to a better estimate due to
reduced noise in estimation (Shi et al., 2019). We
present our architecture in Fig 4
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Method Group1 Group2 Group3 Group4 Total Avg Group
FEAG(0) 94.63 ± 0.72 33.33 ± 7.23 46.75 ± 1.84 97.30 ± 1.09 89.33 ± 0.15 68.00 ± 1.65
FEAG(ate) 95.46 ± 1.27 15.34 ± 3.03 43.29 ± 5.49 99.34 ± 0.28 89.38 ± 0.16 63.36 ± 1.75
FEAG(propen) 91.68 ± 2.20 39.15 ± 7.14 57.14 ± 2.81 96.84 ± 0.58 88.81 ± 0.68 71.21 ± 1.77

Table 12: IMDB dataset; models trained using BERT.

Method Group1 Group2 Group3 Group4 Total Avg Group
Direct 99.53 ± 0.20 3.96 ± 1.27 2.62 ± 1.37 99.50 ± 0.14 87.92 ± 0.03 51.40 ± 0.57
RemoveToken 91.53 ± 1.20 26.56 ± 3.00 26.28 ± 2.11 90.50 ± 1.14 83.23 ± 0.09 58.72 ± 0.24
DFL 83.86 ± 1.75 49.60 ± 4.03 35.05 ± 3.17 68.01 ± 3.35 71.89 ± 0.75 59.13 ± 0.20
DFL-nodemog 99.55 ± 0.17 2.99 ± 1.37 1.81 ± 0.62 99.58 ± 0.16 87.85 ± 0.02 50.98 ± 0.39
POE 99.99 ± 0.01 0.88 ± 0.72 0.00 ± 0.00 99.81 ± 0.16 87.91 ± 0.02 50.17 ± 0.14
INLP 99.78 ± 0.18 99.56 ± 0.36 0.60 ± 0.38 0.60 ± 0.47 50.28 ± 0.13 50.14 ± 0.08
Subsample 74.50 ± 8.65 46.44 ± 12.78 45.52 ± 13.24 69.86 ± 12.15 69.01 ± 1.87 59.08 ± 1.05
GroupDRO 74.45 ± 2.92 65.35 ± 5.57 47.73 ± 5.79 57.52 ± 4.80 64.87 ± 1.20 61.26 ± 1.27
FEAG(0) 96.23 ± 0.13 13.54 ± 2.28 15.21 ± 0.43 97.11 ± 0.58 86.74 ± 0.08 55.52 ± 0.46
FEAG(ate) 99.00 ± 0.25 7.12 ± 0.21 4.93 ± 1.15 98.90 ± 0.05 87.75 ± 0.05 52.49 ± 0.25

Table 13: Accuracy across groups for CivilComments Semi-Synthetic (0.50 ATE,5% Overlap). All models are
trained using DistilBERT model

Method Group1 Group2 Group3 Group4 Total Avg Group
Direct 96.23 ± 1.95 22.22 ± 7.14 32.03 ± 6.78 99.21 ± 0.34 89.30 ± 0.53 62.42 ± 2.81
RemoveToken 75.30 ± 4.08 69.31 ± 3.77 74.03 ± 1.62 76.59 ± 2.23 75.46 ± 1.21 73.81 ± 1.13
DFL 97.57 ± 1.23 8.99 ± 5.52 26.41 ± 10.90 99.54 ± 0.24 88.96 ± 0.33 58.13 ± 3.39
DFL-nodemog 94.31 ± 1.39 28.57 ± 2.70 41.99 ± 3.89 99.21 ± 0.25 89.44 ± 0.43 66.02 ± 0.41
POE 96.29 ± 1.00 19.05 ± 5.85 38.96 ± 5.85 99.67 ± 0.11 89.81 ± 0.43 63.49 ± 2.31
INLP 76.90 ± 14.35 71.96 ± 18.57 31.17 ± 18.42 25.12 ± 18.55 51.14 ± 2.03 51.29 ± 1.03
Subsample 71.08 ± 1.47 68.78 ± 1.14 71.43 ± 1.23 77.65 ± 1.60 73.83 ± 1.34 72.23 ± 0.87
GroupDRO 74.98 ± 3.66 70.37 ± 3.12 73.16 ± 1.87 78.57 ± 2.53 76.17 ± 2.12 74.27 ± 1.00
FEAG(0) 91.94 ± 0.74 47.09 ± 1.14 55.84 ± 3.41 94.74 ± 0.57 88.36 ± 0.25 72.40 ± 0.76
FEAG(ate) 96.42 ± 0.42 30.69 ± 6.10 44.16 ± 2.81 98.09 ± 0.79 90.15 ± 0.07 67.34 ± 0.84

Table 14: IMDB dataset; models trained using DistilBERT

Method Group1 Group2 Group3 Group4 Total Avg Group
Direct 80.22 ± 0.58 5.80 ± 0.59 76.32 ± 0.47 97.70 ± 0.35 79.03 ± 0.06 65.01 ± 0.19
RemoveToken 76.72 ± 0.68 12.32 ± 0.59 84.02 ± 0.25 90.31 ± 0.97 78.99 ± 0.36 65.84 ± 0.20
DFL 85.57 ± 1.63 8.70 ± 2.72 67.01 ± 1.94 93.60 ± 0.70 76.94 ± 0.56 63.72 ± 0.86
DFL-nodemog 77.27 ± 3.18 0.00 ± 0.00 77.59 ± 2.54 98.69 ± 0.49 78.32 ± 0.20 63.39 ± 0.08
POE 81.53 ± 0.91 16.67 ± 2.37 78.74 ± 0.09 93.60 ± 1.53 79.94 ± 0.12 67.63 ± 0.45
INLP 72.90 ± 1.55 10.87 ± 2.72 81.84 ± 1.08 91.46 ± 1.10 77.05 ± 0.13 64.27 ± 0.51
Subsample 76.61 ± 1.29 39.13 ± 2.05 81.61 ± 0.82 81.28 ± 1.42 77.41 ± 0.31 69.66 ± 0.40
GroupDRO 78.14 ± 0.18 48.55 ± 3.88 77.47 ± 0.77 74.06 ± 1.19 75.32 ± 0.39 69.55 ± 0.47
FEAG(0) 77.70 ± 1.49 10.14 ± 1.57 78.62 ± 1.17 94.91 ± 0.94 78.48 ± 0.09 65.35 ± 0.25
FEAG(ate) 79.13 ± 0.85 9.52 ± 1.77 79.08 ± 1.32 96.72 ± 0.35 79.38 ± 0.15 66.36 ± 0.28

Table 15: Accuracy across groups for CivilComments Subsampled trained using DistilBERT model.
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(a) Alternate Causal Graph. The Red arrow is different from
Fig. 2. The confounding now instead of being the intent of writer,
is a property of text P

(b) Causal graph from Semi-Synthetic setting. The graph is
derived from Fig. 3a, with addition of new node Y ′. The function
h(.) is used to get property W from X . Noise ϵ (in form of label
flipping) is added to W to ensure non-zero P (T = t|X), i.e.
every co-variate X has non-zero probability of being treated and
being untreated. τ is T ’s effect on the new outcome label Y ′,
while 1− τ is Y ’s affect on Y ′

Figure 3: Alternate Causal Graphs

Figure 4: Two-head model for jointly training αR and
g for Riesz estimator. The top figure has a treated sen-
tence as input while the bottom figure has an untreated
sentence as input.
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