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Abstract
Factual correctness is often the limiting fac-
tor in practical applications of natural lan-
guage generation in high-stakes domains such
as healthcare. An essential requirement for
maintaining factuality is the ability to deal with
rare tokens. This paper focuses on rare tokens
that appear in both the source and the refer-
ence sequences, and which, when missed dur-
ing generation, decrease the factual correctness
of the output text. For high-stake domains that
are also knowledge-rich, we show how to use
knowledge to (a) identify which rare tokens that
appear in both source and reference are impor-
tant and (b) uplift their conditional probability.
We introduce the “utilization rate” that encodes
knowledge and serves as a regularizer by max-
imizing the marginal probability of selected
tokens. We present a study in a knowledge-
rich domain of healthcare, where we tackle the
problem of generating after-visit care instruc-
tions based on patient-doctor dialogues. We
verify that, in our dataset, specific medical con-
cepts with high utilization rates are underesti-
mated by conventionally trained sequence-to-
sequence models. We observe that correcting
this with our approach to knowledge injection
reduces the uncertainty of the model as well
as improves factuality and coherence without
negatively impacting fluency. 1

1 Introduction
Recent advances in language modeling (c.f. Dong et al.
(2021); Erdem et al. (2022) for survey) have enabled
applications across multiple domains including educa-
tion (Shen et al., 2021), jurisprudence (Bell et al., 2021),
e-commerce (Zhang et al., 2020; Xiao et al., 2021),
and healthcare (Valmianski et al., 2021; Compton et al.,
2021; Alambo et al., 2022; Krishna et al., 2020).

One of the central challenges in deploying these mod-
els in-the-wild is that rare words tend to have underesti-
mated conditional probability during generation (Luong

∗Work done while at Curai
1Code is available at https://github.

com/curai/curai-research/tree/main/
careplan-charting.

et al., 2014; Chintagunta et al., 2021; Holtzman et al.,
2020). However, in high-stakes applications, many of
these rare words are semantically important and need
to be preserved. For example, some symptoms, dis-
eases, and medications can be both rare and important
(Mottaghi et al., 2020) (e.g. knowing that the patient is
taking warfarin is extremely important, even if the word
“warfarin” occurs infrequently).

Prior approaches for handling rare word generation
utilize a copy mechanism (See et al., 2017; Joshi et al.,
2020; Xu et al., 2020; Choi et al., 2021). This facilitates
copying from the source text using a probabilistic switch
to decide if the next output token is generated or copied
from the input (See et al., 2017). However, it doesn’t
properly resolve the main challenge: not all rare tokens
are important. Only specific rare tokens (e.g. warfarin)
have a high probability of appearing in the reference
sequence when found in the source sequence. In cases
where the training data does not have enough structure
to disambiguate which rare words are essential, the copy
mechanism becomes overly extractive (Gehrmann et al.,
2018; See et al., 2017).

Also relevant to this paper are previous works that
integrate knowledge into language models (Duan et al.,
2020; Liu et al., 2022). In entity-centric summariza-
tion, Keskar et al. (2019); Liu and Chen (2021) add key
phrases to the prompt, which through the self-attention
mechanism influence the output distribution. However,
for prompts containing rare tokens, self-attention strug-
gles to capture the prompt-reference dependency, and
the marginal probability of rare tokens remains under-
estimated. Joshi et al. (2020) extends this approach by
not only explicitly including the medical concepts in the
input sequence, but also adding a related term to the loss
function. However, they still find that for rare tokens the
model underestimates the conditional probability during
generation.

Finally, dictionary look-up of rare and out-of-
vocabulary words has been studied in Yu et al. (2022);
Ruzzetti et al. (2022). However, these papers focus on
finding good representations of specific tokens. In this
paper, we tackle the problem of uplifting important rare
tokens even when a good representation is not available.

We base our work on the premise that specific rare
tokens (e.g. warfarin) have a high probability of appear-
ing in the reference sequence if they also appear in the
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source sequence. The main questions we tackle in this
paper are the following: How do we know which rare
tokens have a propensity to appear in both the source
and the reference? How do we encode this information
into the model?

We study our approach in the healthcare setting, for
the concrete problem of after-visit care instruction gener-
ation from a medical dialog between patient and medical
professional. We define the medical concept utilization
rate and utilization-rate-aware training objective in sec-
tion 2, discuss the care plan generation problem and
data collection in section 3, describe the sequence-to-
sequence model setup in Figure 4, and report experi-
mental results in section 5.

Our contributions are the following:

1. We are the first to explicitly focus on identifying
and modeling specific rare tokens that appear in
both the source and the reference. We call them
“high utilization concepts.”

2. We propose a measure of “utilization rate” to iden-
tify tokens that comprise “high utilization con-
cepts.” We use external knowledge to help with
this computation as these tokens can be extremely
rare.

3. We introduce a regularization term during training
that leverages token utilization rate to uplift the
conditional probability of important rare tokens.

4. We demonstrate the application of our approach
to the concrete task of generating after-visit care
instructions from medical professional-patient dia-
logue.

We observe performance improvement with both au-
tomatic metrics and human evaluation with medical
experts.

2 Approach
In many sequence-to-sequence tasks, certain rare con-
cepts have a high probability to appear in the reference
sequence (y) if they also appear in the source sequence
(x). We call these concepts “high utilization concepts”
(c ∈ CHU) and formally define them in Equation 1.
These concepts are comprised of one or more tokens
c = [ν0, ν1, ...]. We hypothesize that a source of factu-
ality errors in many sequence-to-sequence tasks is that
learned model underestimate the conditional probabil-
ity of high utilization concepts p̂(yi = ν, |y<i,x, ν ∈
c, c ∈ x, c ∈ CHU) < p(...), where p̂ denotes the model
estimated probability and p is the true probability.

Definition 2.1 (High utilization concepts) Given a
universe of concepts C, the set of high utilization
concepts CHU is defined as

CHU =

{
c ∈ C :

p(c ∈ y|c ∈ x)

p(c ∈ y)
≫ 1

}
(1)

Equation 1 answers the question “How do we know
which rare tokens have a propensity to appear in both
source and target?” while at the same time it works for
rare tokens.

This key insight leads us to define two goals for this
work: learn to identify high utilization concepts, and
build a utilization-rate-aware training objective.

2.1 Identifying high utilization concepts using
externally provided knowledge

The major challenge in identifying high utilization con-
cepts in real datasets is that the concepts we are inter-
ested in are present in very few examples. This means
that it is hard to directly estimate p(c ∈ y|c ∈ x)
and p(c ∈ y) from Equation 1 due to the high vari-
ance. In particular, a frequency-based estimate of prob-
ability has an uncertainty proportional to 1/sqrt(N)
where N is the number of samples for a given con-
cept. However, these rare concepts can still be very
impactful to the overall performance of the model.
This is because, for a given reference, y, it is un-
likely that a particular high utilization concept will
be present (∀c ∈ CHU, p(c ∈ y) ≪ 1), but it is also
unlikely that no high utilization concept will be present
(
∏

c∈CHU
p(c ̸∈ y) ≪ 1). This is well documented in

the medical domain, where medical concepts have a very
long-tailed distribution (Prabhu et al., 2019; Mottaghi
et al., 2020), yet may appear in almost every relevant
sequence. As an illustration, imagine a list of medica-
tion instructions. Every instruction may have a different
medication so no medication token appears more than
once; however, each instruction is rendered useless if it
doesn’t include the relevant medication (e.g. see “Medi-
cation Plan” instructions in Figure 1).

To overcome this challenge, we propose computing
what we call “utilization rate”, rϕ, which we define in
Equation 2. This function relies on the concept equiva-
lence class map ϕ : Csel → E where Csel ⊆ C and E is a
set of equivalence classes. (ϕ, Csel, E) cannot be derived
from the data or the model, but instead are provided
from an external source of knowledge. If ϕ is an iden-
tity (id) then rid(cn) = p̂(cn ∈ y|cn ∈ x), (x,y) ∈ D.

1. Develop a method for identifying high utilization
concepts, CHU for a dataset D = {(xi, yi)}Ni=1.

2. Develop a method for augmenting the training
procedure of sequence-to-sequence models to cor-
rectly estimate the conditional probability of to-
kens forming high utilization concepts.

Definition 2.2 (Utilization rate) The utilization rate of
concept cn is defined as

rϕ(cn) =
∑

c∈Csel

∑N
j=1 1[c∈xj ,c∈yj ,ϕ(c)=ϕ(cn)]∑

c∈Csel

∑N
j=1 1[c∈xj ,ϕ(c)=ϕ(cn)]

(2)

Here, Equation 2 tries to make the intuition from
Equation 1 applicable to a real dataset. We gener-
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(a) A relatively simple-to-chart example with each
sentence corresponding to an instruction. Note synonym
substitution of ibuprofen for motrin and the addition of

timing to the gargling instruction.

(b) A difficult-to-chart example with incomplete
information and multiple dialogue sentences

contributing to a single instruction.

Figure 1: Example conversation segments corresponding to care plan and corresponding instructions. Color
represents the highest overlap between the sentence in the dialogue and the instruction. Arrows represent semantic
relationship between the dialogue sentence and instruction. Note that these relationships between the dialog and the
instructions are not available in the dataset.

ally cannot compute the lift because for rare words the
dataset frequency derived probability estimates are poor.

Note that Equation 2 combines both externally pro-
vided knowledge (ϕ, Csel, E) and dataset derived values.
This allows us to inject domain-specific information. Be-
cause concepts are mapped to equivalence classes, every
concept in a particular equivalence class has the same
utilization rate. If a concept cn ∈ Csel has marginal
probability to appear in the reference sequence that is
much lower than rϕ(cn) then it is a high utilization
concept.

2.2 Utilization-rate-aware seq2seq training
Our analysis in section 5 (see Figure 3) shows that con-
ventionally trained seq2seq models underestimate the
utilization rate (rϕ) for many rare concepts. While we
cannot optimize the utilization rate directly, we can opti-
mize the approximate marginal probability p(ν|x) of
a token ν given a source sequence x, as seen in Equa-
tion 3.

p(ν|x) =
∑

y<t

p(ν|y<t)p(y<t) ≈

≈
∥y∥∑

t=1

p(ν|y<t)p(y<t)
p(y<t) is uniform≈

≈ 1

∥y∥

∥y∥∑

t=1

p(ν|y<t)

(3)

Given the source sequence x, the tokens for which
we aim to optimize the marginal probability are {ν ∈
c, c ∈ x ∩ CHU}. We define the unweighted utilization
loss.

Definition 2.3 (Unweighted utilization loss)

lu(x) =− 1

∥{ν ∈ c, c ∈ x ∩ CHU}∥
× (4)

×
∑

ν∈c,c∈(x∩CHU)

log p(ν|x) (5)

However, not all concepts in CHU are equally likely
to appear in the reference given their appearance in the
source. To better reflect we also propose a weighted
utilization loss where the weight for each token is deter-
mined by its utilization rate.

Definition 2.4 (Weighted utilization loss)

lw(x) = −
∑

ν∈c,c∈(x∩CHU)
rϕ(c) log p(ν|x)∑

ν∈c,c∈(x∩CHU)
rϕ(c)

(6)

Note that Equation 6 directly injects externally pro-
vided knowledge through its dependence on ϕ.

We use utilization loss as a regularization term and
augment the objective function. We use α > 0 to bal-
ance the strength of the regularization:

l(x,y) = lnll(y) + α · lu or w(x) (7)

where lnll = −∑|y|
t=1 log p(yt|y<t,x) and lu or w is ei-

ther lu from Equation 5 or lw from Equation 6.

3 After-visit care instruction generation:
task and data description

After-visit care instructions (care plan) are a set of ac-
tions (instructions) that a medical professional writes in
the patient’s electronic health record (EHR) as a follow-
up to the patient’s visit. A care plan often includes a
list of medications with appropriate directions, further
medical evaluations, or educational information for pre-
ventive care. Before writing the care plan, the medical
professional discusses it with the patient, and together,
they jointly agree on the next course of action. This joint
decision-making implies that most of the necessary in-
formation for writing the care plan is already available
in the conversation.

In Figure 1, we show two examples. In each example,
we present the (a) segment of the conversational dialog
corresponding to provider messages discussing the care
plan with the patient and (b) corresponding care plan
charted in the EHR. We can see that the instructions
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(a) Average marginal probability of every semantic type.
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(b) Semantic type utilization rates.

Figure 2: Empirical concept marginal probabilities and utilization rates estimated from the dataset.

are written in a directive format, using action verbs and
often paraphrasings of the corresponding text in the
dialogue. The care plan does not always have all the
medical concepts mentioned in the conversation. In the
first example, “serotonin syndrome" and “Celexa" are
rare, but the care plan includes only the latter. We need
a model that is robust to rare medical concepts and can
discern which knowledge needs to be carried forward.

We tackle the problem of taking the relevant section
in the conversations corresponding to the care plan as
input and automatically derive care plan instructions
that the medical professionals can approve. We do not
assume access to 1-1 mappings between the sentences in
the conversation to the care plan instructions. However,
we develop a method to derive a dataset of 1-1 mappings,
albeit noisy, which we use for model training.

Dataset construction. We use a dataset with 14K
medical professional-patient encounters collected on
a virtual primary care platform. Each encounter has
a text-based conversation between the medical profes-
sional and the patient. We applied an in-house conver-
sation discourse parser to extract only those dialogue
turns from the medical professional’s corresponding to
the care plan discussion. We also have the associated
care plans written from the patient’s electronic health
record for that encounter. On average, each encounter
has 9 dialogue turns corresponding to care plans and 4
care plan instructions.

We need a parallel corpus with pairs of dialogue turns
and care plan instructions for our model. Getting man-
ual annotations for each encounter would be expensive
as it requires expert knowledge. Therefore, we auto-
matically construct a paired dataset, albeit noisily, from
the paired encounter level care plan and provider dialog
turns. We get sentence-level embeddings for every sen-
tence in each turn and instructions in the care plan and
pair those with the highest cosine similarity (We pro-
vide additional details in the Supplementary Material).

At the end of this, we have 48,000 source-reference
pairs, where the source is a sentence in the conversa-
tional dialog and reference is the mapped instruction.
We randomly sample 3000 pairs for testing, 1000 for
validation, and the remaining 44,000 pairs for training.

We use medical concepts from UMLS (Bodenreider,
2004) and in particular SNOMED-CT and RXNorm
ontologies. The synonyms are pooled from all ontolo-
gies in UMLS that map to the corresponding concept in
SNOMED-CT and RXNorm.

To identify the concepts, we use an in-house lookup-
based concept recognizer. It uses a sliding window
strategy to find maximal matches of text corresponding
to medical concepts and their synonyms. It ignores stop
words while doing the match. Finally, it has an agglom-
eration step that leverages a concept hierarchy. If we
have overlapping spans corresponding to two concepts
where one is a child of another (eg “lower abdominal
pain” and “abdominal pain”) then only the more specific
concept is extracted. If two different concepts have a
span overlap and are not hierarchically related, then the
concept linking is greedily selected with the concept on
the left being given priority.

Identifying high utilization concepts. We limit Csel
to only medical concepts and choose ϕ such that it maps
them to their SNOMED CT semantic types (which in-
forms our choice of E). In our case study this nar-
rows down 758 unique medical concepts to their 19
semantic types. The marginal probability p(c ∈ y) for
each semantic type c is shown in Figure 2a while the
utilization rates are shown in Figure 2b. Comparing
them we can see that utilization rates are 10-100x larger
than the marginal probabilities. This suggests that all
medical concepts are part of high utilization tokens set
(CHU = Csel). It also means that many kinds of medical
concepts that are present in the source sequence do not
get generated in the output sequence, which drastically
hurts medical correctness.
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4 Experimental setup
We follow the standard practice (Ott et al., 2018) of
training our sequence-to-sequence models using FairSeq
framework (Ott et al., 2019). We use byte-pair encoding
implemented in the fastBPE package (Sennrich et al.,
2016). We use a transformer architecture for our model
and train models on our data from scratch2.

Model architecture We use the
transformer_iwslt_de_en architecture in
FairSeq for experiments. It consists of 6 encoder and
decoder layers with 4 self-attention heads followed
by feed-forward transformations. Both encoder and
decoder use embeddings of size 512 while the input and
output embeddings are not shared. Both the encoder
and decoder use learned positional embedding. We
early-stop training based on the validation performance.
Evaluation is done on the test set.

Training We use Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9 and β2 = 0.98. We use the in-
verse square root learning scheduler with 4,000 warm-
up steps. We use the initial learning rate of 5 × 10−4,
dropout rate of 0.3 (Srivastava et al., 2014) , and weight
decay with its rate set to 10−4. We use label smooth-
ing with 0.1 of probability smoothed uniformly during
training. We modify the training objective Equation 7
by adding oversmoothing loss (Kulikov et al., 2021)
with a coefficient of 0.9 and unlikelihood loss (Welleck
et al., 2019) with a coefficient of 0.5. All training was
performed on VMs with single V100 GPUs, we esti-
mate 200 GPU hours as the total amount required for
the completion of this work.

Early stopping We use early stopping for model se-
lection based on the value of the objective function
computed on the validation set. We evaluate the model
on the development set every 2K updates (∼4K tokens
per update). We stop training when the objective has not
improved over more than 5 consecutive validation runs.
It takes approximately 75K updates to an early stop.

Decoding We use beam search implementation from
FairSeq. We decode using the beam size of 5. We set
the lower- and upper-bound of a generated output to be,
respectively, 0 and 1.2 · ||x||+ 10. We do not use either
length normalization or length penalty since we apply
oversmoothing loss.

Lexically constrained decoding baseline Apart
from using the unregularized version of the model
as a baseline, we compare the proposed ap-
proach with the lexically constrained decoding ap-
proach (Post and Vilar, 2018). We stick to
the LexicallyConstrainedBeamSearch im-
plementation of the Dynamic Beam Allocation (DBA)
algorithm that ensures the presence of provided tokens
in the generated output. DBA implements an optimized

2Informally, we also tried a pre-trained BART (Lewis et al.,
2019) but the results were worse.

version of the Grid Beam Search (Hokamp and Liu,
2017). DBA is training-agnostic and is used only dur-
ing generation. We apply DBA for the baseline model.
Given the non-uniform distribution of utilization rates,
for each source we leave only medical concepts c with
rid(c) > τ for some threshold τ . We report results for
τ = 0.6, which we select by running an extensive grid
search.

5 Results
5.1 Effect of knowledge injection during training

on model’s utilization rate
We evaluate whether the knowledge injection through
regularization (subsection 2.2) has the desired effect
of improving model estimate of the utilization rate,
rϕ. Because the test set is too small to effectively esti-
mate per-concept utilization rate, we instead compute
it for semantic types. In Figure 3 we use semantic rela-
tive error (Equation 8) to compare models trained with
α ∈ {0, 0.25, 0.5, 0.75, 1} that either use unweighted
loss lu (which uplifts all medical concepts equally, “Un-
weighted") or a weighted loss lw with the ϕ being iden-
tity (“Concept weighted”) or mapping concepts to se-
mantic types (“Semantic weighted”). In addition, as a
baseline we also compare an unregularized model that
uses DBA for generation (“DBA”). For a detailed break-
down of relative errors for each combination see the
Supplementary Material.

Definition 5.1 (Semantic relative error) Relative er-
ror for semantic type s computed from r̂ϕ estimated
from model derived output sequences and rϕ estimated
from reference sequences. cs is any concept for which
ϕ(c) = s holds and the value of ϵs in not dependent on
the choice of cs.

ϵs =
∥r̂ϕ(cs)− rϕ(cs)∥

rϕ(cs)
(8)

In Figure 3a we present the relative error for different
α as a function of semantic type frequency in the test set.
For each point (a given semantic type and α) we take the
lowest relative error among {“Unweighted”, “Concept
weighted”, and “Semantic weighted”}. The highest
relative errors are seen for α = 0, which corresponds to
no regularization. For other values of α the difference
is not statistically significant, although, for very rare
semantic types, α = 0.25 appears to perform worse than
models with higher regularization strength. This shows
that our external knowledge informed regularization has
a significant impact on a relative error, but the utilization
rate estimate is not sensitive to the exact weight of the
regularization term.

In Figure 3b we present relative error for differ-
ent training procedures, {“Unweighted”, “Concept
weighted”, and “Semantic weighted”}, as well as a
baseline of “DBA.” For each point (a given semantic
type and training procedure) we choose an α that gives
the lowest relative error. We find that “DBA" baseline,
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(a) Relative error in the utilization rate for each
regularizer strength α. Note that α = 0 means there is

no regularization.

(b) Relative error in the utilization rate for each model
(and best α for that model).

Figure 3: Relative errors in the utilization rates for different semantic types plotted as a function of the frequency of
the semantic type. The trend-line and uncertainty are computed with a linearly interpolated moving average window.

(a) α = 0.25 (b) α = 0.5 (c) α = 1.0

Figure 4: Entropy of the conditional distribution p(y|y<t,x) with respect to different α values. Filled regions
denote the standard deviation across training runs according to Figure 4.

α BERTScore Concept-F1 GPT-2 Perplexity

Baseline 0.0 22.48 ±0.66 57.43±3.73 5.53±0.04

DBA - 23.59±0.28 79.83±0.43 11.96±0.05

Unweighted (ours)

0.25 25.09±0.69 58.19±2.11 5.91±0.07

0.5 25.42±0.56 58.91±6.83 5.65±0.03

0.75 26.22±0.35 60.83±5.96 6.28±0.02

1.0 26.74±0.43 61.05±7.48 6.18±0.05

Concept weighted (ours)

0.25 28.29±0.19 60.87±3.86 6.93±0.05

0.5 28.19±0.20 60.36±2.03 8.49±0.05

0.75 28.08±0.15 64.09±1.85 7.95±0.080

1.0 27.82±0.25 63.05±2.49 9.37±0.10

Semantic weighted (ours)

0.25 28.97±0.56 69.10±2.12 7.01±0.29

0.5 30.54±0.78 74.98±3.91 6.84±0.03

0.75 31.48±0.86 75.77±3.30 6.96±0.11

1.0 30.59±0.63 75.02±2.18 6.94±0.12

Table 1: Automated metrics scores for different model setups. We report average score and standard deviation
over five random seeds. We highlight in bold the best average and all scores having overlapped standard deviation
intervals with the best score.
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which is a constrained generation procedure applied
to an unregularized model, performs worse than any
of the regularized models, although it does outperform
the unregularized model (α = 0 in Figure 3a). While
not significant, we also see that for rare semantic types
“Semantic weighted” seems to perform the best, which
aligns with our expectation that the utilization rate is
hard to estimate for very rare concepts.

5.2 Effect of knowledge injection during training
on model’s uncertainty

We analyze the effect of utilization regularization on
the model’s uncertainty at every timestep. Uncertainty
at timestep t is defined as an entropy of model’s dis-
tribution on each timestep t (here y<t is the decoded
sequence up to t-th timestep, y is an arbitrary token
from the target vocabulary):

Ht(y<t,x) = −
∑

y

p(y|y<t,x) log p(y|y<t,x) (9)

We consider the defined uncertainty on earlier
timesteps, where the model’s distribution is closer to
marginal. As the proposed method pushes up the
marginal probability of the medical concepts, we claim
that models’ uncertainty decreases with the regulariza-
tion. Moreover, care plan instructions typically intro-
duce crucial concepts at the beginning of an instruction.
Thus, we claim that early timesteps uncertainty matters
for the precise decoding of instructions.

This is confirmed by Figure 4. We observe that uncer-
tainty drops monotonically as the α weight increases. In
particular, uncertainty on early timesteps heavily drops
as a result of utilization minimization. Hence, the model
becomes more confident in selecting principal concepts
at the beginning of an instruction. In contrast to the
baseline, all regularized models’ uncertainty start to in-
crease for t > 10. As fewer concepts appear in the
instruction end, the marginal probability maximization
flattens the conditional distribution. However, the uncer-
tainty does not degrade in comparison to the baseline.
Thus, the proposed regularization effectively improves
the confidence of the model on early timesteps.

5.3 Results on Care plan instructions task
Automated evaluation: The precise and complete con-
cepts utilization directly affects the quality of instruction.
We first quantify the quality by calculating automatic
metrics to judge the relevance, fluency, and concept uti-
lization rate in comparison to the reference instructions.
We use BERTScore (Zhang et al., 2019) to estimate
the similarity between reference and candidate, GPT-2
perplexity for (Nguyen, 2021) to assess the coherence
(fluency) of the candidate, and concept overlap (Joshi
et al., 2020) to measure the percentage of medical con-
cepts used in both candidate in reference.

Table 1 presents the automatic evaluation results. The
scores indicate that incorporating knowledge correlates
with relevance and concept overlap. We highlight three

observations. First, the regularization is effective in
terms of quality and concept overlap. We observe signifi-
cant quality improvement compared to both the baseline
and DBA. Moreover, weighted versions of the model
outperform the unweighted setup. Thus, injecting more
knowledge into the model, such as empirical utilization
weights, results in better quality. Second, the impact
of the regularization hardly depends on the α weight.
Third, the GPT-2 perplexity degrades. This demon-
strates that the regularization impacts the model dis-
tribution, so the fluency of the model may deteriorate.
This trade-off, however, has no negative impact on the
quality given the improved BERTScore. For qualitative
results, please see the Supplementary Material.
Medical experts evaluation: To get a more precise
medical assessment, we conduct human evaluation with
medical experts. We randomly sample 100 dialogues
from the test set and generate candidates with each
model setup setting α = 1.0. We ask five doctors to
evaluate the relevance to the dialogue, medical usability
(if the generated instruction can be used in any care
plan), and grammatical correctness (fluency) on a scale
from 1 to 5. Additionally, we ask assessors to indicate
degenerate generations, i.e., premature or repetitive se-
quences. Exact questions and interface screenshots can
be found in the Supplementary Material.

As shown in Table 2, we claim that both weighted ver-
sions achieve significant improvement in relevance and
usability, which are target medical metrics. In contrast
to the GPT-2 perplexity, medical experts report equal
fluency for all models but DBA. We explain this discrep-
ancy with vocabulary shift as GPT-2 is not trained on a
healthcare corpus. Finally, utilization rate regularization
does not affect the number of degenerate outputs. Hence,
the proposed solution effectively induces knowledge in
the model distribution without corrupting generated text
correctness. This is not true for DBA, which struggles
from a lack of coherence and degenerate outputs while
producing more relevant and usable instructions.

6 Conclusion

In this work, we tackle the problem of under-generation
of rare but important tokens in sequence-to-sequence
models. We show that external knowledge can be ef-
fectively injected into the sequence-to-sequence mod-
els and mitigate the problem of lexical precision. We
characterize the problem by identifying a set of low-
frequency but important concepts and defining their
utilization rate, which estimates the probability of
a concept that is present in the source to be also
present in the reference. We confirm that modern well-
trained sequence-to-sequence models suffer from under-
estimating utilization rates, and propose a way to di-
rectly maximize it during training. We design a dif-
ferentiable proxy based on the marginal entropy and
propose a regularized training objective. Since some
concepts may be omitted from the reference, we extend
the approach by applying weights, which restrict the
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Relevance Usability Fluency Degeneracies, %

Baseline 2.50±0.12 3.18±0.27 4.17±0.14 0.10±0.01

DBA 3.36±0.15 3.35±0.16 3.91±0.18 0.21±0.05

Unweighted (ours) 3.56±0.12 3.21±0.28 4.26±0.08 0.10±0.02

Concept weighted (ours) 3.79±0.06 3.72±0.05 4.37±0.16 0.12±0.02

Semantic weighted (ours) 3.78±0.14 3.99±0.19 4.42±0.13 0.12±0.012

Table 2: Evaluation using medical experts. Fluency, Usability, and Relevance are scored on a scale from 1 to 5. We
also report the percentage of premature or repetitive outputs (Degeneracies). We report average score and standard
deviation of experts’ scores. We highlight in bold the best average and all scores having overlapped standard
deviation intervals with the best score.

regularization impact of low-utilized concepts or their
semantic types.

We perform a case study in automatic care plan gen-
eration from medical dialogues. We experiment with a
custom internal dataset and observe the effectiveness of
the approach. We also compare a previous approach for
external knowledge injection – dynamic beam alloca-
tion (DBA). First, we find that regularization improves
the model’s utilization rate by pushing it closer to the
empirical values observed in reference sequences. Sec-
ond, regularization reduces the model’s uncertainty at
early timesteps: exactly where concepts are typically
introduced. Third, we observed a significant (in terms of
standard deviations) quality improvement. More specif-
ically, we did a human evaluation of relevance, concept
overlap, medical usability, and fluency using five medi-
cal experts. The results revealed the enhanced relevance
and usability of generated instructions while, unlike
DBA, maintaining high fluency and low degeneracy.

Ethics Statement: This work was done as part of
a quality improvement activity as defined in 45CFR
§46.104(d)(4)(iii) – “health care operations” secondary
research.

Reproducibility statement: Code used for
training regularized sequence-to-sequence
models in this paper is available at https:
//github.com/curai/curai-research/
tree/main/careplan-charting. However,
data will not be shared due to patient privacy and
HIPAA compliance. as it contains significant amount of
Patient Health Information (PHI) and cannot be shared.

Privacy concerns: Our research aims to utilize knowl-
edge to enhance NLG systems. However, we also ac-
knowledge the privacy concerns associated with lever-
aging sensitive medical information. All training data
was anonymized during preprocessing step, and all per-
sonally identifiable information (PII) was removed to
protect patient identities in generated outputs. Another
privacy consideration is inference leakage, where NLG
systems unintentionally reveal sensitive information dur-
ing generation. We suggest incorporating differential
privacy mechanisms to prevent the association of rare
tokens or medical concepts with specific individuals.

7 Limitations

There are several important limitations to this work that
can be split into two categories: (1) method applicability
to other domains and (2) method scalability to much
larger models.

Method applicability to other domains. Utilization
rate computation and regularization are possible when
there is some external knowledge that can be used to
infer which tokens are “important.” In particular, our
highest-performing model uses token semantic type to
compute utilization rates. This limits our approach
to sub-domains where there is an external knowledge
source that can inform us about important tokens and
give us higher-order semantic information about how
to group the important tokens. For example, our ap-
proach will likely not be very helpful for open-domain
conversations.

Method scalability to much larger models. We have
evaluated our approach for models on the scale of
O(108) parameters. However, modern state-of-the-art
models often involve O(1011) parameters, three orders
of magnitude larger than models in our experiments.
Large language models (LLMs) often still suffer from
the under-generation of rare tokens, but our study is in-
sufficient to determine if our approach would still work.
We suppose that utilization-rate-based regularization is
most likely to be beneficial in the fine-tuning step of
LLMs, but verification of this is left for future work.
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A Semantic relative errors
Section 5.1 in the main text discusses the relative er-
ror (Equation 7 in the main text) in model computed
utilization rate for different semantic types as a func-
tion of α ∈ {0, 0.25, 0.5, 0.75, 1} and regularization
type. The regularizations are lu (“Unweighted") or a
weighted loss lw with the ϕ being identity (“Concept
weighted”) or mapping concepts to semantic types (“Se-
mantic weighted”). For α = 0 all mentioned models
are equivalent to the baseline, that does not use any
knowledge injection. Figure 5 shows the exact values
of relative errors for every combination of models.

B Human evaluation
B.1 Human evaluation UI
The screen shot of the UI provided to medical experts
for evaluation is shown in Figure 6.

B.2 Questions
We used the following set of questions for medical ex-
perts to evaluate every sample:

1. Usability: How clinically usable is the candidate
instruction in any context? Please rate on a scale
from 1 to 5.

2. Relevance: How relevant is the candidate instruc-
tion to the highlighted portion of the dialgoue?
Please rate on a scale from 1 to 5.

3. Fluency: How fluent/grammatically correct is the
candidate instruction? Please rate on a scale from
1 to 5.

4. Degeneracies: Is the candidate instruction de-
generate (either instruction ends mid sentences
of words are repeated in a row)? Yes or No.

B.3 Evaluation task description
Table 3 presents the description of the task that was
provided to the medical experts. We also presented it
personally to clarify the goals and answer questions.

C Qualitative examples
A complete example of synthezing training samples is
given in Table 4 and qualitative comparison between
different models for the final task is in Table 5.

D Identifying source dialogue turns
The training data includes only parts of the dialogue
relevant to the care plan discussion, which is achieved
by the internal segmentation model [work will be pub-
lished and cited here prior to camera ready]. We then
train a FastText model (Joulin et al., 2016) on all pro-
vided segments. We use spacy framework (Honnibal
and Montani, 2017) to split dialogue turns into sen-
tences x and generate an embedding E(x) for every

sentence by averaging the FastText embeddings e(xt)
of the words in a sentence Equation 10.

E(x) =
1

∥x∥

∥x∥∑

t=1

e(xt) (10)

We repeat the procedure for the true care plan instruc-
tions y. Next, we use a cosine similarity c (Equation 11)
between FastText embeddings of x and y with a thresh-
old of 0.85 to map a sentence to the relevant care plan
instruction. We omit the unmapped sentences and care
plan instructions from the dataset.

c(x,y) =
E(x) · E(y)

∥E(x)∥∥E(y)∥ (11)

To improve computational efficiency, we utilize the
FAISS framework for mapping (Johnson et al., 2019).
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Figure 5: Relative error for each medical semantic type as a function of α and loss type.

Instruction
We want to evaluate the quality of the automatically generated care plans. In particular, we want to assess the fluency, relevance,
clinical usability, and degeneracy of the generated instruction. Given the dialogue with the highlighted prompt (i.e., a span of
text that led to instruction), we want to evaluate each property on a scale from 1 to 5. Degenerate instructions stand for extremely
short (e.g., “avoid ”), or extremely long “test test test test . . . ”) sequences. There are 4 instruction candidates for each (dialogue,
span) pair.

Table 3: Instruction provided to the data specialists prior to the human evaluation task submission.
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Figure 6: Screen shot of the user interface used in the human evaluation.
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Patient-Provider conversation. Shown only provider turns for brevity
MD: Based on your symptoms, it sounds like you have an upper respiratory infection.

MD: For the sore throat and any cough, you can try OTC cough medicine, but in experience it is not any more effective than
home remedies. (1)
MD: A humidifier, or simply breathing in steam like in the shower will help with any chest congestion.

MD: I also recommend gargling with warm salt water, that will help with the throat inflammation. (2)
MD: If you develop severe shortness of breath, you should go to the ER right away

MD: Tonsillitis is inflammation and possibly infection of your tonsils.

MD: Yes, I generally recommend giving it a week, and during that time continue to gargle with warm salt water, taking motrin
and tylenol as needed for pain, drinking/eating soft food so it doesnt irritate your throat (3)
MD: If your tonsils are getting larger and more painful, or you are having severe pain with swallowing , please let us know and
we will re-assess

MD: Upper respiratory infections and throat infections, including tonsillitis, usually go away in 1-2 weeks, but if its lasting
longer than that please let us know.

MD: Please do gargle with the warm salt water as discussed, that will help the swelling more. (2)
MD: One more recommendation is to try TheraFlu cold and cough - its available over the counter - and will help with pain and
congestion as well. (4)
MD: Please feel free to reach out to us with further questions at any time.

True care plan instructions
(1): Medication Plan: Take Ibuprofen or Tylenol as needed, as directed, for pain.

(2): Instruction: Gargle with warm salt water several times a day to help throat inflammation.

(3): Instruction: Avoid any harsh or irritating foods that may worsen or further irritate your sore throat.

(4): Medication Plan: Take TheraFlu Cold and Cough, available over the counter, as needed, as directed, for pain and congestion.

Concepts with semantic types
(1): sore throat (FINDING), cough (DISORDER)

(2): water (FINDING), throat inflammation (FINDING), swelling (CLASS)

(3): drinking (FINDING)

(4): cough (DISORDER), TheraFlu (MEDICATION), pain (CLASS), congestion (CLASS)

Table 4: Training examples construction. The only inputs are the provider turns of the care plan section of the dialog
(first box) and the care plan instructions (last box) from the EHR. For each care plan instruction, we identify the
pertinent dialog turn (see the main paper for the details) and use those turns as the source for the instructions. We
have marked these mappings in the diagram using numbering them from (1) to (4). Notice how instruction (2) maps
to more than one dialog turn in the conversation. We use these mappings to create training pairs. Figure also shows
medical concepts along with their semantic types in the box labeled ‘Concepts with semantic types’
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Test data Generations

Source Reference Generated Instructions

I recommend you to take clar-
itin daily for a few days and
add flonase spray to decrease the
pressure in the upper airway and
your ear

Over the counter anti-allergic
medications like Claritin and
Flonase spray may be helpful.

B: Recommend claritin days add flonase spray decreased pressure upper
airway ear

DBA: Recommend claritin and flonase

U (ours): Recommend claritin and flonase spray to decrease pressure

CW (ours): Recommend claritin and flonase spray to decrease pressure

SW (ours): Recommend claritin and flonase spray to decrease pressure

Continue taking your Vienva ev-
ery day for now, and get tested
for STD and pregnancy

Get tested for STD and preg-
nancy. You can do this with your
current primary care doctor.

B: Undergo std testing and women health exam

DBA: Continue taking your vienva every day

U (ours): Undergo std and pregnancy test

CW (ours): Undergo std and pregnancy test

SW (ours): Continue taking every day

In the meantime, try to eat ba-
nanas and drink citrus products
to add potassium to your diet

Eat potassium-rich foods B: Continue the health diet

DBA: You will require repeat labs to check your potassium level again

U (ours): Continue the health diet

CW (ours): You will require repeat labs to check your potassium level again

SW (ours): You will require repeat labs to check your potassium level again

There is an antibiotic called
Doxycycline which I can pre-
scribe to cure the infection

Doxycycline 100 mg oral tablet
has been prescribed for you.

B: Take antibiotics as

DBA: Doxycycline

U (ours): Take doxycycline as needed

CW (ours): Take doxycycline as directed to cure

SW (ours): Doxycycline has been prescribed for you

Table 5: Qualitative examples from the test set comparing different methods. We use different color and abbreviations
for each method: B for Baseline, DBA for Dynamic Beam Allocation, U for Unweighted, CW for Concept-Weighted,
and SW for Semantic-Weighted. In each block, we present a source dialog turn (source), and the reference care plan
instruction for that turn (reference). In the last column, we show the generated care plan instruction for the source
by the different methods. You can see how our final model (semantic weights) provides more detailed instructions
including capturing medical concepts correctly.
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