
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2391–2404

July 9-14, 2023 ©2023 Association for Computational Linguistics

Sequence Parallelism: Long Sequence Training from System Perspective

Shenggui Li, Fuzhao Xue∗, Chaitanya Baranwal, Yongbin Li, Yang You
School of Computing, National University of Singapore
somerlee.9@gmail.com, f.xue@u.nus.edu

Abstract

Transformer achieves promising results on vari-
ous tasks. However, self-attention suffers from
quadratic memory requirements with respect to
the sequence length. Existing work focuses on
reducing time and space complexity from an al-
gorithm perspective. In this work, we propose
sequence parallelism, a memory-efficient paral-
lelism to solve this issue from system perspec-
tive instead. Our approach is compatible with
most existing parallelisms (e.g., data, pipeline,
and tensor parallelism), which means our se-
quence parallelism makes 4D parallelism pos-
sible. More importantly, we no longer require
a single device to hold the whole sequence. Be-
sides, using efficient attention with linear com-
plexity, our sequence parallelism enables us to
train transformer with infinite long sequence.
Specifically, we split the input sequence into
multiple chunks and feed each chunk into its
corresponding device (i.e., GPU). To compute
the attention output, we integrated ring-style
communication with self-attention calculation
and proposed Ring Self-Attention (RSA). Ex-
periments show that sequence parallelism per-
forms well when scaling with batch size and
sequence length. Compared with tensor paral-
lelism, our approach achieved 13.7× and 3.0×
maximum batch size and sequence length re-
spectively when scaling up to 64 NVIDIA P100
GPUs. With efficient attention, sequence can
handle sequence with over 114K tokens, which
is over 27× longer than existing efficient atten-
tion works holding the whole sequence on a
single device.

1 Introduction

Transformer-based language models (Radford et al.,
2019; Brown et al., 2020; Devlin et al., 2018) have
achieved impressive performance on various nat-
ural language understanding and generation tasks
(e.g., Q&A (Qu et al., 2019; Yang et al., 2020),
relation extraction (Xue et al., 2020b,a; Zhou et al.,

∗Equal Contribution

2020) and dialogue system (Ni et al., 2021)). Re-
cently, Transformer also achieved promising results
on computer vision tasks (Dosovitskiy et al., 2020;
Zhang et al., 2020, 2021) and even on bioinfor-
matics tasks (Elnaggar et al., 2020; Wang et al.,
2021). These Transformer-based models learn
powerful context-aware representation by apply-
ing self-attention to all pairs of tokens from the
input sequence. This mechanism captures long-
term dependencies at the token level for sequence
modeling. However, self-attention suffers from
quadratic memory requirements with respect to se-
quence length. Existing works focusing on long se-
quence modeling devote to solve this problem from
algorithm perspective. That is, these works mainly
try to reduce the time and space complexity of at-
tention. In this paper, we focus on solving the long
sequence training problem from system perspec-
tive. Existing system requires us to hold the whole
sequence in one GPU, which limits the length of
input sequence. Unfortunately, the long sequence
is common in real-world applications. For instance,
when we train Transformer for medical image clas-
sification, each image is much larger than it is in
usual (e.g., 512×512×512 vs 256×256×3). Then,
each medical image has much more tokens (i.e.,
over 512×). Each input sequence is much longer
than usual. In this case, it is challenging to hold the
whole sequence within single GPU.

In this paper, we designed and implemented se-
quence parallelism, which aims at breaking the lim-
itation that we must store the whole sequence in one
GPU. The proposed system can train transformer-
based models with longer sequences and a larger
batch size. Specifically, we first split the input se-
quence into multiple chunks along the sequence
dimension and feed each sub-sequence chunk to
one corresponding GPU. Each GPU thus only holds
a part of the full sequence, i.e., a sub-sequence. To
apply self-attention to the tokens from different
chunks, the main challenge is to compute atten-

2391

tion scores and outputs across GPUs efficiently.
To tackle this problem, we proposed Ring Self-
Attention (RSA), which circulates key and value
embeddings across GPUs in a ring manner. In
this case, each device is just required to keep the
attention embeddings corresponding to its own sub-
sequence. As a result, our sequence parallelism
is memory-efficient, especially for long input se-
quences.

To model long sequences, existing works mainly
focus on efficient attention (e.g., (Zaheer et al.,
2020)) with linear instead of quadratic space com-
plexity. In this paper, we aim to solve the long se-
quence modeling problem from the distributed sys-
tem perspective. We evaluated our system on both
vanilla attention to verify our system is a general
solution, and evaluated on efficient attention setting
to show the upper bound sequence length. Existing
pipeline parallelism (Huang et al., 2018) and ten-
sor parallelism (Shoeybi et al., 2019)) are designed
to cope with a larger model size instead of longer
sequences. However, when the sequence is long,
the challenge is, existing parallelism must keep the
whole sequence on one single device. Even if split-
ting model along hidden and attention-head dimen-
sion (i.e., tensor parallelism) or depth dimension
(i.e., pipeline parallelism) can still process longer
sequences to some extent, the attention-head and
depth are much smaller than sequence length (e.g.,
12 vs 512), which limits the training scalability and
the maximum length of the input sequence. In con-
trast, our approach splits the whole sequence into
multiple devices, enabling it to fit longer input data.

In summary, our main contributions are three
folds:

• Our system breaks the length limitation of
Transformer model training. Sequence par-
allelism splits long sequences into multiple
chunks and feeds them into different devices.
It is memory-efficient because each device
only keeps the attention embeddings corre-
sponding to its own sub-sequences. With lin-
ear space complexity attention, sequence par-
allelism can help us train the attention model
with infinite long sequences.

• To our best knowledge, our work first pro-
posed to use distributed system to handle long
sequence training for attention-based mod-
els. Our implementation is fully based on
PyTorch and is compatible with data paral-

lelism, pipeline parallelism, and tensor paral-
lelism without any extra compiler or library.
This makes it possible to integrate sequence
parallelism with data parallelism, pipeline par-
allelism and tensor parallelism into 4D paral-
lelism, and pave the way to train large-scale
models with long sequences.

• Our system achieves 3.0× maximum se-
quence length than SoTA (i.e., tensor paral-
lelism) when scaling up to 64 NVIDIA P100
GPUs. On shorter sequence modeling, our
system is still more memory-efficient, which
achieves 13.7× maximum batch size. Using
efficient attention with linear complexity, se-
quence can handle sequence with over 114K
tokens, which is over 27× longer than exist-
ing sparse attention works holding the whole
sequence on a single device.

2 Background

Self-attention We first briefly review the self-
attention mechanism in Transformer. For an input
sentence X = {x1, . . . , xN} with N tokens, we
encode every token x into three attention embed-
dings (i.e., query q, key k, value v). To model the
dependency among tokens, self-attention computes
the attention scores for each token xi against all
other tokens in X by multiplying qi with k of all
tokens. For parallel computing, q, k and v of all
tokens are combined into three matrices: Q, K and
V . The self-attention of an input sentence X is
computed by the following formula:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

where dk is the dimension of the key. For multi-
head attention, please see Appendix A for details.

Pipeline parallelism Huge deep neural net-
works (Fedus et al., 2021; Raffel et al., 2020) have
shown their effectiveness on various tasks. How-
ever, it is challenging to hold the whole model
on one single device due to memory limitations.
To overcome this, (Huang et al., 2018) proposed
pipeline parallelism, model parallelism splitting the
model layers into different partitions on separate
accelerators. As shown in Figure 1a, they split the
data along the batch dimension into micro-batches,
and each device can process one micro-batch re-
ceived from the previous device at a time. When

2392

Micro Batch 1

Micro Batch 2

Layer 1

Layer 2

Layer 3 Device 3

Device 2

Device 1

(a) Pipeline parallelism

Layer 1 Part 1 Layer 1 Part 2

Layer 2 Part 1 Layer 2 Part 2

Device 1 Device 2

Micro Batch 1

Micro Batch 2

(b) Tensor parallelism

This

We

Micro Batch 1

Micro Batch 2
is

are

Layer 1

Layer 2

sequence

using

parallel

it

Layer 1

Layer 2

Device 1 Device 2

(c) Sequence parallelism (Ours)

Figure 1: The overall architecture of the proposed sequence parallelism and existing parallel approaches. For
sequence parallelism, Device 1 and Device 2 share the same trainable parameters.

the computation is pipelined across micro-batches,
pipelining schemes need to ensure that inputs use
consistent weight versions for both forward and
backward computation to ensure correct weight
update and model convergence (Narayanan et al.,
2021).

Tensor parallelism Different from pipeline par-
allelism which splits models by layer, tensor par-
allelism (i.e., Megatron) (Shoeybi et al., 2019))
introduces tensor splitting, where individual lay-
ers of the model are partitioned over multiple de-
vices. Similar to our sequence parallelism, ten-
sor parallelism is also designed for Transformer-
based models. Each Transformer layer includes
a self-attention block and a two-layer multi-layer
perceptron (MLP) block. The MLP block can be
formalized as:

Y = GeLU(XA), Z = Y B (2)

where GeLU is a non-linearity activation function,
X is the input data, Z and Y are the outputs. Ten-
sor parallelism splits the weight matrices A and B
along columns and rows respectively. Then, the
first and second GEMM in the MLP block above
can be written as:

[A] =
[
A1 A2

]
[
Y1 Y2

]
=

[
GeLU(XA1) GeLU(XA2)

]

[B] =

[
B1

B2

]

Z =
[
Z1 + Z2

]
=

[
Y1 Y2

] [B1

B2

]
(3)

At the second GEMM, Z1 and Z2 need to un-
dergo an all-reduce operation to give the final out-
put before the dropout layer in the Transformer
layer.

Similarly, Megatron splits the tensors in the self-
attention layer as well. For multi-head attention,
attention heads are split by column and allocated
equally to the devices. The linear layer after the

self-attention computation is split by row. An all-
reduce operation is needed at the linear layer out-
put to aggregate attention output from all devices.
Please refer to Megatron (Shoeybi et al., 2019) for
more details about tensor parallelism.

3 Sequence parallelism

We propose sequence parallelism for training Trans-
former with longer sequences. The overview of
sequence parallelism is shown in Figure 1c. Input
sequences are split into multiple chunks and the
sub-sequences are fed to different corresponding
devices. All devices are holding the same train-
able parameters but different sub-sequence input
chunks. We will introduce and analyze sequence
parallelism in detail below. We use the following
notation in this section: (1) B: batch size; (2) L:
sequence length; (3) H: hidden size of linear lay-
ers; (4) A: attention head size; (5) Z: number of
attention heads; (6) N: number of GPUs.

3.1 Ring self-Attention

To distribute sub-sequences to multiple devices,
the main challenge is calculating attention scores
across devices. Therefore, we propose Ring Self-
Attention (RSA) to compute attention output in a
distributed setting. There are two steps in RSA to
obtain the final output. Please note, we only con-
sider bidirectional self-attention here to introduce
RSA succinctly. We treat all heads equally so it
can be extended to multi-head attention directly.

Given query embeddings {q11, q12, ..., qNL }, key
embeddings {k11, k12, ..., kNL } and value embed-
dings {v11, v12, ..., vNL }, where qns represents the key
embedding of the sth token in the the sequence
which is on nth device. We define all key embed-
dings on nth device as Kn. In RSA, nth device
holds the corresponding query embeddings Qn, key
embeddings Kn and value embeddings V n. The
embeddings on nth device correspond to the nth

chunk whose sub-sequence length is L/N . Our

2393

QK^TQueryDevice 1 Key Value Output

QK^TQueryDevice 3 Key Value Output

QK^TQueryDevice 2 Key Value OutputQK^TQueryDevice 4 Key Value Output

(a) Transmitting key embeddings among devices to calculate attention scores

QK^TQueryDevice 1 Key Value Output

QK^TQueryDevice 3 Key Value Output

QK^TQueryDevice 2 Key Value OutputQK^TQueryDevice 4 Key Value Output

(b) Transmitting value embeddings among devices to calculate the output of attention layers
Figure 2: Ring Self-Attention

goal is to obtain Attentionn(Qn,K, V) which is
the self-attention layer output on nth device. To
this end, as shown in Figure 2a, we first transmit
the key embeddings among devices to calculate the
attention scores QKT in a circular fashion. Such
communication needs to be conducted N −1 times
to make sure the query embeddings of each sub-
sequence can multiply all the key embeddings. To
be more specific, each device will compute the par-
tial attention scores based on its local query and
key embeddings first. Then, it will receive differ-
ent key embeddings from the previous device and
calculate the partial attention scores with respect to
the new key embeddings for each ring-style com-
munication. As a result, all query embeddings
{Q1, Q2, ..., QN} collected their corresponding at-
tention scores {S1, S2, ..., SN} on their own de-
vices.

In the second stage of RSA, we can calculate the
self-attention layer output {O1, O2, ..., ON} based
on {S1, S2, ..., SN} and {V 1, V 2, ..., V N}. Since
computing On requires Sn and all value embed-
dings, as we described in Figure 2b, we transmit
all value embeddings instead of key embeddings in
a similar way. For On, we calculate SnV by:

On = SnV =
N∑

i=1

Sn
i Vi (4)

where Vi = V n, Sn
i is Sn after column splitting,

which means Sn
i ∈ RL/N×L/N but Sn ∈ RL/N×L.

3.2 Modeling

We analyzed and compared our sequence paral-
lelism with tensor parallelism in both theoretical
modeling and experiments, although tensor par-
allelism is not our direct baseline. To our best
knowledge, sequence parallelism is the first system

designed for breaking the length limitation of se-
quence, so there is actually no direct baseline for
sequence parallelism. Therefore, as a distributed
training system designed for attention-based mod-
els, we compare it with a SoTA model parallelism.
Tensor parallelism (Narayanan et al., 2021) is com-
patible with data parallelism, pipeline parallelism.
Our sequence parallelism is also compatible with
them. We expect our system can outperform tensor
parallelism with and without pipeline parallelism.
We leave integrating sequence parallelism with data
parallelism, pipeline parallelism and tensor paral-
lelism into 4D parallelism as our future work. Here,
we mainly focus on memory usage and communi-
cation cost of tensor parallelism and our sequence
parallelism.

3.2.1 Memory usage
For memory usage, according to the architecture
of Transformer, the comparison is divided into two
parts, MLP block and attention block. In this part,
we consider multi-head attention instead of self-
attention for a fair and accurate comparison. We
assume the optimizer is Adam used in Megatron.

MLP block As shown in Table 1, for the MLP
blocks, tensor parallelism stores the matrices af-
ter row or column-style splitting of the whole se-
quence. Our sequence parallelism stores the ma-
trices without row or column-style splitting of
only one single sub-sequence on each GPU. If
we assume that our sequence parallelism is more
memory-efficient:

32H2

N
+

4BLH

N
+ BLH > 32H2 +

5BLH

N
(5)

We can find that, in MLP blocks, sequence paral-
lelism is more memory-efficient when BL > 32H.

2394

Table 1: MLP block memory usage comparison. M1 means the matrix before linear layer, and M2 is the trainable
matrix of linear layer.

GEMM M1 M2 output Memory

Tensor parallelism
1st linear (B,L,H) (H,

4H

N
) (B,L,

4H

N
) 32H2

N
+

4BLH

N
+ BLH

2nd linear (B,L,
4H

N
) (

4H

N
,H) (B,L,H)

Sequence parallelism
1st linear (B,

L

N
,H) (H, 4H) (B,

L

N
, 4H)

32H2 +
5BLH

N
2nd linear (B,

L

N
, 4H) (4H,H) (B,

L

N
,H)

Table 2: Multi-head attention block memory usage comparison

Operation M1 M2 output Memory

Tensor
parallelism

Q/K/V (B,L,H) (H,
ZA

N
) (B,

Z

N
,L,A)

QKT (B,
Z

N
,L,A) (B,

Z

N
,L,A) (B,

Z

N
,L,L)

16AZH

N
+

4BLZA

N

AV (B,
Z

N
,L,L) (B,

Z

N
,L,A) (B,

Z

N
,L,A) +

BZL2

N
+ BLH

Linear (B,
Z

N
,L,A) (

AZ

N
,H) (B,L,H)

Sequence
parallelism

Q/K/V (B,
L

N
,H) (H,AZ) (B,Z,

L

N
,A)

Ring-QKT (B,Z,
L

N
,A) (B,Z,

L

N
,A) (B,Z,

L

N
,L) 16AZH +

4BZLA

N

Ring-AV (B,Z,
L

N
,L) (B,Z,

L

N
,A) (B,Z,

L

N
,A) +

BZL2

N
+

BLH

N

Linear (B,Z,
L

N
,A) (AZ,H) (B,

L

N
,H)

Multi-head attention block We compared the
memory usage of multi-head attention block in
Table 2. Tensor parallelism splits the attention
heads here, but our sequence parallelism still splits
the length dimension of the sequence data. By
comparing the memory usages of multi-head at-
tention block of the two parallelisms, we can find
sequence parallelism is more memory-efficient if
BL > 16AZ. As for communication, tensor par-
allelism needs an all-reduce operation in both the
forward pass and backward pass when calculating
the attention output. In our RSA, to facilitate tensor
exchange between devices, our communication is
equivalent to 2 all-reduce operations in the forward
pass and 4 all-reduce operations in the backward
pass. The extra communication cost of RSA can
be offset by the lack of communication cost in the
MLP block.

In both MLP block and multi-head attention
block, sequence parallelism is more memory-
efficient when we train Transformer with a longer
sequence and a larger batch size.

3.2.2 Communication cost

Megatron-LM uses all-reduce in its MLP layer and
self-attention layer while the communication over-
head in sequence parallelism mainly lies in the
self-attention layer. Using the same notation as
given above, we are able to calculate the amount of
data transferred in sequence parallelism and tensor
parallelism.

In sequence parallelism, there is no communi-
cation in the MLP layer and communication only
occurs in the self attention module. There are two
ring-style P2P communication in the forward pass
for calculating the attention score and attention out-
put respectively. In the backward pass, there are
two all-reduce collective communication and two
ring-style P2P communication. The amount of data
transferred is 2(N − 1) ∗B ∗Z ∗ (L/N) ∗A in the
forward pass and 6(N − 1) ∗B ∗ Z ∗ (L/N) ∗A
in the backward pass. The combined amount of
data transferred in calculating QKT and AV will
be 8(N − 1) ∗B ∗ Z ∗ (L/N) ∗A.

In tensor parallelism of Megatron-LM, the
amount of data transferred in the forward pass and
backward pass is the same as given by 2(N − 1) ∗

2395

B∗Z∗(L/N)∗A. Since there are 4 collective com-
munication in the forward and backward passes of
the MLP layer and self-attention layer, the total
communication cost will be 8(N − 1) ∗ B ∗ Z ∗
(L/N) ∗A.

Thus, sequence parallelism has the same com-
munication overhead compared with tensor par-
allelism in Megatron-LM. However, please note
sequence parallelism has better compatibility with
pipeline parallelism, which would further reduce
the communication budget of sequence parallelism.
In tensor parallelism, to save the communication
bandwidth between pipeline stages which are of-
ten over different nodes, the tensor is split before
transmitting to the next stage and all-gathered af-
ter transmission. As tensor has already been split
along the sequence dimension in sequence paral-
lelism, there is no need to split and all-gather be-
tween pipeline stages. Thus, sequence parallelism
can have one less all-gather operation per pipeline
stage.

4 Experiments

4.1 Experimental setup

We conducted our experiments on the Piz Daint
supercomputer provided by Swiss National Super-
computing Center (CSCS). The Piz Daint super-
computer provides one P100 GPU (16GB GPU
RAM) for each compute node and the compute
nodes are connected by a high-bandwidth net-
work. We chose two bidirectional language models,
namely BERT Base and BERT Large, to evaluate
our sequence parallelism. We also verified the con-
vergence performance of sequence parallelism (see
Appendix B). Since we are using the original model
but different systems, the accuracy should be the
same. The slight differences are from randomness.

4.2 Maximum batch size

Since our sequence parallelism is memory-efficient
to handle larger batch sizes, we first investigated the
maximum batch size we can reach with sequence
parallelism. In this section, for a comprehensive
comparison, we scaled with tensor or sequence par-
allelism on BERT Base and BERT Large. We also
fixed the tensor or parallel size and then scale them
with pipeline parallelism to evaluate the verify the
compatibility with pipeline parallelism. We used
tokens per second as the metric for throughput. To
this end, we trained BERT Base and BERT Large
for 150 iterations in total, and then we calculate the

22 23 24 25 26

Tensor or sequence parallel size

0

200

400

600

800

1000

1200

1400

1600

M
ax

im
um

 b
at

ch
 si

ze

Tensor parallelism
Sequence parallelism

(a) Maximum batch size of BERT Base scaling
along tensor or sequence parallel size

22 23 24 25 26

Tensor or sequence parallel size

16000.0

18000.0

20000.0

22000.0

24000.0

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Tensor parallelism
Sequence parallelism

(b) Throughput of BERT Base scaling along
tensor or sequence parallel size

Figure 3: Scaling with sequence/tensor parallelism
mean tokens processed per second within the last
100 iterations.

Scaling with sequence/tensor parallelism We
fixed all hyper-parameters except the batch size
and the tensor parallelism or sequence parallelism
size. We trained the model with a sequence length
of 512 and no pipeline parallelism is used. The
tensor parallelism size in Megatron is limited by
the number of attention heads and hidden size, be-
cause these two hyper-parameters are required to
be divisible by the tensor parallelism size. Among
them, the number of attention heads is small so it
limits the tensor parallelism. Thus, tensor paral-
lelism size is a maximum of 12 for the BERT Base
model in Megatron. In contrast, for our sequence
parallelism, only the sequence length is required
to be divisible by the sequence parallelism size, so
that we can scale sequence parallelism to a larger
size since it is a much larger hyper-parameter than
the number of attention heads.

For BERT Base, our sequence parallelism out-
performs tensor parallelism in terms of memory
consumption. Figure 3a shows that our system on
64 GPUs can achieve 13.7× larger batch size than
Megatron on 12 GPUs. Even if we combine data
parallelism and tensor parallelism to scale up to 64
GPUs for Megatron, our system would still support
a larger batch size. In Figure 3b, we can observe
sequence parallelism achieved comparable through-
put with the same parallel size, and our system can
extend to a larger parallel size to achieve better per-
formance. For the results on BERT Large, please

2396

20 21 22 23

Pipeline parallel size

0

250

500

750

1000

1250

1500

1750

M
ax

im
um

 b
at

ch
 si

ze

Tensor parallelism
Sequence parallelism

(a) Maximum batch size of BERT base scaling
along pipeline parallel size

20 21 22 23

Pipeline parallel size

20000.0

25000.0

30000.0

35000.0

40000.0

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Tensor parallelism
Sequence parallelism

(b) Throughput of BERT base scaling along
pipeline parallel size
Figure 4: Scaling with pipeline parallelism

see Appendix C for details.
Scaling with pipeline parallelism To verify the

compatibility with pipeline parallelism, we fixed
the tensor parallelism and sequence parallelism size
as 4 and scale the pipeline parallel size. For BERT
Base, we can observe that sequence parallelism out-
performs tensor parallelism on the maximum batch
size in Figure 4a. It can be noted that sequence
parallelism also achieved higher throughput when
using more pipeline stages as shown in Figure 4b.
This is because Megatron incurs extra communica-
tion costs between pipeline stages. Megatron holds
the activation for the full sequence on each device.
Thus, it needs to split the activation, transmit the
partial activation to the next device, and gather back
the partial activation when sending the activation
between pipelines. This incurs less communica-
tion overhead compared to transmitting the whole
activation between pipelines. However, this still
brings more communication costs than ours, as no
splitting and all-gather operation is required for our
sub-sequence intermediate activation. Therefore,
our sequence parallelism achieved better through-
put when scaling along with pipeline parallel size.

4.3 Maximum sequence length

Sequence parallelism is designed for training
Transformer-based models with longer input se-
quences, so we investigated the maximum se-
quence length it can handle. Similarly, we still
compared tensor parallelism without pipeline par-

22 23 24 25 26

Tensor or sequence parallel size

500

750

1000

1250

1500

1750

2000

2250

M
ax

im
um

 se
qu

en
ce

 le
ng

th

Tensor parallelism
Sequence parallelism

(a) Maximum sequence length on BERT base

20 21 22 23 24 25

Sequence parallel size

0

20000

40000

60000

80000

100000

120000

140000

M
ax

im
um

 se
qu

en
ce

 le
ng

th

Full attention
Sparse attention
Ideal scaling

(b) Sequence length upper bound
Figure 5: Scaling with sequence length

allelism.
Compared with tensor parallelism We fixed

batch size as 64 for BERT Base and no pipeline
parallelism was used. We show the maximum se-
quence length in Figure 5a. If we scale up to 64
GPUs, we can achieve around 3× maximum se-
quence length on BERT Base. Another observation
is splitting along the number of attention heads
limits the input sequence length of tensor paral-
lelism in Megatron, but our sequence parallelism
can scale easily by splitting a sequence into mul-
tiple chunks. When using the same 16 GPUs, our
sequence parallelism still can achieve 1.4× larger
sequence length than tensor parallelism. The gap
is expected to widen if we use 32GB GPUs instead
of 16GB GPUs.

Sequence length upper bound To investigate
the maximum sequence length our system can han-
dle on the cluster with 32 P100 GPUs. we set both
data and pipeline parallel size as 1 and global batch
size as 4. As efficient attention is widely used in
long sequence training, we adapt Linformer (Wang
et al., 2020), i.e., one low-rank attention algorithm
with linear time and space complexity. Our se-
quence parallelism is compatible with the efficient
attention. More importantly, as shown in Table 3,
for memory usage in efficient attention block, all
terms including sequence length L is divided by
number of devices N , which means we can scale
the sequence length to infinite long if we use
efficient attention with linear complexity. To
investigate the sequence length upper bound of se-
quence length on the efficient attention setting, we

2397

Table 3: Efficient attention block memory usage. K is the projection dimension in Linformer (Wang et al., 2020)

Operation M1 M2 output Memory

Linformer
Sequence
parallelism

Q/K/V (B,
L

N
,H) (H,AZ) (B,Z,

L

N
,A)

Projection (B,Z,
L

N
,A) (

L

N
,K) (B,Z,K,A) 2AZH +

2BZLA

N

Ring-QKT (B,Z,
L

N
,A) (B,Z,K,A) (B,Z,

L

N
,K) +

BZLK

N
+

BLH

N

Ring-AV (B,Z,
L

N
,K) (B,Z,K,A) (B,Z,

L

N
,A) +2BZKA

Linear (B,Z,
L

N
,A) (AZ,H) (B,

L

N
,H)

Table 4: Weak scaling results. Parallel size is the tensor or sequence parallel size. Batch size denotes global batch
size, respectively. Memory and Token/sec denote max allocated memory/MB and tokens processed per second.
OOM means that CUDA out of memory occurs.

Parallel size Batch size Sequence length
Tensor parallelism Sequence parallelism

Memory Token/sec Memory Token/sec

1 64 512 8477.28 9946.15 8477.53 9261.04
2 128 512 9520.47 15510.19 8478.76 13938.22
4 256 512 12232.52 20701.96 8481.26 21269.91
8 512 512 OOM OOM 8490.75 26401.64

1 64 256 3707.39 9752.61 3707.01 9340.13
2 64 512 4993.43 14195.17 4670.64 13144.16
4 64 1024 8175.93 19879.27 6601.88 18243.82
8 64 2048 14862.09 22330.5 10536.38 21625.51

conduct experiments with both efficient and full at-
tention. As shown in Figure 5b, if we use efficient
attention on sequence parallelism, we can almost
achieve ideal scaling. With 32 P100 GPUs, our
sequence parallelism with efficient attention can
handle the sequence with 114K tokens, which is
over 27× longer than recent sparse attention pa-
pers holding the whole sequence on a single device
(Zaheer et al., 2020; Wang et al., 2020).

4.4 Weak scaling

Strong scaling limits the upper bound of batch size
and sequence length within a single device, so we
mainly discuss weak scaling in this section. We
scale the batch size and sequence length separately
when increasing the number of nodes. We fixed the
pipeline parallelism size as 8. In Table 4, sequence
parallelism achieved almost constant memory us-
age when scaling along with the global batch size,
which outperforms tensor parallelism by a large
margin. As for weak scaling along the sequence
length, our method still uses much less memory
with comparable throughput.

5 Discussion

Although there are other related works including
DeepSpeed (Rasley et al., 2020), GShard (Lepikhin
et al., 2020), GSPMD (Xu et al., 2021), etc., they
are not our direct baseline in experiments. Deep-
Speed is an efficient method to optimize memory
footprint in data parallel training by using ZeRO
Optimizer (Rajbhandari et al., 2021) and ZeRO-
Offload (Ren et al., 2021). DeepSpeed and our
method optimize training in different dimensions
and they are actually compatible with each other.
Our method is orthogonal to DeepSpeed just as
how DeepSpeed can be integrated with Megatron.
Thus, Megatron should be our baseline.

GShard and GSPMD are two libraries built for
the TensorFlow community to partition model pa-
rameters in distributed training. GSPMD is devel-
oped based on GShard. These two methods rely
on the static computation graph of TensorFlow to
train larger models while we provide a plug-and-
play tool based on PyTorch’s dynamic computation
graph to train on longer sequences. The difference
in the computation paradigms makes them unsuit-
able as our baseline.

2398

We also highlight again that, although sequence
parallelism can perform decent on large model
training, a more highly important use case is train-
ing mid-scale but very long sequence. One example
is AlphaFold (Jumper et al., 2021), which uses only
86M parameters but is required to be trained with
very long sequence (from 1K to 4K).

6 Conclusion

In this paper, we proposed sequence parallelism
for training transformer with longer sequence. Se-
quence parallelism is designed to break the limita-
tion of sequence length on a single device. We have
shown that sequence parallelism can handle longer
sequence and is more memory-efficient than SoTA.
In particular, sequence parallelism achieves 3.0×
maximum sequence length and 13.7× maximum
batch size than tensor parallelism when scaling up
to 64 GPUs. Unlike both tensor and pipeline paral-
lelism, sequence parallelism is not limited by the
smaller hyper-parameters (e.g., number of attention
heads, number of layers). Therefore, our sequence
parallelism can be adapted as long as the sequence
length is divisible by sequence parallel size. With
efficient attention, sequence parallelism can handle
sequence with over 114K tokens, which is over
27× longer than existing efficient attention works
holding the whole sequence on a single device. We
used a language model (i.e., BERT) to evaluate
our system, but it can also be adapted to vision
tasks. This work paves the way to process large im-
ages (Hou et al., 2019) by ViT (Dosovitskiy et al.,
2020) as a larger image means more patches or
longer sequences.

Limitations

In order to perform communication between sub-
sequences during training, the use of sequence par-
allelism can result in increased communication
costs, which in turn can slow down the training
process. However, by combining sequence par-
allelism with pipeline parallelism, this issue can
be alleviated and the communication cost can be
made comparable to advanced forms of model par-
allelism such as tensor parallelism. Nonetheless,
sequence parallelism still incurs higher communi-
cation costs than vanilla data parallelism.

While sequence parallelism is effective for train-
ing of unidirectional attention models as well as
training and inference of bidirectional attention
models, it poses a challenge for unidirectional at-

tention models inference due to the autoregressive
decoding process. This means that different devices
cannot compute in parallel, resulting in reduced
throughput and decreased GPU utilization.

Acknowledgement

Yang You’s research group in NUS is being
sponsored by NUS startup grant (Presidential
Young Professorship), Singapore MOE Tier-1
grant, ByteDance grant, ARCTIC grant, SMI grant
and Alibaba grant.

References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Ahmed Elnaggar, Michael Heinzinger, Christian Dal-
lago, Ghalia Rihawi, Yu Wang, Llion Jones, Tom
Gibbs, Tamas Feher, Christoph Angerer, Martin
Steinegger, et al. 2020. Prottrans: Towards cracking
the language of life’s code through self-supervised
deep learning and high performance computing.
arXiv preprint arXiv:2007.06225.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint arXiv:2101.03961.

Le Hou, Youlong Cheng, Noam Shazeer, Niki Parmar,
Yeqing Li, Panagiotis Korfiatis, Travis M Drucker,
Daniel J Blezek, and Xiaodan Song. 2019. High
resolution medical image analysis with spatial parti-
tioning. arXiv preprint arXiv:1909.03108.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Mia Xu Chen, Dehao Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al.
2018. Gpipe: Efficient training of giant neural net-
works using pipeline parallelism. arXiv preprint
arXiv:1811.06965.

John Jumper, Richard Evans, Alexander Pritzel, Tim
Green, Michael Figurnov, Olaf Ronneberger, Kathryn

2399

Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, et al. 2021. Highly accurate pro-
tein structure prediction with alphafold. Nature,
596(7873):583–589.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Ef-
ficient large-scale language model training on gpu
clusters. arXiv preprint arXiv:2104.04473.

Jinjie Ni, Tom Young, Vlad Pandelea, Fuzhao Xue,
Vinay Adiga, and Erik Cambria. 2021. Recent ad-
vances in deep learning based dialogue systems: A
systematic survey. arXiv preprint arXiv:2105.04387.

Chen Qu, Liu Yang, Minghui Qiu, W Bruce Croft,
Yongfeng Zhang, and Mohit Iyyer. 2019. Bert with
history answer embedding for conversational ques-
tion answering. In Proceedings of the 42nd Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1133–
1136.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:
Breaking the gpu memory wall for extreme scale
deep learning. arXiv preprint arXiv:2104.07857.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. 2021. Zero-
offload: Democratizing billion-scale model training.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Qin Wang, Boyuan Wang, Zhenlei Xu, Jiaxiang Wu,
Peilin Zhao, Zhen Li, Sheng Wang, Junzhou Huang,
and Shuguang Cui. 2021. Pssm-distil: Protein sec-
ondary structure prediction (pssp) on low-quality
pssm by knowledge distillation with contrastive learn-
ing.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim
Krikun, Dmitry Lepikhin, Andy Ly, Marcello Mag-
gioni, et al. 2021. Gspmd: General and scalable
parallelization for ml computation graphs. arXiv
preprint arXiv:2105.04663.

Fuzhao Xue, Aixin Sun, Hao Zhang, and Eng Siong
Chng. 2020a. An embarrassingly simple model
for dialogue relation extraction. arXiv preprint
arXiv:2012.13873.

Fuzhao Xue, Aixin Sun, Hao Zhang, and Eng Siong
Chng. 2020b. Gdpnet: Refining latent multi-
view graph for relation extraction. arXiv preprint
arXiv:2012.06780.

Zekun Yang, Noa Garcia, Chenhui Chu, Mayu Otani,
Yuta Nakashima, and Haruo Takemura. 2020. Bert
representations for video question answering. In
Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 1556–1565.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems, 33.

Hao Zhang, Aixin Sun, Wei Jing, Liangli Zhen,
Joey Tianyi Zhou, and Rick Siow Mong Goh. 2021.
Natural language video localization: A revisit in span-
based question answering framework. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence.

Hao Zhang, Aixin Sun, Wei Jing, and Joey Tianyi Zhou.
2020. Span-based localizing network for natural lan-
guage video localization. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 6543–6554, Online. Association
for Computational Linguistics.

Wenxuan Zhou, Kevin Huang, Tengyu Ma, and Jing
Huang. 2020. Document-level relation extraction
with adaptive thresholding and localized context pool-
ing. arXiv preprint arXiv:2010.11304.

2400

A Multi-head attnetion

Multi-head attention is designed to jointly consider
the information from different subspaces of embed-
ding. Compared with self-attention below, multi-
head attention has h query, key and value embed-
dings instead of the single one, where h denotes the
number of heads. We obtain these embeddings with
identical shapes by linear transformations. The
multi-head attention can be described as:

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O

(6)

where headi = Attention(Qi,Ki, Vi) and W de-
notes the linear transformations. All heads are
concatenated and further projected by linear trans-
formation WO.

B Convergence performance

0 10000 20000 30000 40000 50000
Iteration

5.8

6.0

6.2

6.5

6.8

7.0

7.2

7.5

M
LM

 lo
ss

Megatron
Ours

(a) Convergence performance of MLM loss

0 10000 20000 30000 40000 50000
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SO
P

lo
ss

Megatron
Ours

(b) Convergence performance of SOP loss

Figure 6: Convergence performance comparison be-
tween tensor parallelism and ours

We verified the convergence performance of se-
quence parallelism. Since sequence parallelism is
just a distributed implementation of long sequence
training, there is no change in model architecture,
We expect sequence parallelism can achieve the
same accuracy and convergence performance as
training without sequence parallelism. We used the
Wikipedia dataset (Devlin et al., 2018) and evalu-
ated Megatron and our model on the development

set every 1k iterations. We trained the BERT Large
model for 50k iterations with the default hyper-
parameters used by Megatron. Our goal here is to
verify the correctness of our implementation so we
trained the model for fewer steps. We set parallel
size as 4 for tensor parallelism in Megatron and se-
quence parallelism in our model. No pipeline was
used for both models. In Figure 6, Our sequence
parallelism shows good convergence on both the
masked language modeling (MLM) loss and the
sentence order prediction (SOP) loss. Compared
with Megatron, sequence parallelism has a similar
trend in convergence and achieved lower values for
both MLM loss and SOP loss for 50k iterations.

C Scaling with sequence/tensor
parallelism

22 23 24 25 26

Tensor or sequence parallel size

0

100

200

300

400

500

M
ax

im
um

 b
at

ch
 si

ze

Tensor parallelism
Sequence parallelism

(a) Maximum batch size of BERT Large scaling
along tensor or sequence parallel size

22 23 24 25 26

Tensor or sequence parallel size

5500.0

6000.0

6500.0

7000.0

7500.0

8000.0

8500.0

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Tensor parallelism
Sequence parallelism

(b) Throughput of BERT Large scaling along ten-
sor or sequence parallel size

Figure 7: Scaling with sequence/tensor parallelism

Compared with BERT Base setting, the only dif-
ference is, the tensor parallel size is a maximum
of 16 for the BERT Large model in Megatron-LM.
In Figure 7a, our method achieved 2.7 times larger
batch size for BERT Large on 16 GPUs, and the
batch size of sequence parallelism on 64 GPUs is
10.2 times larger than that of tensor parallelism
on 16 GPUs. In Figure 7b, observe that our se-
quence parallelism achieved comparable through-
put with the same parallel size, and more impor-

2401

tantly, our system can extend to a larger parallel
size to achieve better performance.

D Scaling with pipeline parallelism

20 21 22 23

Pipeline parallel size

0

100

200

300

400

500

600

700

M
ax

im
um

 b
at

ch
 si

ze

Tensor parallelism
Sequence parallelism

(a) Maximum batch size of BERT Large scaling
along pipeline parallel size

20 21 22 23

Tensor or sequence parallel size

5000.0

10000.0

15000.0

20000.0

25000.0

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Tensor parallelism
Sequence parallelism

(b) Throughput of BERT Large scaling along
pipeline parallel size

Figure 8: Scaling with pipeline parallelism

For BERT Large, sequence parallelism achieved
higher maximum batch size than tensor parallelism
in Figure 8a. Sequence parallelism also performs
better on throughput when using more pipeline
stages as shown in Figure 8b.

E Maximum sequence length

22 23 24 25 26

Tensor or sequence parallel size

750

1000

1250

1500

1750

2000

2250

2500

M
ax

im
um

 se
qu

en
ce

 le
ng

th

Tensor parallelism
Sequence parallelism

Figure 9: Maximum sequence length on BERT Large

BERT Large Similarly, we compared tensor
parallelism without pipeline parallelism. We fixed
batch size as 16 for BERT Large and did not use

pipeline parallelism. As shown in Figure 9. When
we scale up to 64 GPUs, we can achieve around 2×
maximum sequence length and scale better through
splitting a sequence into multiple chunks on BERT
Large.

2402

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitation Section

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Yes, Introduction

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Not applicable. Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Not applicable. Left blank.

C �3 Did you run computational experiments?
Experiments Section

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Exp settings

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

2403

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Exp settings

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Not applicable. Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

2404

