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Abstract

Tables are widely used in research and busi-
ness, and are suitable for human consumption,
but not easily machine-processable, particu-
larly when tables are present in images. One
of the main challenges to extracting data from
images of tables is to accurately recognize ta-
ble structures, especially for complex tables
with cross rows and columns. In this study,
we propose a novel multi-modal pre-training
model for table structure recognition, named
TableVLM. With a two-stream multi-modal
transformer-based encoder-decoder architec-
ture, TableVLM learns to capture rich table
structure-related features by multiple carefully-
designed unsupervised objectives inspired by
the notion of masked visual-language model-
ing. To pre-train this model, we also created a
dataset, called ComplexTable, which consists
of 1, 000K samples to be released publicly. Ex-
periment results show that the model built on
pre-trained TableVLM can improve the per-
formance up to 1.97% in tree-editing-distance-
score on ComplexTable.

1 Introduction

Tables are quite useful for displaying data in an
organized manner and they are widely used in re-
search and business due to their readability and
simplicity. Recently, such semi-structured (tabu-
lar) data has attracted more attention because of
its ubiquitous presence in almost all types of doc-
uments such as medical records, insurance files,
and scientific articles (Staar et al., 2018). How-
ever, in many cases, we can only access images
of tabular data. The format information will be
lost if a table is turned into an image. It is very
hard to recover the structure of tables from their
images because tables differ significantly in struc-
ture, notation, and representation. Once the table
structure is accurately recognized, its texts can be
easily extracted with the help of optical character
recognition (OCR) toolkit and reorganized into a ta-

(a) An example of table image with multi-column headers,
multi-row headers and some missing dividing lines.

(b) The ground truth structure of the example table. The table
cells used to show different headers are indicated by distinct
colors.

(c) The structure recognized by PDFlux

(d) The structure recognized by Tabby

Figure 1: Some typical mistakes made by two represen-
tative table recognition toolkits: PDFlux1 and Tabby2

(Shigarov et al., 2018). The former fails to recognize
the multi-column header of “Parental illness type (PIT)”
while the latter can not arrange all the headers as they
were originally presented.

ble as they were presented in the image. Therefore,
table structure recognition is considered a critical
task for automatic document understanding, and
many competitions around this task have been held
in the research and business communities (Göbel
et al., 2013; Gao et al., 2019; Jimeno-Yepes et al.,
2021; Kayal et al., 2021).

Tables vary greatly in structure and style, which
seriously hinders the machine from accurately rec-
ognizing their structures. Tabular data is typically
organized in rows and columns, but possibly in a
more complex structure. Tables may contain multi-

1https://pdflux.com/
2https://github.com/cellsrg/TabbyPDF
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row and multi-column cells or their combinations
(Singh et al., 2018). Certain styles might be applied
by intentionally removing some horizontal or verti-
cal dividing lines, using non-standard spacing and
different text formatting (Singh et al., 2018). The
diversity and complexity in the table’s structure and
presentation pose a major challenge for recovering
the structures of tables from their images.

A couple of methods have been proposed to ad-
dress this challenge by applying the recent deep
neural architectures, including graph neural net-
works (GNNs) (Zhou et al., 2020) and transform-
ers (Vaswani et al., 2017), to image-based table
structure recognition task (Li et al., 2019; Zhong
et al., 2019a; Nassar et al., 2022). However, these
methods still perform unsatisfactory, especially
when encountering tables with more complex struc-
tures. For example, we show in Figure 1 some mis-
takes made by PDFlux and Tabby (Shigarov et al.,
2018), two representative table recognition toolk-
its. PDFlux fails to recognize the multi-column
header of “Parental illness type (PIT)”, and Tabby
can not arrange all the headers as they were pre-
sented in the original image. Such typical mistakes
were also commonly observed when applying other
table structure recognition models to similar tables.

In this study, we explore the feasibility of pre-
training a multi-modal model particularly designed
for table structure recognition. In order to im-
prove the recognition accuracy for tables with com-
plex structures, two new pre-training tasks (or ob-
jectives) are introduced: prediction for column
headers, and prediction for the relative position
of texts, in addition to existing masked image mod-
eling, text-image matching and text-image align-
ment tasks. Observing that there are no datasets
that include a large number of complex tables, we
created a new dataset, named ComplexTable, con-
sisting of over 1, 000K tables and their images,
ranging from tables in scientific articles to those in
financial reports. Based on the proposed training
methods and the created dataset, we developed a
pre-trained multi-modal model, named TableVLM
(Table Visual Language Model). Through exten-
sive experimentation, we show that TableVLM pre-
trained on ComplexTable dataset with the newly-
introduced training objectives and fine-tuned af-
terward achieved the highest accuracy in the table
structure recognition across multiple datasets.

Our contributions of this study are summarized
as follows:

• We proposed TableVLM, a multi-modal pre-
trained model for table structure recognition,
which is pre-trained with three traditional
multi-modal pretraining tasks and two newly-
introduced ones (i.e., column headers predic-
tion and relative positions of texts prediction).

• We constructed a new dataset, ComplexTable,
consisting of over 1, 000K tables, in which
most of them are those with more complex
structures. The source code, created dataset,
and pre-trained model were released publicly.

• Through extensive experimentation, we show
that fine-tuned TableVLM achieved state-of-
the-art results across a wide range of datasets
on table structure recognition, and outper-
formed the second-best model by 1.97% on
complex table structure.

• We conducted an ablation study to prove the
effectiveness of each proposed pretraining ob-
jective and its impact on downstream tasks.

2 Related Work

2.1 Table Structure Recognition

Early studies on table structure recognition usu-
ally adopted (often pre-defined) layout-based (Has-
san and Baumgartner, 2007) or heuristic-based ap-
proaches (Oro and Ruffolo, 2009). In the layout-
based approaches, multiple possible table templates
are first designed, and then each template will be
matched against the images of documents contain-
ing tables for structure recognition. In the heuristic-
based methods, a set of rules are specified for table
detection and decomposition. Although these meth-
ods can achieve good results for lucid tables, they
may fail when table styles become quite diverse or
table structures become more complex.

Recently, due to the advance of machine learn-
ing techniques and the availability of large datasets,
deep neural networks have been explored for many
vision-related tasks. Image-to-text networks and
graph neural networks are two popular networks
for table structure recognition. An image-to-text
network predicts a sequence of tokens by taking
the encoding of an image as input, in which the
encoder-decoder architecture is often used. Table-
bank (Li et al., 2019) applies a traditional encoder-
decoder architecture, where a convolutional neural
network is used as the encoder and a recurrent neu-
ral network as the decoder. TableFormer (Nassar
et al., 2022) extends the previous work and ap-
plies transformer-based architectures as both the
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encoder and decoder. GNN-based methods take
vertex and edge features as input and generate their
representations (often iteratively) using graph at-
tention blocks. For the table structure recognition,
each of the text cells is represented as a vertex in
the graph (Xue et al., 2019, 2021; Chi et al., 2019a).
However, the accuracy of recognized structures pro-
duced by these methods is still not comparable to
the state-of-the-art (Li et al., 2020). Following the
encoder-decoder architecture, we design two novel
pretraining tasks specifically for table images, lead-
ing to the new state-of-the-art.

2.2 Multi-modal Pre-training Methods

Pre-trained models (PMs) have achieved impres-
sive performance on various downstream tasks in
both computer vision and text domains. PMs aim to
learn better task-irrelevant representations from a
large collection of data. Most PMs were trained in
an unsupervised or a self-supervised way because
they usually contain a large number of parameters
and a huge volume of unlabelled data is required
to tune their parameters. Pre-training tasks need to
be carefully designed so that the features learned
from large unlabelled texts can be well transferred
to many downstream tasks.

In the multi-modal learning scenario, many pre-
training tasks have been explored. ViLBERT (Lu
et al., 2019) was proposed to obtain task-agnostic
visio-linguistic representations by pre-training on
four pretraining tasks: visual question answering,
visual commonsense reasoning, grounding refer-
ring expressions, and caption-based image retrieval.
Their experimental results show that the trained
model can successfully align texts with their im-
ages. However, the datasets of these tasks need to
be labeled manually. Therefore, the model was not
trained in an unsupervised manner and this method
cannot be trivially extended to other tasks.

VLBERT (Su et al., 2019) replaced two single-
modal networks (separately applied on input sen-
tences and images respectively) with a unified
single-stream architecture. Two pretraining tasks
were used in VLBERT: masked language model-
ing with visual clues and masked region-of-interest
classification with linguistic clues. The model was
trained to predict the missing part from a modality
by using the clue from another modality. The latter
task aims to classify the masked patch in the image.
These two tasks are not useful to table structure
recognition because they were designed to recon-

struct texts or images rather than the structures
present in inputs.

In the pre-trained model for visually-rich doc-
ument understanding, some useful pre-training
tasks were proposed. Multilingual masked visual-
language modeling was also explored in the pre-
training phase (Xu et al., 2020b,a). Like the mask
language modeling, the models were trained to
predict the masked tokens based on their textual
contexts and layout information. Xu et al. (2021)
proposed two new pre-training tasks, text-image
alignment (TIA) and text-image matching (TIM).
These tasks were designed for table content extrac-
tion rather than table structure recognition.

3 Multi-modal Pre-training Scheme

In the following, we first present the architecture of
TableVLM. Then, we depict our introduced embed-
ding layer and proposed pre-training tasks. Finally,
our pre-training method is described.

3.1 Architecture

We use an encoder-decoder architecture to perform
the task of table structure recognition. We pre-train
an encoder and a decoder separately with some pre-
training tasks carefully designed for each of them.
The encoder is trained to obtain better cross-modal
representations and the decoder learns to generate a
sequence of HTML tags where the table structures
are well representated.

At the pretraining phase of the encoder, we use a
unified text-image multi-modal transformer to learn
cross-modal representations. The transformer has a
multi-layer architecture and each layer mainly con-
sists of multi-head self-attention and position-wise
fully connected feed-forward networks (Vaswani
et al., 2017). The input of the transformer is a
sequence of embeddings, each of them is the con-
catenation of text embedding Y = y1:L and image
patch embedding X = x1:M , where L and M are
the lengths of textual and image patch sequences
respectively. The outputs of the transformer are
contextual text-and-image representations.

At the pretraining stage of the decoder, we freeze
the parameters of the pre-trained encoder and take
the encoder as a feature extractor that generates a
feature representation of an input table image. Like
the encoder, the architecture of the decoder has
multi-layers and each layer consists of multi-head
self-attention and position-wise fully connected
feed-forward networks (Vaswani et al., 2017). The
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output of the decoder is a sequence of HTML tags
that captures the structure of a table image.

3.2 Input Embedding

In addition to the table image, the textual and layout
information of the table is quite useful and informa-
tive to table structure recognition and significantly
affects the accuracy of recognition results. There-
fore, we want the encoder can capture the features
of texts, images, and their layouts simultaneously.
The overall architecture of the encoder used at the
pre-training stage is shown in Figure 2. Each type
of information is converted to the corresponding
embedding sequence before it goes through the en-
coder. The encoder establishes deep interactions
within and between modalities by leveraging pow-
erful attention-based transformers. To fulfill these
requirements, we use different types of embeddings
as follows.

Text Embedding Text embedding is the combi-
nation of word, position, and segment embeddings.
By parsing an HTML file used to generate the im-
age of a table (discuss later in Section 4), we can
obtain the textual content and its corresponding
2D position information. Following the common
practice, we use WordPiece (Wu et al., 2016) to
tokenize the text sequence and assign each token
to a certain segment si ∈ {[A],[B]}, where [A]
denotes the first sentence and [B] the second one.
During the pre-training practices, only [A] was
used. We add [CLS] at the beginning of the se-
quence and [SEP] at the end of each text segment.
Extra [PAD] tokens are appended to the end so
that the length of each input sequence is equal to
the maximum sequence length L. The final text
embedding is the sum of three feature embeddings.
In addition to the token embedding, a 1D positional
embedding represents the index of the token in an
input sequence, and a segment embedding is used
to distinguish different text segments.

Visual Embedding Likewise, this embedding is
the combination of image, position, and segment
embeddings. We use ResNet-18 as the backbone
network of the visual encoder, whose parameters
will be updated through back-propagation during
the training. Given a document page image I , it
is first resized to 224 × 224 and then fed into the
visual encoder. The output feature map is average-
pooled to a fixed size with the width W and height
H . Next, it is flattened into a visual embedding
sequence of length W ×H . This sequence is de-

noted as VisTokEmb(I). A linear projection layer
is further applied to each visual token embedding
to unify the dimensionality with the text embed-
dings. Since the CNN-based visual backbone can-
not capture the positional information, we also add
a 1D positional embedding to these visual token
embeddings. The 1D positional embedding is set
to the same as text embedding. For the segment
embedding, we attach all visual tokens to the visual
segment [C].

Layout Embedding Layout embedding is used
to capture the spatial layout information of an in-
put table image. Following LayoutLMv2 (Xu et al.,
2020a), we normalize and discretize all coordinates
to integers in the range [0, 1000], and use two em-
bedding layers to embed x-axis and y-axis features
separately. Given the normalized bounding box of
the i-th (0 ≤ i < WH + L) text or visual token
boxi = (xmin, xmax, ymin, ymax, width, height),
the layout embedding generation layer concate-
nates the features of six bounding boxes to pro-
duce a token-level 2D positional embedding (i.e.,
the layout embedding). An empty bounding box
boxPAD = (0, 0, 0, 0, 0, 0) is assigned to special
tokens [CLS], [SEP] and [PAD].

3.3 Pre-training Tasks

In addition to three existing widely-used text-image
matching, text-image alignment, and masked im-
age modeling (Bao et al., 2021), we propose two
new pre-training tasks for table structure recogni-
tion. The first is to predict column headers, and the
second is to predict the relative position of texts,
which are proved to be critical for recovering the
image-based table structures. Therefore, we use
five different self-supervised tasks during the pre-
training stage.

Text-Image Alignment To help the model learn
the spatial location correspondence between im-
age and coordinates of bounding boxes, we adopt
text-image alignment (TIA) as a fine-grained cross-
modality alignment task. In TIA task, some cells
in the table are randomly selected, and their image
regions are covered on the table image. During
pre-training, a classification layer is added to the
encoder, and trained to predict whether the selected
cell is covered by a specified image patch using the
binary cross-entropy loss.

Text-Image Matching Text-image matching is
the task of coarse-grained cross-modality align-
ment, which helps the model learn the correspon-
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Figure 2: The architecture of the encoder used to pre-train a multi-modal model for table structure recognition. A
pair of a table image and its structural representation in form of text sequence is parsed separately and transformed
into their embeddings respectively. These embeddings are fed to a transformer to perform the pre-training tasks.

dence between images and texts. We feed the out-
put representation of [CLS] into a classifier that
predicts whether a pair of the image and text be-
longs to the same document. For this task, the pairs
of the image and text from the same document are
taken as positive samples. We randomly replace
either the image or text with that from another doc-
ument to generate negative samples.

Masked Image Modeling To encourage the
model to interpret visual content from contextual
text and image representations, we adapt the MIM
pre-training objective used in BEiT (Bao et al.,
2021) to our multimodal transformer model. The
MIM objective is an analog of the MLM objective.
We randomly mask a percentage of about 40% im-
age tokens with the block-wise masking strategy.
The objective of MIM is driven by a cross-entropy
loss to reconstruct the masked image tokens given
the context of their surrounding text and image
tokens. The labels of image tokens are produced
by an image tokenizer, which assigns dense image
pixels with discrete tokens according to a visual
vocabulary (Ramesh et al., 2021). The used MIM
helps to learn high-level layout structures rather
than low-level noisy details.

Prediction for Column Headers Complex ta-
bles often have more than one row of column head-
ers, which largely decide the structures of tables
to be recognized. To this end, we propose a new

pre-training task, named column header prediction,
to better learn features reflecting the styles and lay-
outs of column headers. For this task, some cells
in the column headers are randomly selected and
their corresponding text will be masked. The fea-
ture representation of the masked text is used to
predict whether the masked text belongs to the col-
umn header of the table. The cells not in column
headers are also masked randomly, which can be
selected as negative samples.

Prediction for the Relative Position of Texts
Complex tables often have a complex combination
of row spans and column spans, which severely
deteriorate the accuracy of the model. To capture
the relative position between any two texts, we ran-
domly mask some text tokens and ask the model to
predict the relations among these tokens. During
the pre-training, a bi-affine layer with the atten-
tion mechanism is applied to capture the relations
between these tokens based on the feature represen-
tations produced by the encoder. A softmax layer
is added to predict whether two tokens belong to
the same row or same column.

3.4 Pre-training Decoder

In this study, table structure recognition is viewed
as a generative task, and its goal is to generate the
corresponding sequence of HTML codes given a
table image. The decoder is also built upon a stan-
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dard transformer-based decoder, which consists of
a stack of 4 decoder layers with several multi-head
attention and feed-forward layers.

To speed up the decoding process at the infer-
ence, we enforce the following constraints on the
inputs. Texts that are longer than a given length
will be truncated and images that are too large will
be reshaped to meet the required size.

Width and height of images ≤ 1024 pixels.
Length of structural tags ≤ 512 tokens.

When pre-training the decoder, we freeze the pa-
rameters of the pre-trained encoder and take it as a
feature extractor that generates a feature map for a
given table image. The generated feature vector of
the input image is passed to the decoder to produce
a sequence of HTML tags that represent the struc-
ture of the table. An example of table-to-HTML
conversion is shown in Figure 3. For spanning cells,
the opening tag is broken down into multiple tokens
as ‘<’, ‘rowspan =’ and ‘colspan =’, the number
of spanning cells, and ‘>’.

Figure 3: An example of table-to-HTML conversion.

Given an input image of a table, we first resize
the image to 448 × 448 pixels. The transformer-
based decoder receives the feature vector of the im-
age table produced by the TableVLM encoder as an
input and generates the corresponding HTML tags
of the table structure. This decoder is pre-trained
on large table images automatically generated (see
Section 4 for details) and then can be fine-tuned on
some specific datasets.

4 The ComplexTable Dataset

The scarcity of comprehensive and intricate pub-
licly accessible datasets stands out as a significant
barrier that impedes the advancement of table struc-
ture recognition. Previous studies have typically
required manual annotation of such datasets, yet the
limited number of tables available is insufficient for
training a large-scale model capable of effectively
handling complex table structures. For example,
Fang et al. (2012) collected a dataset comprising

only 2000 tables extracted from a diverse array of
subject-specific e-books, encompassing over 120
sources. Similarly, the ICDAR 2013 dataset (Gö-
bel et al., 2013) encompasses a total of 67 English-
language PDF documents spanning 238 pages. The
primary rationale behind this scarcity stems from
the arduous, expensive and time-intensive process
of manual annotation.

In recent years, the introduction of tablebank (Li
et al., 2019) has led to the emergence of numer-
ous large-scale datasets for table structure recogni-
tion (Zhong et al., 2019a; Desai et al., 2021; Chi
et al., 2019b). However, a predominant focus of
these datasets lies in scientific tables. For instance,
TableX (Desai et al., 2021) was meticulously con-
structed by preprocessing and postprocessing La-
TeX code derived from articles on arXiv. Similarly,
SciTSR (Chi et al., 2019b) was also generated from
LaTeX source files. Consequently, the table styles
present in these datasets often exhibit similarities,
rendering them challenging to apply to other do-
mains such as finance. Moreover, these datasets
lack the richness and complexity necessary to accu-
rately simulate real-world intricate table structures.

In this study, we present our newly developed
large-scale dataset for tabular structure recogni-
tion, named ComplexTable. This dataset is syn-
thetically generated using our auto HTML table
creator, which generates table images along with
corresponding structured HTML code. The Com-
plexTable dataset comprises over 1, 000k tables,
provided as annotated PNG images, with anno-
tations representing the table structure in HTML
format. Similar to the approach adopted in Syn-
thTabNet (Nassar et al., 2022), we classify tables as
either “simple” or “complex.” A table is considered
“simple” if it lacks multi-column or multi-row cells;
otherwise, it is classified as “complex.” Notably,
compared to SynthTabNet, ComplexTable exhibits
a significantly higher proportion of complex tables,
and the variety of table styles within the dataset is
more diverse. For a detailed comparison, please
refer to Table 1.

In order to construct a dataset that encompasses
greater complexity and stylistic diversity, we im-
plemented the following procedures. Firstly, we
developed a wide array of style templates to en-
compass a broad spectrum of table appearances.
These templates drew inspiration from various real-
world sources, including scientific journals, finan-
cial statements, and general tables, among others.
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Datasets Source Format Sizes
Marmot e-Books and Citeseer website bmp, xml 958
ICDAR 2013 European Union and US Government websites pdf, xml 150
ICDAR 2019 modern and archival documents with various formats jpg, xml 3.6k
TableBank Word and Latex documents on the internet jpg, HTML 145k
SciTSR LaTeX source files pdf, Latex 15k
PubTabNet scientific articles in PMCOA png, HTML 568k
TabLeX scientific paper from arXiv jpg, Latex 3, 00k
FinTabNet annual reports of the S&P 500 companies png, HTML 112k
SynthTabNet synthetically generated based on Tablebank, PubTabNet, and FinTabNet png, HTML 600k
ComplexTable (ours) synthetically generated by an auto HTML table creator png, HTML 1, 000k

Table 1: Existing public datasets available and the constructed ComplexTable dataset for table structure recognition.

To enhance the intricacy of table borders, our tem-
plates encompassed various types, including full-
border tables, tables with column dividers only,
tables with line dividers only, irregular few-border
tables, as well as a limited number of borderless
tables. Moreover, we took careful consideration of
column alignment and row alignment, ensuring that
the dataset encompassed a balanced representation
of left, center, right, and irregular alignments, with
each accounting for a quarter of the dataset.

Subsequently, leveraging these style templates,
we procedurally generate synthetic table structures.
The generated tables adhere to a maximum size
of 20 rows and columns. The table header consis-
tently adopts a horizontal orientation and may span
across multiple rows. Within the table body, a com-
bination of row spans and column spans is allowed.
Recognizing that spanning cells often pose chal-
lenges for accurate table structure identification by
models, we deliberately increased the proportion
of complex tables in our dataset. Specifically, 75%
of the tables in ComplexTable contain merged cells.
In certain instances, extreme table cells span five
rows and five columns simultaneously. Follow-
ing the creation of table structures, we populate
the table cells with purely random text. Notably,
to augment difficulty and complexity, some cell
contents entail lengthy text that requires display
across multiple lines. A style is randomly assigned
to format the appearance of the synthesized table.
Finally, to generate complete tables, we employ a
web browser engine, which renders the table image.

5 Experiment

5.1 Data and Metrics

Tables employed in diverse scenarios often exhibit
distinct styles. To demonstrate the transferability
of our pretraining on ComplexTable, we assess the
performance of TableVLM on two prominent pub-

licly available datasets: PubTabNet and TableBank.
PubTabNet originates from scientific papers, while
TableBank comprises documents sourced from the
internet. To evaluate the performance of our model
in predicting table structure recognition, we employ
three metrics to compare the predictions against the
ground truth.

Exact Match Accuracy (EMA): This metric quan-
tifies the exact correspondence between the predic-
tion and the ground truth. Although achieving a
high exact match accuracy remains challenging for
complex table images, our objective is to enhance
the model’s exact matching rate to the greatest ex-
tent possible.

Bilingual Evaluation Understudy Score (BLEU):
Another evaluation metric used in this study is
BLEU (Bilingual Evaluation Understudy), a widely
employed measure in machine translation (Pap-
ineni et al., 2002). Recent research by Li et al.
(2019) has successfully applied BLEU in the con-
text of table structure recognition. In our analy-
sis, we employ the well-known variant of BLEU-
4, which combines a brevity penalty (BP) with a
harmonic mean of precision scores for unigrams,
bigrams, 3-grams, and 4-grams.

Tree-Edit-Distance-Based Similarity (TEDS):
This metric quantifies the dissimilarity between
two strings by calculating the minimum number of
operations needed to transform one string into an-
other. Considering the tree-like structure of HTML,
Zhong et al. (2019a) suggests employing the tree
edit distance as a means to assess the disparity be-
tween the predicted output and the ground truth.

This similarity score is calculated as follows:

TEDS (Ta, Tb) = 1− EditDist (Ta, Tb)

max (|Ta| , |Tb|)
(1)

Where Ta and Tb represent two tables in the form of
tree-structured HTML. The term EditDist refers to
the tree-edit distance, while |T | denotes the number
of nodes in tree T .
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Model Dataset Simple Complex All
WYGIWS TableBank 86.4 −− 86.4
EDD TableBank 86.0 −− 86.0
LGPMA TableBank 88.7 −− 88.7
Master TableBank 89.4 −− 89.4
TableFormer TableBank 89.6 −− 89.6
TableVLM TableBank 90.2 −− 90.2
LGPMA PubTabNet 97.88 94.78 96.36
Master PubTabNet 97.90 94.68 96.32
TableFormer PubTabNet 98.5 95.0 96.8
TableVLM PubTabNet 98.31 95.53 96.92
LGPMA ComplexTable 90.54 86.87 88.76
Master ComplexTable 92.17 88.79 90.21
TableVLM ComplexTable 94.73 90.43 92.18

Table 2: The tree-edit-distance-based similarity (TEDS)
of table structure recognition on TableBank, PubTabNet
and ComplexTable datasets. A table is categorized as a
simple table if it lacks multi-column or multi-row cells;
otherwise, it is classified as a complex table. It is worth
noting that the TableBank dataset does not include any
complex tables.

5.2 Quantitative Analysis

In Table 2, we show the performance compari-
son of TableVLM with five current state-of-the-art
(SOTA) models on three datasets. Detailed infor-
mation regarding these models can be found in the
appendix. Experimental results demonstrate that
TableVLM exhibits superior performance across
various datasets. Particularly, TableVLM outper-
forms all SOTA methods by a considerable mar-
gin on the TableBank dataset. Moreover, on Pub-
TabNet, TableVLM achieves better overall perfor-
mance compared to other SOTA models, owing
to its improved accuracy in recognizing complex
tables. We also provide the baseline results for
the Complex dataset. The enhanced performance
of TableVLM across different datasets can be pri-
marily attributed to the incorporation of novel pre-
training tasks for encoder pre-training.

5.3 Baseline models

The following five baseline models were used for
comparison. WYGIWS, proposed by Deng et al.
(2016), is an image-to-markup model that has been
successfully applied to table structure recognition
by Li et al. (2019). EDD (Zhong et al., 2019a)
employs an attention-based encoder-dual-decoder
architecture to convert table images into HTML
code. LGPMA (Qiao et al., 2021) incorporates
a soft pyramid mask learning mechanism in both
local and global feature maps for table structure
recognition. Master (Lu et al., 2021), originally
designed for scene text recognition, is utilized for

table structure recognition by Ye et al. (2021). A
recent work, TableFormer (Nassar et al., 2022),
has achieved superior performance compared to
other state-of-the-art methods. However, the source
codes of TableFormer (Nassar et al., 2022) are not
released, and we are unable to re-implement it due
to the lack of implementation details, we cannot
evaluate its results on the Complex dataset.

5.4 Ablation experiments

We conducted ablation studies to validate the im-
pact of pretraining tasks specially designed for
TableVLM. The models were evaluated on Com-
plexTable dataset. Table 3 reports the results for
different combinations of pre-training tasks. As
a baseline, we employ a vanilla encoder-decoder
model with random initialization, which shares the
same architecture as TableVLM.

The evaluation of results is conducted using
the three aforementioned metrics. The text-image
alignment task and text-image matching task are
widely adopted multimodal pre-training tasks that
facilitate the alignment of text and image embed-
dings. Additionally, the masked image modeling
task promotes the interpretation of visual content
from contextual representations of text and images.
Furthermore, we introduce two specialized pre-
training tasks, namely prediction for column head-
ers and prediction for the relative position of texts,
which are specifically designed for table structure
recognition.

The results presented in Table 3 reveal the sig-
nificant contribution of various pre-training tasks
in enhancing performance on the ComplexTable
dataset. Specifically, the masked image modeling
task yields a notable improvement of 1.95 TEDS
score. Furthermore, prediction for column head-
ers and prediction for the relative position of texts
contribute an additional 1.39 TEDS score improve-
ment on ComplexTable. By incorporating these
five pre-training tasks, TableVLM achieves a new
state-of-the-art performance in the field of table
structure recognition.

6 Conclusions

In this study, we present TableVLM, a pre-trained
multi-modal model particularly designed for recog-
nizing the structures of complex tables from their
images. A task-specific pre-training scheme with
three new pre-training tasks has been proposed for
training TableVLM, and the pre-training scheme
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Encoding Pretaining task EMA(%) BLEU TEDS
vanilla 57.31 0.8214 89.5
TIA + TIM 63.24 0.7937 88.84
TIA + TIM + MIM 66.40 0.8178 90.79
TableVLM (full-fledged) 68.58 0.8324 92.18

Table 3: The result of ablation study with the encoder
pre-trained with different pre-training tasks. The text-
image alignment task is denoted as TIA, the text-image
matching as TIM, and the masked image modeling as
MIM. The experimental results show that the proposed
two pre-training tasks significantly contribute to the
table structure recognition.

has been proved to considerably improve the accu-
racy of table structure recognition across multiple
datasets. A new dataset, ComplexTable, was also
created to fill in a gap where there are no existing
datasets that include a large number of complex ta-
bles with diversity in structures and styles. We hope
that the created dataset and the pre-trained model
(released publicly) could promote the research in
table recognition and understanding.

Limitations

In the case of ComplexTable, where table images
are generated using an auto HTML table creator
that utilizes a web browser engine for rendering,
applying TableVLM directly to recognize the struc-
ture of handwritten tables without fine-tuning poses
a challenge. This is particularly evident when deal-
ing with handwritten tables found in ancient doc-
uments. Moreover, the process of annotating the
structural information of tables in handwritten doc-
uments is both time-consuming and laborious. As
a result, there is ample room for further exploration
and improvement in enhancing the accuracy of ta-
ble structure recognition for handwritten tables.
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A Appendix

A.1 Implementation Details of TableVLM
For the stage of pre-training encoder in TableVLM,
we set hidden size d = 768 and use a 12-layer 12-
head Transformer encoder and visual backbones
use the ResNeXt101-FPN architecture. The num-
bers of parameters are approximately 200M. The
model is initialized from the existing pre-trained
model checkpoints. The text embedding is initial-
ized from Roberta (Liu et al., 2019) and the vi-
sual embedding is initialized from a Mask-RCNN
(He et al., 2017) model trained on PubLayNet
(Zhong et al., 2019b). The rest of the parameters
in the model are initialized randomly. The encoder
uses an Adam optimizer with the learning rate of
2 × 10−5, weight decay of 1 × 10−2. The learn-
ing rate is linearly warmed up over the first 10%
steps and then linearly decayed. The encoder is
trained with a batch size of 16 for 5 epochs on
ComplexTable. During the encoder pre-training,
we sample images from the ComplexTable dataset
and select a random sliding window of the text se-
quence if the text sequence is too long. We set the
maximum sequence length L = 512 and assign all
text tokens to the segment [A]. The output shape
of the pooling layer is set to W = H = 7 so that
it transforms the feature map into 49 image tokens.
In TIA, 15% of the table cells are covered. In TIM,
15% images are replaced and 5% are dropped.

For the stage of pre-training decoder in
TableVLM, the Transformer Decoder consists of
four “Transformer Decoder Layers,” with an in-
put feature size of 512, a feed-forward network
of 1024, and 4 attention heads. During the de-
coder pre-training, we freeze the parameters of
the encoder pre-training model. The table images
that satisfy the conditions of formula 1 will be se-
lected for pre-training from ComplexTable. The
decoder also uses an Adam optimizer with the ini-
tializing learning rate is 1 × 10−3 for 5 epochs
with a batch size of 16. Afterward, we reduce the
learning rate to 1× 10−4, the batch size to 12, and
train for 5 more epochs. At inference time, the
output of the decoder is sampled with beam search
(beam size = 3).
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