
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2635–2648

July 9-14, 2023 ©2023 Association for Computational Linguistics

RetroMAE-2: Duplex Masked Auto-Encoder For Pre-Training
Retrieval-Oriented Language Models

Zheng Liu1†∗, Shitao Xiao2†, Yingxia Shao2∗, Zhao Cao1

1: Huawei Technologies Ltd. Co. 2: Beijing University of Posts and Telecommunications

zhengliu1026@gmail.com, {stxiao,shaoyx}@bupt.edu.cn,

caozhao1@huawei.com

Abstract
To better support information retrieval tasks
such as web search and open-domain ques-
tion answering, growing effort is made to de-
velop retrieval-oriented language models, e.g.,
RetroMAE (Xiao et al., 2022b) and many oth-
ers (Gao and Callan, 2021; Wang et al., 2021a).
Most of the existing works focus on improving
the semantic representation capability for the
contextualized embedding of the [CLS] token.
However, recent study shows that the ordinary
tokens besides [CLS] may provide extra infor-
mation, which help to produce a better repre-
sentation effect (Lin et al., 2022). As such, it’s
necessary to extend the current methods where
all contextualized embeddings can be jointly
pre-trained for the retrieval tasks.

In this work, we propose a novel pre-training
method called Duplex Masked Auto-Encoder,
a.k.a. DupMAE. It is designed to improve the
quality of semantic representation where all
contextualized embeddings of the pre-trained
model can be leveraged. It takes advantage of
two complementary auto-encoding tasks: one
reconstructs the input sentence with the [CLS]
embedding; the other one predicts the bag-
of-words feature of the input sentence with
the ordinary tokens’ embeddings. The two
tasks are jointly conducted to train a unified
encoder, where the whole contextualized em-
beddings are aggregated in a compact way
to produce the final semantic representation.
DupMAE is simple but empirically competi-
tive: it substantially improves the pre-trained
model’s representation capability and transfer-
ability, where superior retrieval performances
can be achieved on popular benchmarks, like
MS MARCO and BEIR. Our code is released
at: https://github.com/staoxiao/RetroMAE.

1 Introduction

Neural retrieval is important to many real-world
scenarios, such as web search, question answer-

†. Equal contribution and designated as co-first authors.
∗. Co-corresponding authors

ing, and conversational system (Huang et al., 2013;
Karpukhin et al., 2020; Komeili et al., 2021; Izac-
ard et al., 2022; Zhu et al., 2021; Dong et al., 2022).
In recent years, pre-trained language models, e.g.,
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), T5 (Raffel et al., 2019), are widely adopted
as the retrievers’ backbone networks. The generic
pre-trained language models are not directly appli-
cable to retrieval tasks. Thus, it calls for complex
fine-tuning strategies, such as sophisticated nega-
tive sampling (Xiong et al., 2020; Qu et al., 2020),
knowledge distillation (Hofstätter et al., 2021; Lu
et al., 2022), and the joint optimization of retriever
and ranker (Ren et al., 2021; Zhang et al., 2021).
To reduce this effort and bring in better retrieval
quality, there are growing interests in developing
retrieval-oriented language models. One common
practice is to leverage self-contrastive learning
(Chang et al., 2020; Guu et al., 2020), where the
language models are learned to discriminate heuris-
tically acquired positive and negative samples in
the embedding space. Later on, auto-encoding is
found to be more effective (Wang et al., 2021a;
Lu et al., 2021), where the language models are
learned to reconstruct the input based on the gener-
ated embeddings. Recent works (Xiao et al., 2022b;
Wang et al., 2022) further extend the auto-encoding
methods by introducing sophisticated encoding and
decoding mechanisms, which brings about remark-
able improvements of retrieval quality on a wide
variety of benchmarks.

The existing retrieval-oriented pre-trained mod-
els mainly rely on the contextualized embedding
from the special token, i.e., [CLS], to represent the
semantic about input (Gao and Callan, 2021; Lu
et al., 2021; Xiao et al., 2022b; Wang et al., 2022).
However, recent study finds that other ordinary to-
kens may provide extra information and help to
generate better semantic representations (Lin et al.,
2022). Such a statement is consistent with previous
research (Luan et al., 2021; Santhanam et al., 2021),
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Figure 1: DupMAE. Encoder: the sentence is masked and
encoded as the contextualized embeddings for [CLS] and
ordinary tokens. Decoder: the CLS embedding is joined with
the masked input, where the original input is recovered by an 1-
layer transformer; OT embeddings are mapped into vocabulary
space via LPU and aggregated to predict the BoW feature.

as multi-vector or token-granularity representations
may give higher discriminative power than those
based on one single vector. As a result, it is nec-
essary to extend the previous works, such that the
representation capability can be jointly pre-trained
for both [CLS] and ordinary tokens.

To this end, we propose a novel auto-encoding
framework called Duplex Masked Auto-Encoder,
a.k.a. DupMAE (Figure 1). It employs two differ-
entiated decoders working collaboratively, which
aim to 1) improve each embedding’s individual ca-
pacity, as well as 2) contribute to the quality of the
joint representation derived from all embeddings.
•Workflow. DupMAE contains an unified en-

coder, which produces the contextualized embed-
dings for both [CLS] and ordinary tokens. The
generated embeddings are used for two decoding
tasks. On one hand, the [CLS] embedding, joined
with the masked input, is used to recover the input
sentence from an one-layer transformer. On the
other hand, the ordinary tokens’ embeddings are
transformed into the vocabulary space (V), i.e, |V |-
dim vectors, with a linear projection unit (LPU).
The transformation results are aggregated into a
|V |-dim vector by max-pooling, where the bag-of-
words feature about the input is predicted.
•Merits. The above workflow is highlighted by

its simplicity: an one-layer transformer to recover
the input, and a linear projection unit to preserve
the BoW feature. Therefore, the pre-training is
Cost-Effective given all decoding takes oper-
ate at a low cost. More importantly, the pre-training
task is made highly Demanding on embedding
quality: since the decoders are extremely simpli-
fied, it forces the encoder to fully extract the input
information so that high-fidelity reconstruction can

be made. Finally, the differentiated tasks may help
the embeddings learn Complementary informa-
tion: the [CLS] embedding focuses more on seman-
tic information; while the OT embeddings, which
directly preserve the BoW features, may incorpo-
rate more lexical information.
• Representation. The contextualized embed-

dings from [CLS] and ordinary tokens are aggre-
gated in a straightforward way to generate the rep-
resentation of the input. The [CLS] embedding
is reduced to a lower dimension by linear projec-
tion. The ordinary tokens’ embeddings, after trans-
formed into the vocabulary space and aggregated
by max-pooling, are sparsified by selecting the top-
N elements. The two results are concatenated as
one vector. With a proper configuration of linear
projection and sparsification, it may preserve the
same memory footprint and cost of inner-product
computation as the conventional methods.

Our proposed method is simple but empirically
competitive. We perform DupMAE on common
pre-training corpus where a BERT-based scale en-
coder is produced. Our pre-trained model achieves
superior performances in various downstream tasks.
For supervised evaluations on MS MARCO, it
reaches a MRR@10 of 42.6 in passage retrieval
and a MRR@100 of 45.1 in document retrieval.
For zero-shot evaluations on BEIR, it achieves an
average NDCG@10 of 49.1 on all 18 datasets. It
even notably outperforms strong baselines with
more sophisticated fine-tuning approaches or much
bigger model sizes. Therefore, it validates that the
representation capability and transferability of the
pre-trained model can be substantially improved
thanks to DupMAE.

2 Related Works

Neural retrieval is critical for many real-world ap-
plications, such as web search, question answering,
advertising and recommender systems (Karpukhin
et al., 2020; Zhang et al., 2022; Xiao et al., 2022c,
2021, 2022a). It maps the query and document
into embeddings within the same latent space, mak-
ing their semantic relationship to be measured by
the embedding similarity. In recent years, the pre-
trained language models have been widely applied
to deep semantic retrieval such that discriminative
representations can be generated for the queries
and documents. Despite the preliminary progress
achieved by early pre-trained models, like BERT
(Devlin et al., 2019), it is noticed that the more
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Figure 2: Framework of DupMAE. The unified encoder generates the contextualized embeddings for the [CLS] and ordinary
tokens (OT). The [CLS] decoding reconstructs the original sentence leveraging an one-layer transformer; the OT decoding
predicts the BoW feature of the input on top of the linear projection unit (LPU) and max-pooling.

advanced models bring little benefit to the retrieval
quality, and it’s believed that the conventional pre-
training algorithms are not compatible with the pur-
pose of deep semantic retrieval (Gao and Callan,
2021; Lu et al., 2021; Wang et al., 2022).

To mitigate the above problem, people become
increasingly interested in developing retrieval ori-
ented pre-trained models. For example, it is pro-
posed to leverage self-contrastive learning (SCL)
where the language models are pre-trained to dis-
criminate positive samples generated by data aug-
mentation and in-batch negative samples (Chang
et al., 2020; Guu et al., 2020; Izacard et al., 2021).
The SCL based algorithms are limited by many
factors, like the quality of data augmentation and
the requirement of huge amounts of negative sam-
ples. Later on, the auto-encoding based algorithms
receive growing interests: the input sentences are
encoded into embeddings, based on which the orig-
inal sentences are reconstructed (Lu et al., 2021;
Wang et al., 2021a). The recently proposed meth-
ods, such as SimLM (Wang et al., 2022) and Retro-
MAE (Xiao et al., 2022b), extend the previous auto-
encoding framework by upgrading the encoding
and decoding mechanisms, which substantially im-
proves the quality of deep semantic retrieval.

The existing retrieval-oriented pre-training meth-
ods target on improving the semantic representation
capacity for the contextualized embedding from the
[CLS] token. However, it is noticed that the ordi-
nary tokens may provide additional information
besides [CLS], especially when dealing with long
and semantic-rich documents (Luan et al., 2021;
Humeau et al., 2019; Lin et al., 2022). As a result,
it is necessary to extend the current works, where
the representation capability can be enhanced for
both types of contextualized embeddings.

3 Methodology

We start with an overview of DupMAE in this sec-
tion. The framework of DupMAE is shown as
Figure 2. There is an unified encoder (A), where
the masked input is encoded into its contextual-
ized embeddings. There are two decoders working
collaboratively. One decoder is applied for [CLS]
decoding (B): it employs a single-layer transformer,
which reconstructs the original sentence based on
the [CLS] embedding. The other one is used for
OT decoding (C): it utilizes a linear projection unit
(LPU), which transforms the ordinary token embed-
dings into the vocabulary space. The transformed
results are aggregated by max-pooling, where the
BoW feature of the input is predicted. The two
decoding tasks are jointly conducted to train the
encoder. The [CLS] and OT embeddings are ag-
gregated for the final representation of the input.
With proper dimension reduction, it may preserve
the same computation cost of inner-product and
memory footprint as one single dense vector.

3.1 Encoding

The input sentence X is sampled and masked as
X̃enc by randomly replacing some of its tokens
with the special token [M]. A moderate masking
ratio is applied during the encoding stage (30%);
as a result, the majority of the input information
will be preserved by encoding result. The encoding
network Φenc(·) is used to transform the masked
sentence into the contextualized embeddings for
[CLS] (hX̃ ) and ordinary tokens (HX̃enc

):

hX̃ , HX̃enc
← Φenc(X̃enc). (1)

In order to capture the in-depth semantics about
the sentence, a full-scale BERT-like encoding net-
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work is used to generate to the contextualized em-
beddings. The masked tokens for the encoder are
predicted following the typical form of masked lan-
guage modeling (MLM) (Devlin et al., 2019). The
training loss of MLM is denoted as Lmlm.

3.2 [CLS] Decoding
The [CLS] embedding joins with the masked input
(re-generated) to decode the original sentence. Fol-
lowing the recent auto-encoding based pre-training
methods (Xiao et al., 2022b; Wang et al., 2022), the
decoding is performed with a simplified network
and an aggressive masking ratio. These settings
will force the embedding to fully capture the input
information where high-fidelity reconstruction can
be made. Particularly, the input X is masked as
X̃dec, with half of its tokens selected for masking.
An one-layer transformer is utilized for decoding,
and two hidden-state streams: H1 (query stream),
H2 (context stream), are used as the input:

H1 ← [hX̃ + p0, ...,hX̃ + pN ],

H2 ← [hX̃ , ex1 + p1, ..., exN + pN ].
(2)

Here, hX̃ is the [CLS] embedding from encoder,
exi is the i-th token embedding, pi is the i-th posi-
tion embedding. Given the above input, it performs
self-attention w.r.t. the mask matrix M ∈ RL×L:

Q = H1W
Q,K = H2W

K ,V = H2W
V ;

Mij =

{
0, can be attended,
−∞, masked;

A = softmax(
QTK√

d
+ M)V.

(3)

The output A, together with H1 (from the residual
connection) are used to predict the original input.
Finally, the following objective is optimized:

Ldec =
∑

xi∈X
CE(xi|A,H1). (4)

As the decoder only contains one transformer layer,
each token xi is reconstructed based on the unique
context which are visible to the i-th row of M. The
mask matrix is generated by the following rules:

Mij =

{
0, xj ∈ s(X6=i), or j|i 6=0 = 0

−∞, otherwise.
(5)

In the i-th row, the sampled positions s(X6=i) and
the first position are set to 0, meaning that they
will be made visible to the i-th token during self-
attention. Meanwhile, the non-sampled positions

and the diagonal position (indicating the position
of the i-th token itself) will be −∞, which will
keep them masked during self-attention.

3.3 OT Decoding and Training Objective
The decoding task for OT embeddings are designed
based on two considerations. On one hand, it will
follow the same spirit as the [CLS] decoding task,
where the decoding network is designed to be sim-
plified. On the other hand, it will take a differenti-
ated objective with the [CLS] decoding; therefore,
it may facilitate the two types of embeddings to
capture complementary information. In this place,
we proposed the following decoding task for OT
embeddings.

First of all, the OT embeddings (with masked to-
kens excluded) HX̃enc

: {hx1 , ...,hxN } are linearly
transformed into the vocabulary space:

µxi
← hT

xi
WO, xi ∈ X̃enc, (6)

(WO ∈ Rd×|V |, d: embedding dimension, |V |: vo-
cabulary size.) The transformed results are aggre-
gated through token-wise max-pooling:

µX̃enc
← token.Max({µxi

|X̃enc}), (7)

where the largest activation values of all tokens in
X̃enc will be preserved for each vocabulary.

Secondly, we propose the following objective
where the BoW feature of the input is recovered.
As a result, the lexical information can be better
encoded by the OT embeddings.

min.−
∑

x∈set(X)

log
exp(µX̃enc

[x])∑
x′∈V exp(µX̃enc

[x′])
, (8)

where x ∈ set(X) is a unique token of the input
X , V is the whole vocabulary. The encoder’s loss,
the decoding losses from [CLS] (Eq. 4) and OT
(Eq. 8) are added up as our training objective:

min. Lmlm + Ldec + LBoW . (9)

3.4 Representation
A remaining problem of DupMAE is how to gen-
erate the semantic representation for the input. It’s
expected that the [CLS] and OT embeddings can be
collaborated, where a stronger representation can
be produced. Besides, it has to be compact, such
that the retrieval process can be efficient in terms
of computation cost and memory consumption. To
these ends, we propose the following aggregation
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method. Firstly, the [CLS] embedding hX is lin-
early transformed to a lower dimension (d′):

ĥX ← hT
XWcls, Wcls ∈ Rd×d′ . (10)

Secondly, knowing that the OT embeddings are
aggregated into a high-dim vector µX , we directly
reduce its dimension via sparsification:

µ̂X ← {i : µX [i] | i ∈ IX}. (11)

Here, IX stands for the indexes where µX [i] ∈
Top-k(µX), k is the number of elements to be pre-
served for µX . For each document, we concatenate
the dim-reduction results of [CLS] and OT embed-
dings as its semantic representation: [ĥX ; µ̂X ]. For
each query, we measure its relevance to a document
based on the following form of inner-product:

〈q, d〉 = ĥT
q ĥd +

∑
Id
µq[i]µd[i]. (12)

With proper configurations, the computation cost of
inner product and memory footprint will be same
as working conventional dense embeddings.

Fine-Tuning. The pre-trained encoder is fine-
tuned with three steps. Firstly, the contrastive learn-
ing is conducted for the in-batch negatives (IB):

min .−
∑

q

log
exp(〈q, d+〉)∑

d∈{d+,IB} exp(〈q, d〉) . (13)

Secondly, we get the ANN hard negatives for each
query based on the first-stage encoder D− (Xiong
et al., 2020), and continue to perform contrastive
learning with both hard and in-batch negatives:

min .−
∑

q

log
exp(〈q, d+〉)∑

d∈{d+,D−,IB} exp(〈q, d〉) . (14)

Thirdly, we perform knowledge distillation: a cross-
encoder is trained to discriminate the positives (d+)
from negatives (d−) for each query. Then, the soft
labeled cross-entropy is minimized:

min .−
∑

q

σdq log
exp(〈q, d+〉)∑

d∈{d+,D−} exp(〈q, d〉) (15)

where σdq is the softmax activation of the cross-
encoder’s prediction of q and d’s relevance.

The first two fine-tuning steps are cost effective,
as they only involve low-cost operations. The third
step will bring a much larger cost due to the train-
ing and scoring of the cross-encoder. Nevertheless,
it also helps to fine-tune the model for a better pre-
cision. In our experiments, comprehensive analysis
is made for DupMAE’s impact on different stages.

4 Experiment

The empirical studies are conducted to explore the
following research questions.

• RQ 1. Whether DupMAE produces better
semantic representations, compared with the
existing competitive pre-training baselines?

• RQ 2. Whether DupMAE is able to maintain
its advantages throughout different situations?

• RQ 3. Whether DupMAE benefits from the
joint utilization of both [CLS] and OT embed-
dings, and what’s the individual contribution
from each embedding?

• RQ 4. Whether the pre-training tasks con-
tribute to both [CLS] and OT embeddings?

Benchmarks. The experiments are conducted
for both supervised and zero-shot settings. We
choose the passage and document retrieval task
of MS MARCO benchmark (Nguyen et al., 2016)
for supervised evaluations. It contains queries from
Bing Search, where ground-truth answers to the
queries need to be retrieved from 8.8 million pas-
sages and 3 million documents, respectively. The
queries from the dev set and TREC Deep Learning
track in 2019 (DL’19) (Craswell et al., 2020) are
used for evaluation. We leverage BEIR benchmark
(Thakur et al., 2021) for zero-shot evaluations. It
contains a total of 18 datasets, which covers diverse
types of retrieval tasks, such as question answering,
duplication detection, and fact verification, etc. Fol-
lowing the official evaluation script, the pre-trained
models are fine-tuned with MS MARCO queries,
and evaluated for their out-of-domain retrieval per-
formances on each of the 18 datasets.

Baselines. We consider the following baselines
for supervised evaluations according to their fine-
tuning strategies. The first one only leverage hard
or in-batch negatives, including ANCE (Xiong
et al., 2020), SEED (Lu et al., 2021), ADORE
(Zhan et al., 2021), COSTA (Ma et al., 2022),
PROP (Ma et al., 2021a), B-PROP (Ma et al.,
2021b), Aggretriever (Lin et al., 2022), and co-
Condener (Gao and Callan, 2022). The second
type leverage sophisticated fine-tuning strategies
like knowledge distillation, including RocketQAv2
(Ren et al., 2021), AR2 (Zhang et al., 2021),
AR2+SimANS (Zhou et al., 2022), SPLADEv2
(Formal et al., 2021), ColBERTv2 (Santhanam
et al., 2021), ERNIE-Search (Lu et al., 2022),
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Passage Dev DL’19

Methods MRR@10 R@1000 NDCG@10

ANCE 0.330 0.959 0.648

SEED 0.339 0.961 –

coCondenser 0.382 0.717 0.684

Aggretriver 0.363 0.973 0.678

RocketQAv2 0.388 0.981 –

AR2 0.395 0.986 –

AR2+SimANS 0.409 0.987 –

SPLADEv2 0.368 0.979 0.729

ColBERTv2 0.397 0.984 –

ERNIE-Search 0.401 0.982 –

SimLM 0.411 0.987 0.714

RetroMAE (stage 3) 0.416 0.988 0.681

DupMAE (stage 2) 0.410 0.987 0.713

DupMAE (stage 3) 0.426 0.989 0.751

Table 1: MS MARCO passage retrieval.

SimLM (Wang et al., 2022), RetroMAE (Xiao et al.,
2022b). We emphasize two methods for zero-shot
evaluations. One is BM25, which is a common
sparse retrieval method and a strong baseline in
zero-shot settings. The other type are the large-
scale pre-trained retrievers based on contrastive
learning: Contriever (Izacard et al., 2021) and the
family of GTR-* (Ni et al., 2021). Among them,
GTR-XXL is a super large model with 4.8B param-
eters (over 40× larger than BERT base).

Implementation details. DupMAE utilizes a
bi-directional transformer network as its encoder,
with 12 layers, 768 hidden-dim, and a vocabulary
of 30522 tokens (same as BERT base). The decoder
is an one-layer transformer. The [CLS] embedding
and OT embedding are reduced to dim-384 by de-
fault. As a result, it will preserve the same compu-
tation cost of inner-product as the baselines which
use dim-768 embeddings. We also explore other
configurations of dimensions in our experiments.
The masking ratio is set to 0.3 for encoder and 0.5
for decoder. We leverage three commonly used
corpora for pre-training: Wikipedia, BookCorpus
(Devlin et al., 2019), and MS MARCO (Nguyen
et al., 2016). The pre-training and fine-tuning take
place on machines with 8× Nvidia V100 (32GB)
GPUs. The models are implemented with PyTorch
1.8 and HuggingFace transformers 4.16.

4.1 Main Results

The supervised evaluations are shown as Table
1 and 2, where the following observations can be
made. Firstly, DupMAE achieves superior perfor-
mances on both tasks of MS MARCO. For pas-
sage retrieval, it reaches a MRR@10 of 0.426, out-

Document Dev DL’19

Methods MRR@100 R@100 NDCG@10

BM25 0.277 0.807 0.519

BERT 0.389 0.877 0.594

ICT 0.396 0.882 0.605

PROP 0.394 0.884 0.596

B-PROP 0.395 0.883 0.601

COIL 0.397 – 0.636

ANCE (first-p) 0.377 0.893 0.615

ANCE (max-p) 0.384 0.906 0.628

STAR 0.390 0.913 0.605

Adore 0.405 0.919 0.628

SEED 0.396 0.902 0.605

COSTA 0.422 0.919 0.626

RetroMAE (stage 2) 0.432 0.935 0.593

DupMAE (stage 2) 0.451 0.950 0.667

Table 2: MS MARCO document retrieval.

performing the previous SOTA pre-trained mod-
els, like SimLM and RetroMAE, by +1% abso-
lute point. For document retrieval, it achieves a
MRR@100 of 0.451, leading to +1.9% absolute
improvements. Such observations indicate that
the pre-trained model’s representation quality is
substantially improved with DupMAE. Note that
DupMAE’s performances are much higher than
baselines like ColBERTv2, SPLADE, and COIL.
These methods utilize multi-vector for semantic
representation, which is more expensive in terms of
memory and computation. Besides, even with Dup-
MAE (stage 2), which simply takes one-round of
hard-negative sampling, we may outperform many
of the baselines relying on sophisticated fine-tuning
strategies, like knowledge distillation (ColBERTv2,
ERNIE-Search) and joint learning of retriever and
ranker (AR2, AR2+SimANS).

To summary, the above observations reflect Dup-
MAE’s two-fold merits to real-world applications:
1. it improves the best performance where neural
retrievers may get, 2. it helps to produce strong
retrieval quality in a cost-effective way.

For zero-shot settings, we report the retrieval
performance on every single dataset, and measure
the overall performance by taking the average of all
18 datasets (Table 3). Firstly, DupMAE achieves
remarkable performance on BEIR, reaching an av-
erage NDCG@10 of 0.477 in all 18 datasets. It out-
performs its close peer RetroMAE on 13 out of 18
datasets, and by +2.5% absolute point in total aver-
age. Secondly, it is known that BM25 is a strong
baseline for zero-shot retrieval, which outperforms
many of the existing pre-trained models on BEIR
benchmark. Even for the massive-scale GTR-XXL,
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TREC-COVID 0.656 0.615 0.627 0.750 0.596 0.539 0.501 0.772 0.728 0.770↑

BioASQ 0.465 0.253 0.308 0.322 0.383 0.271 0.324 0.421 0.508 0.514↑

NFCorpus 0.325 0.260 0.278 0.277 0.328 0.308 0.342 0.308 0.346 0.366↑

NQ 0.329 0.467 0.446 0.486 0.498 0.495 0.568 0.518 0.570 0.578↑

HotpotQA 0.603 0.488 0.541 0.538 0.638 0.535 0.599 0.635 0.681 0.683↑

FiQA-2018 0.236 0.252 0.259 0.259 0.329 0.349 0.467 0.316 0.345 0.375↑

Signal-1M(RT) 0.330 0.204 0.256 0.261 0.199 0.261 0.273 0.265 0.213 0.237↑

TREC-NEWS 0.398 0.362 0.358 0.376 0.428 0.337 0.346 0.428 0.427 0.433↑

Robust04 0.408 0.351 0.365 0.349 0.476 0.437 0.506 0.447 0.479 0.503↑

ArguAna 0.315 0.265 0.389 0.298 0.446 0.511 0.540 0.433 0.474 0.465↓

Touche-2020 0.367 0.259 0.225 0.248 0.204 0.205 0.256 0.237 0.343 0.382↑

CQADupStack 0.299 0.282 0.290 0.347 0.345 0.357 0.399 0.317 0.320 0.336↑

Quora 0.789 0.787 0.852 0.853 0.865 0.881 0.892 0.847 0.845 0.853↑

DBPedia 0.313 0.314 0.330 0.339 0.413 0.347 0.408 0.390 0.418 0.419↑

SCIDOCS 0.158 0.113 0.124 0.133 0.165 0.149 0.161 0.150 0.153 0.165↑

FEVER 0.753 0.682 0.641 0.691 0.758 0.660 0.740 0.774 0.800 0.817↑

Climate-FEVER 0.213 0.187 0.176 0.211 0.237 0.241 0.267 0.232 0.232 0.219↓

SciFact 0.665 0.533 0.575 0.593 0.677 0.600 0.662 0.653 0.699 0.725↑

AVERAGE 0.423 0.371 0.391 0.407 0.448 0.416 0.458 0.452 0.477 0.491↑

Table 3: Zero-shot retrieval (NDCG@10) on BEIR. DupMAE† is the extended DupMAE via domain-adaptation, where ↑
indicates the improvement over DupMAE. The highest values w./w.o. DupMAE† are marked in bold and underlined, respectively.

which uses as much as 4.8 billion parameters and
huge amounts of pre-training data, it still loses to
BM25 on 8 out 18 datasets. However, with Dup-
MAE, we may outperform BM25 on 15 out of 18
datasets, leading to as much as +5.4% absolute
improvement in total average. The above perfor-
mances are impressive considering that DupMAE
is merely based on a BERT-base scale encoder and
uses much less pre-training data compared with
other strong baselines, like Contriever and GTR.

Recently, it becomes popular to leverage domain-
adaptation to improve neural retrievers’ zero-shot
performances (Xin et al., 2021; Wang et al., 2021b).
In this place, we adopt a straightforward approach
for domain adaptation: we continually perform
DupMAE pre-training on BEIR unlabeled corpus
before fine-tuning with the source domain training
queries (denoted as DupMAE†). Despite simplic-
ity, this approach is surprisingly effective, as per-
formances are improved on 16 out of 18 datasets,
leading to an average NDCG@10 of 0.491.

Given the analysis about the main experiment
results in Table 1, 2 and 3, we may draw the fol-
lowing conclusions in response to RQ 1 and 2:

• Con 1. DupMAE makes large improvements
over the baselines, verifying that it substan-
tially contributes to the pre-trained model’s
representation capacity and transferability.

• Con 2. DupMAE is able to maintain superior
retrieval performances across different evalu-
ation tasks on both supervised and zero-shot
scenarios, which indicates DupMAE’s strong
usability in real-world applications.

4.2 Ablation Studies
After verifying DupMAE’s overall effectiveness, it
remains to figure out which factors contribute to its
improvements. Thus, we perform ablation studies
as Table 4. We use MS MARCO dataset for our
exploration, and fine-tune the pre-trained models
with hard negative samples (stage 2).

We conduct the following two sets of experi-
ments. Firstly, we explore the impact from pre-
training, whose results are shown in the upper part
of Table 4. Remember that DupMAE includes two
decoding tasks as discussed in Section 3.3: CLS
decoding and OT decoding, we make evaluations
for three alternative forms accordingly. 1) CLS
decoding only, where only the [CLS] embedding
is pre-trained 2) OT decoding only, where only the
OT embeddings are pre-trained, 3) CLS and OT
decoding, which is exactly the pre-training method
used by DupMAE. We also introduce RetroMAE
for comparison. Although RetroMAE and “CLS
decoding only” share the same pre-training task,
their representations are generated differently, as
DupMAE jointly uses [CLS] and OT embeddings.
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MS MARCO (Passage) Dev

Methods MRR@10 MRR@100 R@10 R@100 R@1000

1.

RetroMAE 0.3928 0.4032 0.6749 0.9178 0.9849

CLS decoding only 0.4008 0.4099 0.6906 0.9229 0.9840

OT decoding only 0.4002 0.4092 0.6890 0.9213 0.9831

CLS and OT decoding 0.4102 0.4202 0.7049 0.9280 0.9874

2.

CLS:768 0.3941 0.4040 0.6865 0.9174 0.9871

OT:768 0.4019 0.4114 0.6934 0.9095 0.9814

CLS:384, OT:384 0.4102 0.4202 0.7049 0.9280 0.9874

CLS:384, OT:260 0.4071 0.4171 0.7037 0.9293 0.9882

Table 4: Ablation studies: 1. impact from pre-training, 2. impact from embedding dimensions.

We may get the following observations from the
experiment results. Firstly, the joint utilization of
the two pre-training tasks leads to the optimal re-
trieval quality, where the MRR@10 grows beyond
“CLS only” and “OT only” by almost +1% absolute
point. As a result, the effectiveness of jointly per-
forming both pre-training tasks can be verified. Sec-
ondly, RetroMAE’s performance is inferior to other
methods, especially “CLS pre-train only” which
share the pre-training task with it. Such an observa-
tion reveals the different capacity between the two
semantic representations: DupMAE relies on the
contextualized embeddings from both [CLS] and
ordinary tokens, while RetroMAE only leverages
the [CLS] token’s embedding.

We further explore the impact from different
semantic representations in the lower part of Ta-
ble 4). As introduced in Section 3.3, DupMAE’s
default semantic representation (dim-768) consists
of two parts: half of its elements come from the
linear projection of [CLS] embedding, while the
other half come from the sparsification of OT em-
beddings (denoted as “CLS:384, OT:384”). In this
place, we consider two variational formulations: (1)
“CLS:768”, which directly uses the [CLS] embed-
ding, and (2) “OT:768”, where the top 768 elements
of the OT embeddings are used for the represen-
tation of the input. According to the experiment
results, the performance of “OT:768” is slightly bet-
ter than “CLS:768”. At the same time, “CLS:384,
OT:384” (the default setting of DupMAE) gives
rise to a better performance than both variational
formulations. The above observations indicate that
the contextualized embeddings from [CLS] and
ordinary tokens may provide complementary infor-
mation about the input data. As a result, the joint
utilization of both types of embeddings is able to
generate a more powerful semantic representation.

Note that although “CLS:384, OT:384” pre-
serves the same computation cost of inner-product

as “CLS:768”, it’s memory cost is slightly higher
than “CLS:768”, as extra space is needed to save
the indexes of OT embeddings’ sparsification re-
sults. Particularly, each index will take about 15
extra bits for index storage knowing that the vocab-
ulary space is 30522 . In this place, we introduce
another variational formulation “CLS:384, OT:260”
by further reducing the dimension of OT embed-
dings. As a result, it may take the same memory
footprint as “CLS:768”. It can be observed that
the new combination “CLS:384, OT:260” still out-
performs the first two variations, and maintains a
similar performance as “CLS:384, OT:384”.

Given the above analysis, we may come to the
following conclusions in response to RQ 3 and 4:

• Con 3. The collaboration of [CLS] and OT
embeddings brings stronger semantic repre-
sentations, indicating that encoded informa-
tion from the two types of embeddings are
complementary to each other.

• Con 4. Both tasks: [CLS] and OT decoding,
contribute to DupMAE; the joint conduct of
both tasks leads to the optimal performance.

5 Conclusion

This paper presents DupMAE, a new approach for
retrieval-oriented pre-training, where the semantic
representation capacities can be jointly enhanced
for all contextualized embeddings of the language
model. It employs two complementary tasks: one
reconstructs the original input from the [CLS]’s em-
bedding, the other one predicts the BoW features
based on the OT embeddings. The two tasks are
jointly conducted to learn an unified encoder. The
two types of embeddings, with reduced dimensions,
are aggregated to be a joint semantic representation.
The effectiveness of our proposed method is empir-
ically verified, where remarkable performances are
achieved on MS MARCO and BEIR benchmarks
throughout different situations.
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Limitations

Although DupMAE is to learn representation in-
stead of generative models, it performs pre-training
on open web data. Therefore, it is also subject to po-
tential ethical and social risks, like bias, discrimina-
tion, and toxicity. Besides, DupMAE is pre-trained
with comparatively limited amount of data due to
the constraint on computation resources. Despite
that it already achieves a promising retrieval per-
formance at present, it remains to explore whether
the performance can be further improved with the
scaling up of pre-training data, by leveraging more
high-quality datasets like C4 and OpenWebText.
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A Appendix

According to our experimental results in Table 4,
the [CLS] and OT embeddings may jointly produce
a stronger semantic representation to improve the
retrieval quality. In this place, we provide a case
analysis as Table 5 and 6, which will visualize the
benefit introduced by each type of embedding, and
help to explain the design of the pre-training tasks.

A.1 Settings

In our exploration, the [CLS] embedding and OT
embeddings (aggregated and sparsified in the same
way as introduced in Section 3.3) are used inde-
pendently for the retrieval tasks. That’s to say, the
query and answer’s relationships are measured by
the [CLS] embeddings’ similarity and OT embed-
dings’ similarity, respectively. We select queries
from the evaluation set of MS MARCO for demon-
stration. For each query, we count it as a success-
ful case w.r.t. a specific type of embeddings, if
its ground-truth answer can be retrieved within the
Top-10 results. If the ground-truth answer is missed
by one type of embeddings, its Top-1 retrieved an-
swer will be posted for comparison.

A.2 Analysis

Given the limitation of space, we select four rep-
resentative queries for demonstration. The four
queries can be partitioned into two sets: in Table
5, the ground-truth answers are retrieved by [CLS]
embeddings; while in Table 6, the ground-truth
answers are retrieved by OT embeddings.

• Good cases by [CLS] embeddings. In Table
5, the two queries’ ground-truth answers are re-
trieved by the [CLS] embeddings. For both cases,
it calls for the pre-trained model to capture fine-
grained semantic relationships between the query
and answer. In particular, the first query is essen-
tially about the car brands which belong to Ford.
The [CLS] embedding successfully establish the
connection between “build” and “own” (marked in
blue). Therefore, the ground-truth answer can be
successfully retrieved. Similarly, the second query
emphasizes “cncellation” fee. By identifying the
relationship between “cncellation” and “Cancel”
(marked in blue), the ground-truth answer is suc-
cessfully retrieved once again. Comparatively, al-
though OT embeddings retrieve answers with close
lexical features, e.g., “built”, “fee” (marked in red),
they appear to be less proficient in capturing the
semantic relationships in both cases, where the cor-
rect answers are missed from their top-10 results.

• Good cases by OT embeddings. In Table 6,
the two queries’ ground-truth answers are retrieved
by the OT embeddings. For both cases, it calls
for the pre-trained model to precisely identify the
ground-truth answers, which are not only seman-
tically close to the queries, but also contain spe-
cific lexical features. Particularly, the first query
asks about a certain type of material called “copper
coated carbon rods”. As a result, it is important to
retrieve the answer which contain exactly the same
term. The [CLS] embedding finds “copper-clad
steel” (marked in red). Although similar, it is dif-
ferent from the required term. While with the OT
embeddings, the ground-truth answer is success-
fully retrieved. Note that it’s challenging for this
case, knowing that the related term “Copper coated
carbon electrods” (marked in blue) is wrapped in
a long passage. The second query asks about the
colour which represents selflessness. Although the
[CLS] embedding finds the passage which is rele-
vant to the symbolic meaning of colour (marked in
red), it ignores the key term “selflessness” (marked
in blue). On top of the OT embeddings, it success-
fully retrieves the ground-truth answer, which is
not only semantically close to the required topic
(color symbolism), but also contains the required
term (selflessness).

• Discussions. It is known that both semantic
and lexical features are important to information
retrieval problems, such as search engine and ques-
tion answers. From the above analysis, we may
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Query Retrieved answer by [CLS] embedding Retrieved answer by OT embeddings

what cars does ford build? What car companies does Ford own? Ford owns Jaguar (-
30%), Land Rover (-50%), Aston Martin (-%10), Lincoln,
Mercury, Volvo (-70%), and Mazda (-40%). I’m not quite
sure of those percentages, nor am I sure if Ford owns 100%
owns Lincoln and Volvo, but there’s the basic gist of what
Ford owns now. The above answer is incorrect. Ford has sold
Jaguar, Volvo, & Land Rover. (Ground-Truth. Rank 4th)

Passenger Cars. The Taurus, Sable and Lincoln are built
in Chicago, while many of Ford’s engines are assembled in
Brook Park, Ohio, with one Dearborn, Michigan, plant dedi-
cated solely to auto parts. (Rank 1st)

delta airlines cncellation fee? How to Cancel Flights on Delta Air Lines. When the credit
is used to pay for new flights, the change fee will be assessed.
For example, say you bought non-refundable Delta domestic
flight tickets for $650, but your plans changed. When you are
ready to purchase new flights, the fare has increased to $700.
Your credit is $650 âx80x93 $200 change fee = $450, so your
out-of-pocket cost to buy the new ticket is $700 - $450 = $250.
Make sure to inform Delta before departure that you will not
be on the flight and request the travel credit.our credit is $650
âx80x93 $200 change fee = $450, so your out-of-pocket cost
to buy the new ticket is $700 - $450 = $250. Make sure to in-
form Delta before departure that you will not be on the flight
and request the travel credit. (Ground-Truth. Rank 3rd)

As of publication, Delta charges a minimum fee of $178 for
most domestic flights and $250 on flights to Alaska, Hawaii
and the Virgin Islands, with additional charges based on the
pet and carrier weight. (Rank 1st)

Table 5: Cases where the [CLS] embedding helps to retrieve the ground-truth answers.

Query Retrieved answer by [CLS] embedding Retrieved answer by OT embeddings

what are copper coated carbon
rods used for?

Copper-clad steel (CCS), also known as copper-covered steel
or the trademarked name Copperweld is a bi-metallic prod-
uct, mainly used in the wire industry that combines the high
mechanical resistance of steel with the conductivity and resis-
tance to corrosion of copper. (Rank 1st)

Coidan Graphite Products supply Graphite Electrodes primar-
ily used for the secondary production of steel EAF and ladle
furnaces. Our graphite electrode stock has additional appli-
cations, such as melting products in smelting furnaces, non-
ferrous metals, ceramic products and to recycle waste. There
are several grades of graphite electrodes, we can match the
grade with the application to lower your melting costs. Please
click through to see properties of the graphite electrodes we
can offer, RP grade, HP grade, SHP grade and UHP graphite
electrodes. In addition we supply graphite EDM electrodes
for the mould makers together with many other Spark Ero-
sion applications. Copper coated carbon electrodes of many
shapes and sizes are used as gouging rods and welding rods
in foundry applications. (Ground-Truth. Rank 8th)

what color represents selfless-
ness?

But since it is also taken as off-white, it can be the color of
degradation or cowardice. Orange. Symbolic of endurance
and strength, orange is the color of fire and flame. it repre-
sents the red of passion tempered by the yellow of wisdom. It
is the symbol of the sun. (Rank 1st)

Color Symbolism - The Deeper Meaning of Blue, Blue is on
the visual level a calm and peaceful color. We think of it in
terms of water, sky and universe. For most of us, sky and
water give us a sense of familiarity and consequently of se-
curity. For many, the universe represents a larger unity and
religion. Therefore, this hue expresses security and spiritual
devotion. It is the color that leads to introspection and to our
very essence. It represents such ideals as selflessness, sympa-
thy, kindness, compassion and dedication. Blue is assigned to
the physical body and, on a larger scale, represents the mate-
rial aspects of life including the planet earth. (Ground-Truth.
Rank 1st)

Table 6: Cases where the OT embeddings help to retrieve the ground-truth answers.

observe that the two types of embeddings may have
their own advantages: the [CLS] embeddings tend
to be more proficient in capturing the semantic
closeness, while the OT embeddings may better
leverage the lexical similarity. In DupMAE, we
design two differentiated auto-encoding tasks for
[CLS] and OT embeddings. Although both tasks
help to better encode the semantic information with
the contextualized embeddings, the OT decoding
task emphasizes more of the lexical information,
because the BoW feature needs to be directly pre-
dicted by the aggregation results of OT embeddings.
By having such differentiated tasks, the two types
of embeddings may focus on strengthening their
unique advantages. Finally, it will help to optimize
the quality of the joint representation when both

types of embeddings work collaboratively.
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