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Abstract

Chain-of-thought prompting (e.g., “Let’s think
step-by-step") primes large language models
to verbalize rationalization for their predic-
tions. While chain-of-thought can lead to dra-
matic performance gains, benefits appear to
emerge only for sufficiently large models (be-
yond 50B parameters). We show that orders-
of-magnitude smaller models (125M—1.3B
parameters) can still benefit from chain-of-
thought prompting. To achieve this, we intro-
duce Symbolic Chain-of-Thought Distillation
(SCoTD), a method to train a smaller student
model on rationalizations sampled from a sig-
nificantly larger teacher model. Experiments
across several commonsense benchmarks show
that: 1) SCoTD enhances the performance
of the student model in both supervised and
few-shot settings, and especially for challenge
sets; 2) sampling many reasoning chains per
instance from the teacher is paramount; and
3) after distillation, student chain-of-thoughts
are judged by humans as comparable to the
teacher, despite orders of magnitude fewer pa-
rameters. We test several hypotheses regarding
what properties of chain-of-thought samples
are important, e.g., diversity vs. teacher like-
lihood vs. open-endedness. We release our
corpus of chain-of-thought samples and code.

1 Introduction

Empirical scaling laws suggest that the accuracy
of Large Language Models (LLMs) on benchmark
tasks can be improved by increasing model size and
pre-training data volume (Hoffmann et al., 2022).
Beyond these training-time improvements, how-
ever, an inference-time strategy dubbed “chain-of-
thought" (CoT) prompting,1 i.e., eliciting verbaliza-
tions of predictive processes via key-phrases like
“Let’s think step-by-step" (Kojima et al., 2022), can

*Work done during an internship at AI2.
1Sometimes called “self-rationalization" or “prompting

with explanations.” We will use these terms interchangeably
in this paper.

🤖
Teacher Model 

(GPT-3, 175B)

Where is a well-used toy car likely to be found? 
Let’s think step by step…

Student Model + 
Symbolic Chain-of-thought Distillation

🤖🤖
Student Model 

(OPT, 125M-1.3B)

A used car dealership…

Because you can’t buy a…

If the toy car is used, then…

The owner of the toy car…

N samples (+Filters)

A used toy can usually be 
found in the home of a…

Figure 1: Symbolic Chain-of-thought Distillation
(SCoTD) applied to a student model, ranging in size
from 125M–1.3B parameters. We show that fine-tuning
on a (diverse and potentially filtered) corpus of expert
chain-of-thought demonstrations from a teacher model
is an effective strategy to make smaller models capable
of chain-of-thought reasoning.

similarly improve performance, e.g., Suzgun et al.
(2022) demonstrate additional performance gains
on a hard subset of the BigBench tasks (BIG-bench
collaboration, 2022) using chain-of-thought.

However, chain-of-thought prompting has only
been shown to be beneficial for models of suffi-
cient scale (e.g., with more than 60B parameters
(Wei et al., 2022b)). In this work, we study whether
small language models can be “taught" the capacity
for chain-of-thought reasoning by larger language
models. We adopt a simple strategy, which we call
Symbolic Chain-of-thought Distillation (SCoTD):
first, we sample chain-of-thought rationales from
large language model given (unlabeled) input in-
stances from a dataset; then, we train a smaller
language model to predict the sampled rationale
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CommonsenseQA: Q: The man working in
the attic swatted away a bee, but soon the
single bee was an entire what?
(a) swarm; (b) pack; (c) countryside; (d) soft
drink; (e) field of flowers

GPT-3: The answer must be related to bees, but also connected with being numerous.
Of the above answers, only swarm fits the scenario. So the answer is: (a)
OPT-1.3B: The answer must be a swarm of bees. Of the above choices, only soft
drink is used to describe a swarm of bees. So the answer is: (c)
OPT-1.3B + SCoTD: The answer must be the name of something that has bees. Of
the above choices, only swarms have bees. So the answer is: (a)

QuaRel: Q: Steve is waiting at the gym ... He
starts hitting around a hockey puck with his
stick. The gym has a carpeted floor and more
friction than the ice rink he goes to.
Which surface is rougher? (A) carpet (B) ice
rink

GPT-3: When something is smoother, it is easier to slide on and easier to pass
through. So the carpet is rougher. So the answer is: (A)
OPT-1.3B: _________ is rougher than carpet. Thus, the gym floor is rougher than
the ice rink. So the answer is: (A)
OPT-1.3B + SCoTD: When something is rougher, it has more friction. Thus, the
gym has more friction than the ice rink he goes to. So the answer is: (A)

OpenBookQA: Q: Magnets may be attracted
to
(a) clay pots (b) roofing nails (c) paper plates
(d) plastic cutlery

GPT-3: Magnets are attracted to metal objects. These objects include roofing nails.
So the answer is: (b)
OPT-1.3B: Magnets are attracted to clay pots, roofing nails, paper plates, plastic
cutlery. So the answer is: (d)
OPT-1.3B + SCoTD: Magnets may be attracted to some metals, but not to clay pots,
roofing nails, paper plates or plastic cutlery. So the answer is: (b)

Table 1: Few-shot chain-of-thoughts produced by GPT-3 (code-davinci-002, the teacher model), OPT-1.3B
(the un-distilled student model), and OPT-1.3B + SCoTD (ours), the student model trained using Symbolic Chain-
of-thought Distillation. §3 shows this process significantly improves the task-accuracy of the student model in a
variety of settings, and in §3.1.1, human evaluations show that, even when the un-distilled student model happens to
get the multiple choice question correct (see QuaRel example), humans tend to prefer OPT-1.3B + SCoTD.

and sampled label. This process follows the “sym-
bolic knowledge distillation” paradigm as in West
et al. (2022), wherein corpora are sampled from a
larger language model to serve as training data for
a smaller one.

We find that through SCoTD, smaller language
models learn to self-rationalize and perform signif-
icantly better on 3 commonsense QA tasks com-
pared to learning without rationalizations. This re-
sult holds for both supervised and few-shot settings,
and across student models of varying scales (125M–
1.3B parameters). Performance gains are espe-
cially pronounced when applying distilled chain-of-
thought models to difficult scenarios like: contrast
sets (Gardner et al., 2020) (§3.4; SCoTD signifi-
cantly outperforms supervised learning on labels)
and fully held-out tasks (§3.5; few-shot SCoTD
significantly outperforms in-context learning).

Key to the success of this process is sampling
a relatively large number of rationales per ex-
ample from the teacher model (e.g., 30 ratio-
nales/example) (Figure 2). This is different from
many prior practices that train with one rationale
per example (Camburu et al., 2018; Li et al., 2022a).
In ablation studies, we investigate several compet-
ing hypotheses for what are the most important
factors within the corpus: we filter the corpus to
CoTs that are assigned high probability by GPT-3
vs. filtering to CoTs that are diverse vs. filtering to
CoTs that explain more open-ended input instances.

While diversity and high probability are reasonable
filters that on average perform well, the “null hy-
pothesis” of random downsampling performs well,
suggesting that the sheer volume of the rationales
is also a key contributing factor.

We will release code and the corpus of sampled
chain-of-thoughts at https://github.com/
allenai/cot_distillation.

2 Symbolic Chain-of-Thought Distillation

Our primary goal is to improve the accuracy of
a (relatively small) student language model S on
a target classification2 task DTest = {(xi, yi)}.3

We assume access to 1) (an unlabeled) training set
DTrain = {(xi)}; and 2) a large teacher language
model T (e.g., GPT-3 (Brown et al., 2020)), capa-
ble of generating chain-of-thoughts in a few-shot
fashion.

Our first step is to curate a set of labeled chain-
of-thoughts to serve as few-shot Prompts for T .
For each target task, we sample a small number
(e.g., 10) of examples xi from DTrain, provide a
gold classification label yi, and manually author a
chain-of-thought zi for each to form the prompt set
P = {(xi, yi, zi)}4.

2Future work would be well suited to consider if chain-of-
thought prompting can be useful for generative tasks.

3In practice, we primarily consider CommonsenseQA (Tal-
mor et al., 2019), OpenBookQA (Mihaylov et al., 2018), and
QuaRel (Tafjord et al., 2019) as D.

4In addition to authoring our own, we reuse chain-of-
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Then, for each xi in DTrain, we sample N chain-
of-thoughts z̃i along with the resulting prediction
ỹi from the teacher model, i.e.,

(ỹki , z̃
k
i ) ∼N T (yi, zi|xi,P).

The result of this sampling is a corpus C =
{(xi, {(ỹki , z̃ki )}Nk=1)}, which contain teacher-
predicted chain-of-thoughts/labels. Depending on
the experimental setting (details in § 3), we some-
times filter the entries of C, e.g., in the fully super-
vised case where DTrain instances have associated
labels, we discard samples for which the sample the
teacher model predicted an incorrect label. Next,
we train the student model using the standard lan-
guage modeling loss, i.e., we maximize

E(x,ỹ,z̃)∼C [S(ỹ, z̃|x)].

After fine-tuning the student model on the cor-
pus sampled from the teacher, to evaluate the
model on a test instance (xtest, ytest) from the
target task, we decode both a chain-of-thought
z̃test and a predicted label ỹtest from the student
and evaluate ỹtest versus the true label ytest. We
consider two strategies for decoding. (1) Pre-
dict the most likely chain-of-thought and the la-
bel z̃test, ỹtest = argmaxz,y S(z, y|xtest). This
can be approximated by greedy decoding or beam
search. (2) There may be different valid chain-
of-thoughts for a given question and as a re-
sult, large language models distribute probabil-
ity mass for a certain label across many diverse
chain-of-thoughts (Wang et al., 2022b). Thus,
it is beneficial to marginalize out the reason-
ing paths to find the most consistent answer:
ỹtest = argmaxy Ez∼S(z|xtest)S(y|z, xtest). This
can be approximated by sampling multiple reason-
ing paths and take a majority vote among the pre-
dicted answers, dubbed “self-consistency” (Wang
et al., 2022b). We experiment with both approaches
and conduct a discussion in §3.2.

3 Experiments

We evaluate primarily on 3 target tasks: 1) Com-
monsenseQA (CSQA) (Talmor et al., 2019), a 5-
way multi-choice dataset; 2) OpenBookQA (Mi-
haylov et al., 2018), and 3) QuaRel (Tafjord et al.,
2019). While any model capable of few-shot
chain-of-thought could be substituted, we use the

thought prompts from prior work (Wei et al., 2022b; Wang
et al., 2022b) when available.

Model CoT CSQA QuaRel OpenBookQA

GPT3-175B
No CoT 82.1 86.9 83.4
Greedy 77.6 83.3 71.8

Self-Consistency 81.3 86.0 86.4

OPT-1.3B
No CoT 20.5 9.7 2.8
Greedy 17.9 39.6 12.6

Self-Consistency 21.1 48.2 22.2

Random - 20.0 50.0 25.0

(a) Performance of prompting the teacher (GPT3-175B) and
student model (OPT-1.3B, before distillation). The student
fails to outperform the random guess baseline.

Labeled Data CoT CSQA QuaRel OpenBookQA

Few-Shot
Label-Only 62.7 65.6 59.8
Greedy-CoT 64.6 64.7 48.8

SCoTD 64.7 73.0 57.8

Full
Label-Only 63.0 59.0 60.2
Greedy-CoT 68.2 71.2 50.0

SCoTD 67.0 83.8 67.0

(b) Performance of the the student model after distillation.

Table 2: Performance before (a) and after (b) SCoTD.

code-davinci-002 version of GPT-35 (Brown
et al., 2020) as our teacher model T . We use OPT
(Zhang et al., 2022) as our student model S. Our
standard student model is OPT-1.3B (though we
explore a range of student model sizes in §3.3).

We sample from GPT-3 with a temperature of
T = 1.0. For each training example, we sample
N = 30 rationales. OPT is fine-tuned with a batch
size of 32 and a learning rate of 2 × 10−5. We
use HuggingFace transformers (Wolf et al., 2019),
Pytorch (Paszke et al., 2019), and Accelerate6 for
the implementation. Main experiments can be re-
produced on one GPU with 48GB of memory.

3.1 Results in Default SCoTD Setting

We first consider both a few-shot learning set-
ting and a supervised setting. For the few-shot
setting, the only labeled examples available to
our teacher/student models are contained in the
prompt set P (but we use the unlabeled examples
and teacher-generated chain-of-thoughts/labels for
training).7 We also consider the supervised setting,
where we assume access to labels in DTrain. Su-
pervised SCoTD involves simply discarding the
samples within C that do not have the correct la-
bel prior to fine-tuning the student: for Common-

5Wang et al. (2022a) reports better CoT performance from
this version compared to other GPT-3 models.

6https://github.com/huggingface/
accelerate

7In this setting, teacher samples can contain incorrect la-
bels, thus preserving the few-shot nature of the task.
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CommonsenseQA QuaRel OpenBookQA

Figure 2: For three commonsense QA tasks, accuracy (y-axis) improves significantly as the student is trained on
more chain-of-thoughts sampled from the teacher (x-axis). Oversampling chain-of-thoughts is sometimes required
to improve student performance beyond the supervised label-only baseline, e.g., as in OpenbookQA.

senseQA, OpenBookQA, and QuaRel, this results
in discarding 40.4%, 45.0%, 34.2% of chain-of-
thoughts. For the few-shot setting, we decode with
the self-consistency approach; for the supervised
setting, we decode with greedy decoding (intro-
duced in § 2; see an discussion in § 3.2).

We compare SCoTD to 2 baselines: 1) Label-
Only, the student is fine-tuned on just the label
(in the few-shot setting, the label comes from the
teacher and could be wrong; in the supervised set-
ting, we use the gold label), instead of also with
CoT; 2) Greedy-CoT, we decode a single-CoT
per example (instead of N = 30 samples) from
T for each training example instead of sampling.
For additional reference, Table 2 (a) reports the
performance of the student (and teacher) in a va-
riety of few-shot settings prior to applying any
distillation: No CoT = few shot prompting with
labeled instances from P but no zi, Greedy and
Self-Consistency are prompting with CoT but with
different decoding strategies (§ 2).

Table 2 (b) gives the performance of the student
model after distillation in the supervised and few-
shot settings. In all cases, distillation significantly
improves the student model, and in all-but-one case,
learning with CoT outperforms the label-only dis-
tillation baseline. While the student model initially
fails to perform CoT through prompting (Table 2
(a)) it learns to do so through distillation.

The number of samples. In our default setting,
to serve as our distillation corpus C, we sample
N = 30 rationales from the teacher T for each
(unlabelled) training instance. Figure 2 shows the
performance of the student model when it is trained
on corpora with fewer sampled CoT per instance:

results suggest that learning with multiple sampled
(albeit nosier) rationales/chain-of-thoughts per ex-
ample is more beneficial than learning with one
(most likely) rationale. Will more rationales bring
more performance improvement? We sampled
more rationales from GPT-3 to train the student
model; however, this does not bring more perfor-
mance gains. When N = 50, the performance
is similar to N = 30: the model achieves 67.0
in accuracy on OpenBookQA (v.s. 67.0), 67.2 on
CommonsenseQA (v.s. 67.0), 84.9 on QuaRel (v.s.
83.8).

3.1.1 Human Evaluations

While SCoTD improves task accuracy significantly,
we additionally conduct human evaluations to as-
sess the generated chain-of-thoughts themselves
(see Table 1 for samples). We sample instances
from the CommonsenseQA, OpenBookQA, and
QuaRel validation sets (300 instances per dataset),
and conduct head-to-head human evaluations8 to
assess:

Q1: Does SCoTD result in higher-quality chain-
of-thoughts? Test: OPT-1.3B versus OPT-1.3B
+ SCoTD. Result: Yes. We assess this hypothesis
on two subsets of instances: 1) a pure random sam-
ple (N=900); and 2) a set of instances for which
both models eventually predicted the correct label
(N=654). The second setting focuses more closely
on the chain-of-thoughts themselves rather than the

8We remove the final prediction from each chain-of-
thought, and ask crowdworkers which is more coherent, fluent,
and (importantly) likely to lead to a correct answer. We use
Amazon Mechanical Turk and pay a minimum of $15/hr, see
Appendix A for more details, including a screenshot of the
HIT.
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Model Self-Consistency CSQA QuaRel OpenBookQA

Few-Shot SCoTD
No 60.2 73.4 44.4
Yes 64.7 (+4.5) 73.0 (-0.4) 57.8 (+13.4)

SCoTD
No 67.0 83.8 65.8
Yes 66.8 (-0.2) 83.8 (-0.0) 63.6 (-2.2)

(a) Self-consistency is most helpful under the few-shot setting,
where we train with unfiltered and noisy CoTs.

Dataset Self-Consistency
#Rationales/Example

1 5 10 20 30

CSQA
No 53.0 58.3 59.1 60.0 60.2
Yes 53.4 (+0.4) 63.0 (+4.7) 62.4 (+3.3) 64.1 (+4.1) 64.7 (+4.5)

QuaRel
No 62.2 68.7 69.8 70.9 73.4
Yes 62.6 (+0.4) 66.2 (-2.5) 70.1 (+0.3) 71.2 (+0.3) 73.0 (-0.4)

OpenBookQA
No 39.0 40.2 40.6 43.2 44.4
Yes 38.0 (-1.0) 37.6 (-2.6) 51.8 (+11.2) 59.8 (+16.6) 57.8 (+13.4)

(b) Performance of Few-Shot SCoTD with different numbers
of sampled CoTs. Benefit of “self-consistency” is most promi-
nent when training with multiple rationales per example on
CSQA and OpenBookQA.

Table 3: Student performance with and without self-
consistency.

predictive accuracy of the model. SCoTD is supe-
rior in both settings: for the random sample setting,
SCoTD won in 59% of cases (p<.001), whereas in
the correctness controlled setting, SCoTD won in
61% of cases (p<.001). Results hold with p < .05
for each QA dataset individually.

Q2: Does a SCoTD student surpass the much
larger teacher? Test: OPT-1.3B + SCoTD ver-
sus text-davinci-002. While the task accuracy of
the teacher is still higher in most cases, the student-
generated CoT are comparable.9 We again eval-
uate on: 1) a pure random sample (N=900); and
2) a correctness-controlled setting (N=659). The
100x smaller SCoTD’s generations are competitive
in both cases; we can’t reject the null hypothesis of
the crowd having equal preferences (OPT-1.3B +
SCoTD wins in 47% and 51% of cases respectively,
p > .01). Results hold for each dataset individu-
ally, as well.

3.2 Self-Consistency for the Student

Wang et al. (2022b) find that, for chain-of-thought
prompted models, taking a majority vote over a
large set of sample of predicted labels (resulting
from a diverse range of CoTs) can improve per-
formance. Our results regarding the effectiveness
of sampling N = 30 rationales from the teacher
during SCoTD are similar-in-spirit: i.e., we also
show performance gains from sampling multiple
rationalization chains per instance.

9See §6 for more discussion about the disparity between
CoT-quality and task accuracy.

1x

30x

Amount of Training Instances

Figure 3: Performance on CSQA with different amount
of training instances, from using only 20% of the x from
DTrain to using the full set (X-axis). Orange line is the
Label Only baseline. Bottom blue line (marked with
1x) is SCoTD but with only 1 sampled rationale per
instance; above are SCoTD with 5, 10, 20, 30 sampled
rationales per instance, respectively.

A natural question is, does the student model S
exhibit the same phenomenon, i.e., can we sam-
ple multiple chain-of-thoughts from it and take a
majority vote? We find that the student model can
benefit from “self-consistency,” but not in all cases.
In Table 3, we report the performance with/without
self-consistency (majority vote among 30 sampled
reasoning paths with a temperature of 0.7). When
training with filtered CoTs (Table 3 (a) bottom
rows) or training with few CoTs per example (Ta-
ble 3 (b), when #CoTs/Example is small), the stu-
dent model does not benefit from self-consistency.
Only when we train with multiple rationales per
example without filtering (the few-shot setting),
self-consistency is beneficial on CSQA and Open-
BookQA. Overall, the results show that student
models benefit from being shown a diverse/noisy
set of rationales, and that self-consistency can be
effectively applied after distillation.

3.3 SCoTD across Model and Dataset Sizes

We also verify the effectiveness of SCoTD across
model and dataset sizes; in these experiments, we
consider the supervised setting.

Data scaling. Figure 3 shows the effect of vary-
ing the size of DTrain (for simplicity, we show
only performance on CSQA as an example). Learn-
ing with CoTs is beneficial under all data scales.
Interestingly, SCoTD, trained with access to only
40% of the labelled data, can surpass the direct
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OPT-1.3B

OPT-350M

OPT-125M

# Rationales / Example

Figure 4: Performance on CSQA with three different
model sizes.

supervised label-only model with 100% of the la-
belled corpus; this result aligns with the argument
in Zaidan et al. (2007) – providing more explana-
tions from the teacher model could be more benefi-
cial than providing more labels.

Student model size scaling. Figure 4 presents
results when varying the size of the student model
from 125M to 1.3B parameters for CSQA. For
all model three model sizes, SCoTD outperforms
the standard supervised fine-tuning baseline (La-
bel Only). Sampling multiple rationales per input
instance is an effective strategy for all model sizes.

3.4 SCoTD on Challenging Contrast Sets

Can learning with explanations help generalization,
as hypothesized by (Zaidan et al., 2007)? As a
preliminary study, we show that SCoTD enables
better generalization to contrast sets. Contrast sets
(Gardner et al., 2020) are proposed to evaluate a
model’s robustness to perturbations around the de-
cision boundary, by asking annotators to modify
the original test instances in small but meaningful
ways that (typically) change the gold label.

We experiment on the IMDB (Maas et al., 2011)
sentiment analysis task in the supervised setting;
we consider the corresponding contrast set of
IMDB proposed by Gardner et al. (2020). We train
two models on the training set of IMDB: Label-
Only and SCoTD. For efficiency, we sub-sample
100K examples from the training set of IMDB
and truncate input sequences to 700 tokens. As
shown in Figure 5, while both models with/without
SCoTD achieve high performance on the original

IMDB test set (96.1% v.s. 95.5%, with the Label-
Only model performing slightly better), the model
with SCoTD achieves significantly higher perfor-
mance on the contrast set: 92.0% vs. 81.6%. This
result supports the hypothesis of (Zaidan et al.,
2007); that explanations can support more robust
generalization.

3.5 SCoTD on Unseen, Out-of-domain Tasks

Large language models can perform few-shot, in-
context learning with chain-of-thought prompting,
i.e., generating reasonable chain-of-thoughts on
unseen tasks with a few demonstrations (Suzgun
et al., 2022). We conduct a preliminary experi-
ment, inspired by Min et al. (2021)’s MetaICL, to
test whether student models trained with SCoTD
acquire the same ability. We train a supervised
SCoTD model on ANLI, CommonsenseQA, and
OpenBookQA, and evaluate it on SST-2 (Socher
et al., 2013), a sentiment analysis task.

The SCoTD model achieves a few-shot accu-
racy of 79.6% on the validation set (an example
prediction is shown in Figure 6).10 Compared
to a baseline model that learns with no CoT(i.e.,
a re-implementation of MetaICL trained on 3
source tasks); the baseline fails to recognize the
input/output format of the new task and predicts
answers out of the desired label set. It achieves (an
effective) 0% accuracy on SST-2. This suggests the
potential of including CoTs during instruction/in-
context tuning (Wei et al., 2022a; Min et al., 2021).

4 What Factors are Important for
Distillation?

An important factor underlying the performance
gains highlighted in §3 was the number of chain-of-
thoughts we sampled from the teacher model per-
instance (more samples = better; Figure 2). Here
we ask: is data volume the key contributing factor
to the performance improvement? Or, are specific
aspects of chain-of-thought samples key for the
performance improvements?

We design several filters to identify potentially
important examples/CoTs among the correct ratio-
nales. We apply designed filters (to be introduced)
to C′, the corpus sampled from the teacher (with
wrong CoTs dropped), that operationalize different
hypotheses about what factors are important to dis-
till. We control for dataset size when filtering, i.e.,

10For reference, GPT-3 text-curie-001 (∼6.7B pa-
rameters) achieves 74.5% with the same prompt.
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95

100

Original Contrast

92.0

95.5

81.6

96.1

Label Only
SCoTD

The author said that they love this movie and they are never tired of watching it. 
They say that the movie is wonderful and they are grateful to see such an 

outstanding picture. So the answer is: positive

This was a wonderfully clever and entertaining movie that I shall never 
tire of watching many, many times… I can only be grateful when I see 
such an outstanding picture for most of the motion pictures made more 

This was a wonderfully thick as two short planks and soul-destroying 
movie that I shall never watch any number of times… I can only be sorry 
when I see such an abysmal picture just as most of the motion pictures …

Original 
IMDB Dataset

Contrast  
IMDB Dataset

The author said that the movie was 'thick as two short planks and soul-
destroying', implying that the movie is bad. So the answer is: negative

🤖

SCoTD

SCoTD

Figure 5: Performance of SCoTD vs. label only supervision on the original and contrast IMDB dataset, along with
sample predictions from SCoTD.

"The vivid lead performances sustain interest and 
empathy " means that the performances are 

engaging. So the answer is: positive 

[Few-Shot Demonstrations] Q: What is the sentiment of the 
following sentence? “the vivid lead performances sustain 

interest and empathy , but the journey is far more interesting 
than the final destination. ” 

SCoTD on Multiple Source Tasks 

Chain-of-Thought Prompting on New Tasks (SST-2)

The answer must be some… 

The premise does not say… 

We can’t infer that the two… 
Teacher

🤖
Student

ANLI

CSQA

OBQA

SCoTD

Figure 6: Schematic of SCoTD models transferring
from training tasks (CSQA, ANLI, OBQA) to unseen
tasks (SST-2).

all filtered corpora have the same number of train-
ing CoTs. We downsample with a budget of 5 CoT
per instance on average11. Then, we train the same
student model on each of the filtered corpora, and
compare on downstream tasks. If a student model
trained on filtered corpus A tends to outperform the
student model trained on filtered corpus B, then we
argue that the property that produced corpus A is
more important. The hypotheses we consider are:

Null hypothesis: data volume. As a null hypoth-
esis, we randomly sub-sample 5 CoT per instance;
this filter operationalizes the assumption that an
arbitrary set of samples is sufficient.

Diversity. For each instance, we compute S-
BERT (Reimers and Gurevych, 2019) embed-

11In rare cases, we may end up with less as there are less
than 5 correct CoTs for the instance.
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Figure 7: Downsampling ablations: we subset our chain-
of-thought distillation corpus C with a fixed budget ac-
cording to different criteria. In general, keeping a di-
verse set of rationales performs well, though a random
sample often performs well too.

dings12 of each of the chain-of-thoughts, and clus-
ter the resulting embeddings using hierarchical
clustering into k = 5 clusters. Then, we randomly
sample a single instance from each cluster: the
resulting sample covers all clusters, and thus repre-
sents a diverse+representative sample.

Teacher likelihood. For each instance, we keep
the 5 CoT samples with the highest per-token log-
likelihood according to the teacher model.

Open-endedness. Some instances in each dataset
lead to a broader range of chain-of-thought samples

12We use paraphrase-MiniLM-L6-v2.
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than others. For example, on CommonsenseQA,
the question “What form of alcohol is made from
grapes?" leads to a narrower range of rational-
izations vs. “Why might someone purposefully
be going into trance?" We hypothesize that open-
ended instances could benefit from relatively more
sampled rationales. We sort instances into quin-
tiles based on the unique bi-grams in their cor-
responding 30 CoTs; for high-ranking instances
(more unique CoT bi-grams, like the “trance" ex-
ample above), we keep more rationales and for
low-ranking instances, we keep less rationales. We
keep 1, 3, 5, 7, 9 rationales for instances of differ-
ent bins (thus controlling for the total number of
CoT).

Results Figure 7 reports the accuracy of the stu-
dent model when fine-tuned on the different sub-
sampled corpora for the three tasks we consider.
Overall, random subsampling is a strong baseline,
but, we see some evidence that diversity among the
rationales is important. None of the models trained
on the sub-sampled data could approach the model
trained on the full 30x/instance CoT set. This sug-
gests that the sheer volume of the CoTs is a key
driving force for the performance improvement.

5 Related Work

Chain-of-thought prompting. As an extension
of few-shot prompting (Brown et al., 2020), chain-
of-thought has proven more generally applicable
than algorithmic/structured reasoning for which
intermediate step generation was initially studied,
e.g., by Roy and Roth (2015); Ling et al. (2017);
Chiang and Chen (2019); Nye et al. (2021). Re-
cent studies seek to improve and analyze CoTs
from different perspectives: Wang et al. (2022b)
improves the original CoTs through marginaliz-
ing over diverse reasoning paths while Wang et al.
(2022a) marginalize over diverse prompts; Zelik-
man et al. (2022); Huang et al. (2022) improves
CoT through a bootstrap manner of training on
self-generated CoTs; Li et al. (2022b) introduce
voting classifiers to filter sampled CoTs before fi-
nal prediction; Golovneva et al. (2022) introduce
some automatic metrics for automatic assessment
of chain-of-thoughts. This study instead focuses on
enabling CoT for smaller models via distillation.

Learning with explanations. Hase and Bansal
(2022) discuss how explanations can serve as in-
puts (Talmor et al., 2020), targets (Hendricks et al.,

2016; Fidler et al., 2017; Camburu et al., 2018;
Zhou et al., 2020; Narang et al., 2020; Kayser et al.,
2021; Wiegreffe et al., 2022), and priors (Zhang
et al., 2016; Srivastava et al., 2018) for machine
learning models. Chain-of-thought extends ear-
lier efforts which treat explanations as intermedi-
ate structures, generated at inference time (Rajani
et al., 2019). Most related to our work is Li et al.
(2022a), who do also learn with GPT-3 generated
explanations; we show multiple samples improve
significantly over their single-sample method, and
also use chain-of-thought prompting at inference
time vs. predicting explanations+labels via inde-
pendent multitasking.

Knowledge distillation. Recent work, inspired
by Knowledge Distillation (Hinton et al., 2015),
has considered symbolic knowledge distillation,
(West et al., 2022), i.e., instead of distilling from
soft representations like logits, large language
model serve as training data generators (Xiong
et al., 2019; Petroni et al., 2019; Schick and
Schütze, 2021; West et al., 2022; Liu et al., 2022;
Meng et al., 2022; Bhagavatula et al., 2022); this
paper continues this line of work.

Contemporaneous work. There are several con-
temporaneous papers: Huang et al. (2022), Mag-
ister et al. (2022), and Ho et al. (2022) all show
that smaller models can benefit from large models’
chains of thought. We contributes beyond these
by: 1) showing that sampling a large number of
chain-of-thoughts is paramount; 2) exploring trans-
fer performance to challenge sets/unseen tasks; and
3) analysis that address what factors are important
in the teacher corpus.

6 Conclusion

We demonstrate the effectiveness of Symbolic
Chain-of-thought Distillation (SCoTD): a method
that enables smaller language models to effectively
use chain-of-thought-style reasoning. We demon-
strate the method’s effectiveness across several
downstream tasks, different student model sizes,
different levels of supervision, and in difficult set-
tings (challenge sets, unseen tasks). Our ablations
shed light on what factors are particularly impor-
tant to distill in these chain-of-thoughts.

Our concrete recommendations are: 1) sam-
pling multiple and diverse CoTs for each input
instance, and 2) performing self-consistency when
the teacher CoTs are noisy. Several promising av-
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enues for future work include:

1. Exploring SCoTD for generation tasks in addi-
tion to classification tasks;

2. Scaling up the number of source tasks in § 3.5
to generalize to more tasks;

3. Using the down-sampling setup introduced in
§4 to explore additional hypotheses about what
other factors may be of importance in CoTs.

Limitations

Several limitations of our study include:
1. only English-language chain-of-thoughts/tasks

considered;
2. reliance on GPT-3, which is a closed-source

product with an unknown training set (which
could itself include some explanations); and

3. focusing only on a single type of student model,
OPT.
More broadly, learning from and with explana-

tions carries some specific risks related to automa-
tion bias. While a model might rationalize its pre-
dictions using a seemingly coherent string of nat-
ural language steps, even if it eventually gets the
prediction correct, there’s no guarantee that the
eventually predicted output actually results from a
process represented by the rationalization. A user
might assign excessive confidence to that system
based on the chain-of-thought. We observed many
cases where the chain of thought seemed promising
only to result in models ultimately making incor-
rect predictions in the final few tokens. Caution
should be taken when displaying chain-of-thoughts
to users.
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A Crowdworking details

A screenshot of the interface we use to collect the
pairwise human judgments from §3.1.1 is given in
Figure 8. We conduct a post-hoc analysis using a
javascript timer to ensure that annotators were paid
at least $15/hr: crowdworkers who didn’t meet
this hourly rate during annotation were awarded
bonuses post-hoc to ensure they were paid that
rate. We select crowdworkers with IP addresses in
US,CA,NZ,AU,GB.

IRB Information Crowdworking studies of stan-
dard NLP corpora (involving no personal disclo-
sures) are not required by our IRB to be reviewed
by them. While the authors of this work are not
lawyers and this is not legal advice, this opinion is
based on United States federal regulation 45 CFR
46, under which this study qualifies as exempt. We
do not release crowdworker IDs, so annotations
cannot be back-traced to individual workers.
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Figure 8: Crowdworking interface for pairwise judgements of chain-of-thought quality.
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