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Abstract

Adversarial attacks on deep neural networks
keep raising security concerns in natural lan-
guage processing research. Existing defenses
focus on improving the robustness of the vic-
tim model in the training stage. However, they
often neglect to proactively mitigate adversar-
ial attacks during inference. Towards this over-
looked aspect, we propose a defense framework
that aims to mitigate attacks by confusing at-
tackers and correcting adversarial contexts that
are caused by malicious perturbations. Our
framework comprises three components: (1)
a synonym-based transformation to randomly
corrupt adversarial contexts in the word level,
(2) a developed BERT defender to correct ab-
normal contexts in the representation level, and
(3) a simple detection method to filter out adver-
sarial examples, any of which can be flexibly
combined. Additionally, our framework helps
improve the robustness of the victim model
during training. Extensive experiments demon-
strate the effectiveness of our framework in de-
fending against word-level adversarial attacks.

1 Introduction

Deep neural networks (DNNs) have achieved re-
markable success in natural language processing
(NLP). However, they are vulnerable when facing
adversarial attacks (Alzantot et al., 2018; Liang
et al., 2018; Zhong et al., 2020a; Wang et al., 2020).
Textual adversarial attacks craft adversarial con-
texts by perturbing the input in order to fool the
victim model, which keeps raising security issues.

General textual adversarial attacks can be catego-
rized into three broad classes according to the per-
turbation grain, including character-level attacks
(e.g., word misspelling) (Ebrahimi et al., 2018;
Eger et al., 2019), word-level attacks (e.g., word

† Contribute equally.
∗ Corresponding author.

substitution) (Huang et al., 2019; Ren et al., 2019;
Li et al., 2020; Garg and Ramakrishnan, 2020;
Jin et al., 2020), and sentence-level attacks (e.g.,
paraphrasing) (Ribeiro et al., 2018; Wang et al.,
2020; Maheshwary et al., 2021). Character-level
and sentence-level attacks often tend to create il-
legal and unnatural sentences, which could be de-
tected by the spelling and grammar checker, re-
spectively (Pruthi et al., 2019; Ge et al., 2019).
Word-level attacks utilize synonym substitutions to
craft adversarial examples that do not violate gram-
matical and semantic requirements (Samanta and
Mehta, 2017; Garg and Ramakrishnan, 2020), and
thus it is more challenging to defend against them.
In this paper, we focus on the defense against such
synonym-based word-level adversarial attacks.

Defense methods for textual adversarial attacks
can be roughly divided into two categories (Li et al.,
2021): empirical defense and certified robustness.
Most empirical defense methods adopt and refine
adversarial training (Zhu et al., 2020; Wang and
Wang, 2020; Si et al., 2021; Ivgi and Berant, 2021)
to improve the robustness of models. Another line
of research (Liu et al., 2022; Dong et al., 2020; Le
et al., 2022; Zeng et al., 2021b) adopt regulariza-
tion or ensemble methods to achieve robustness to
perturbations. Certified robustness (Huang et al.,
2019; Jia et al., 2019; Ye et al., 2020) is dedicated
to provably certified robustness by optimizing inter-
val bound propagation upper bound. These meth-
ods primarily focus on improving the robustness
of models during training, while rarely considering
mitigating adversarial attacks during inference.

Most word-level adversarial attackers iteratively
search and substitute vulnerable words in order
to craft adversarial examples along with several
tailor-made adversarial contexts to fool the victim
model. We can achieve promising results in de-
fense against these attacks if we can (1) confuse
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the attacker on searching vulnerable contexts, and
(2) correct adversarial contexts. Towards this less
explored direction, we propose a flexible frame-
work Randomization Masked Language Modeling
(RMLM), which leverages randomness of MLM to
mitigate adversarial attacks during inference.

During inference, RMLM firstly applies (1) a
synonym-based transformation to randomly cor-
rupt potential adversarial contexts. However, this
introduced noise can be detrimental to the victim
model. Thanks to the pre-trained model that has
extensive knowledge, BERT (Devlin et al., 2019)
has been demonstrated to perform well on a range
of NLP tasks (Raffel et al., 2020; Zheng et al.,
2022; Zhong et al., 2020b). Thus, we develop
(2) a BERT defender to correct corrupted contexts
and remanent adversarial contexts in representa-
tion level. By sampling from the MLM head of
the BERT defender, we can reconstruct a denoised
input for the final prediction of the victim model.
Note that the returned logits may confuse the at-
tacker who heavily relies on precise logits feed-
back, since the feedback is based on the denoised
sample instead of the expected adversarial input.
Furthermore, we propose (3) a simple-yet-effective
detection method to filter out adversarial samples
based on the cooperation between the victim model
and the BERT defender. During training, the ro-
bustness of the victim model can be improved since
our randomized transformation and sampling op-
eration could enable the BERT defender to offer
abundant virtual samples for robust training. The
above three components constitute the proposed
framework RMLM, and each component can be
deployed independently to provide defense.

In summary, our contributions are as follows:

1) We explore a new approach to defense against
adversarial attacks in NLP, proactively mitigat-
ing adversarial attacks by confusing attackers
and correcting adversarial contexts.

2) We propose a flexible framework RMLM that
can effectively mitigate adversarial attacks and
improve the robustness of the victim model dur-
ing inference and training, respectively.

3) Extensive experiments across 3 DNNs, 3 attack
methods, 6 defense baselines, 5 metrics, and
3 benchmark datasets demonstrate the superior
performance of the proposed framework.

2 Related Work

Spelling and grammar checkers are successful in
defense against character-level and sentence-level
attacks which often violate grammatical require-
ments (Pruthi et al., 2019; Ge et al., 2019) during
inference. However, few of them can effectively
defend against word-level attacks. For defense
against word-level attacks, most previous works
employ empirical defense for robustness enhance-
ment (Zhu et al., 2020; Si et al., 2021; Zhou et al.,
2021; Ivgi and Berant, 2021; Dong et al., 2020; Liu
et al., 2022), where they heavily rely on augment-
ing generated adversarial examples and increase
the training cost (Liu et al., 2022). By contrast,
RMLM does not require additional data for aug-
mentation, making it more practical in realistic
scenarios. Certified robustness (Huang et al., 2019;
Jia et al., 2019; Ye et al., 2020) is dedicated to
provable robustness by expanding interval bound
propagation (Gowal et al., 2019) but often restricts
both the attack space and model architectures. Yet
each component of RMLM can be flexibly com-
bined and applied to different models. Besides,
we focus on “proactively mitigating adversarial at-
tacks during inference” rather than “improving the
robustness of victim models during training”.

Xie et al. (2018) show success in mitigating at-
tacks in computer vision by randomized transfor-
mations. Zeng et al. (2021b) propose RanMASK
to craft a mass of masked copies for the ensem-
ble prediction. Despite the difference in corrup-
tion, RMLM corrupts the input only once since
our BERT defender is developed to recover cor-
rupted and remanent adversarial contexts, while
RanMASK corrupts the input hundreds of times for
doing the ensemble. Besides, we leverage the inher-
ent randomness of RMLM for disturbing attackers’
search procedure and correcting adversarial con-
texts rather than achieving certified robustness.

3 Method

3.1 Background

Given a victim model f and the dataset D =
{(x, y)}, where x = [w1, w2, · · · , wn] is the input
text with n words and y is the label. The attacker
crafts several adversarial contexts by substituting
synonyms for words in x, resulting in a final ad-
versarial example xadv. The attacker iteratively
searches for the one xadv that can fool the victim
model, i.e., argmax f(xadv) ̸= y. The goal of de-
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Figure 1: Overview of RMLM during inference. The attacker perturbs the original sample x with [Test] (e.g.,
synonyms or triggers) to iteratively search vulnerable contexts and craft adversarial examples xadv. Every input xadv
would be randomly corrupted by our transformation to a corrupted input x′. BERT defender ED would reconstruct
x′ to a denoised one x̂ by sampling from MLM head. The detection is performed to filter out adversarial ones and
return logits of denoised input x̂ instead of the assumed malicious query/adversarial one xadv to confuse the attacker.

fense is to protect the victim model from making
incorrect predictions on adversarial examples.

3.2 Overview of RMLM

Fig. 1 shows the proposed framework, RMLM de-
fending against adversarial attacks. Our framework
utilizes a randomized transformation and a BERT
defender to first corrupt and then correct adversar-
ial contexts, reconstructing a denoised input which
is expected to be less harmful to the victim model.
And the randomness can make logits feedback full
of uncertainty during the attacker’s search proce-
dure, which may prevent the attacker from finding
a fatal adversarial context to fool the victim model.

RMLM is composed with three components any
of which could be flexibly combined: (1) a word-
level synonym-based transformation (§3.3), (2) a
developed BERT defender (§3.4), and (3) a simple-
yet-effective detection method (§3.5).

3.3 Word-Level Transformation

Motivated by the MLM task (Devlin et al., 2019),
we employ vanilla masking to corrupt the input
text. The BERT defender pre-trained by MLM has
the ability to identify and correct masked contexts
in order to alleviate negative effects of corruption.
However, the masking scheme does not account for
synonym substitutions commonly used by attack-
ers, suggesting that the BERT defender may not
be able to effectively correct remanent adversarial
contexts, leading to harm the victim model.

To this end, we devise a synonym-based transfor-
mation that is similar to the perturbation strategy
used by attackers. We first prepare a lookup ta-
ble T that collects k synonyms for each input’s
word wi from WordNet (Miller, 1998)1. Based on
the setting of BERT (Devlin et al., 2019), about

1The implementation details are in Appendix A.2

25% (i.e., transformation rate s = 0.25) of input
tokens would be substituted with their synonyms
in the lookup table. However, a mismatch between
our transformation and masking of MLM may hin-
der leveraging BERT’s knowledge, since MLM in
the large scale pre-training stage mainly uses the
[MASK] token while not involving any synonyms.
To mitigate this gap, we replace a token wi with (1)
a random synonym in T (SYN), (2) [MASK] token,
(3) [UNK] token, (4) a random token (RAND), and
(5) unchanged token wi (UNC) in 50%, 20%, 10%,
10% and 10% of the time, respectively.

3.4 BERT Defender
The randomized transformation for corrupting ad-
versarial contexts has the side effect of harming the
victim model, as the corrupted input is still noisy.

3.4.1 Fine-Tuning
We utilize the MLM task with our synonym-based
transformation instead of original masking to fine-
tune2 the BERT defender on the training set Dtrain
to achieve the goal of correcting abnormal contexts.
Fine-tuning would enable the BERT defender to
(1) identify both the [MASK] token and synonyms
which belong to remnant adversarial contexts, and
(2) correct the identified abnormal token to the orig-
inal one. The hidden vector of the MLM head for
the corrupted token is used to predict the original
token wi with cross entropy function as follows:

Lmlm = EDtrain

[
−
∑

i∈C
log(PED

(
wi | x′)

)
]
, (1)

where C and x′ denote corrupted tokens positions
and the corrupted input, respectively. After op-
timization, our BERT defender is able to correct

2We refer to it as fine-tuning because it performs on down-
stream tasks rather than using a large corpus for pre-training.
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both corrupted and remanent adversarial contexts,
obtaining a denoised input. Thus, the victim model
can suffer less from the noisy input.

3.4.2 Joint Training
The denoised input may not belong to the distribu-
tion learned by the victim model though our BERT
defender after fine-tuning can recover most cor-
rupted and adversarial contexts. Therefore, we
propose to jointly train the BERT defender and the
victim model to further improve the robustness.

For (x = [w1, · · · , wn], y) ∈ Dtrain, we follow
the aforementioned word-level transformation to
form the corrupted input x′. Then, BERT defender
ED encodes it as the hidden vectors h = ED(x

′),
where h = [h1, h2, · · · , hn] denotes hidden rep-
resentation for the tokens in the corrupted in-
put. We sample a token ws

i over the distribution
softmax(hi) rather than directly obtaining a token
by argmax(hi) to reconstruct the denoised input
x̂, since introducing randomness is shown to be ef-
fective in mitigating adversarial attacks (Xie et al.,
2018), and making it possible to offer abundant
virtual samples for robust training. However, the
sampling operation causes the non-differentiability
problem (Nie et al., 2019) due to the discrete nature
of texts which would prevent the gradients pass.

Gumbel-Softmax Relaxation To deal with the
above issue, we adopt the Gumbel-Softmax relax-
ation (Jang et al., 2017; Maddison et al., 2017) to
approximate ws

i with a continuous form. Specif-
ically, the Gumbel-Max trick (Maddison et al.,
2017) and the softmax function are employed to
sample discrete tokens and approximate discrete to-
kens, respectively. The Gumbel-Max trick samples
the discrete token ws

i as follows:

ws
i = argmax

1≤k≤|V|
(h

(k)
i + g

(k)
i ), (2)

where g(k)i = − log(− log(U
(k)
i )) is sampled from

the standard Gumbel distribution, with U
(k)
i ∼

Uniform(0, 1), and |V| is the vocabulary size of
the BERT defender. The continuous approximation
w̃s
i of the discrete token ws

i is given as follows:

w̃s
i = softmax(t(hi + gi)), (3)

where t is the temperature and set to 1. w̃s
i is dif-

ferentiable with respect to hi.
The denoised input x̂ = [w̃s

1, w̃
s
2, · · · , w̃s

n] can
be obtained by Eq. 3. Then, it is fed into the victim

Algorithm 1 The inference procedure of RMLM.
Require: original input x; BERT defender ED; victim model

f ; transformation rate s; prior threshold τ ; adversarial
attacker.

1: input xadv crafted by the adversarial attacker
2: x′ ← corrupt s of tokens in xadv by our transformation
3: Compute hidden vectors h = ED(x′)
4: Obtain x̂1 and x̂2 through Eq. 2
5: Compute the entropy Sx̂1 and Sx̂2 for f(x̂1) and f(x̂2)
6: if max(Sx̂1 , Sx̂2) < τ then
7: Filter adversarial examples by Det(x̂1, x̂2) in Eq. 5
8: if Sx̂1 < Sx̂2 then
9: logits(xadv)← f(x̂1)

10: else
11: logits(xadv)← f(x̂2)

12: return logits(xadv)

model f to get the probability P = f(x̂) with
respect to all M labels. And y is set to a one-hot
vector where the element of the label is 1. The joint
training objective is as follows:

Ljoint = EDtrain

[
−

M∑

m=1

y(m)log(P (m))

]
. (4)

After joint optimization, the victim model is ex-
pected to be more robust due to the proposed ran-
domized word-level transformation and sampling
operation could make the BERT defender provide
rich virtual samples for robust training.

3.5 Detection

As depicted in Fig. 1, we insert a simple but em-
pirically effective detection to filter out adversarial
examples after obtaining the denoised input.

Due to adversarial attacks and randomized op-
erations, the BERT defender may not be able
to recover every corrupted input with high con-
fidence to a definitely denoised sample x̂. As a
result, the predictions from the victim model f
can vary significantly, providing an opportunity
to detect adversarial examples. Specifically, we
sample twice from the output distribution of the
BERT defender to form x̂1 and x̂2. Then, the “Nor-
mal” and “Adversarial” sample is distinguished by
I = ✶[argmax(f(x̂1))=argmax(f(x̂2)], in details as:

Det(x̂1, x̂2) =

{
Adversarial, I = 0

Normal, I = 1
. (5)

However, we observe that this detection may
miss-detect some original samples, particularly in
datasets with data scarcity and short text length
(e.g., SST-2 dataset (Socher et al., 2013)).
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Prior Threshold We can set a threshold τ to
more precisely control which inputs should be de-
tected and which ones are skipped to reduce po-
tential risk of miss-detection. We first apply the
detection method in Eq. 5 to the training set and
gather the miss-detected samples D∗

train. It is intu-
itive to set the average entropy of predictions as the
threshold τ , calculated as follows:

τ =
1

|D∗
train|

∑

x∈D∗
train

−
M∑

m=1

P (m)log(P (m)), (6)

where P predicted by the victim model is the prob-
ability of the denoised input x̂ with respect to M
labels. During inference, for predictions with high
confidence (entropy lower than τ ), we still use the
detection in Eq. 5. For others lying in the deci-
sion boundary (entropy higher than τ ), we skip the
detection to avoid potential miss-detections.

The whole procedure of the inference stage of
RMLM is summarized in Algorithm 1.

4 Experiments

4.1 Experimental Setup

Datasets Experiments are conducted on three
benchmark classification datasets from phase-level
to document-level tasks, including IMDB (Maas
et al., 2011), AG’s News (Zhang et al., 2015), and
SST-2 (Socher et al., 2013). The dataset statis-
tics are listed in Table 1. IMDB is a document-
level sentiment classification dataset about movie
reviews. The essay-level AG’s News dataset is for
multi-class news classification. SST-2 is a phrase-
level sentiment analysis dataset. We set a longer
truncated length (Maxlen) than previous works to
provide more search and attack space for attackers.

Victim Models Three different types of DNNs
are adopted as victim models, including long-
short term memory (LSTM) (Hochreiter and
Schmidhuber, 1997), word-based convolutional
neural network (WordCNN) (Kim, 2014), and
BERTBASE (Devlin et al., 2019). LSTM consists of
2 layers of 300-dimensional memory cells. Word-
CNN uses three window sizes (i.e., 3, 4, and 5), and

Dataset # of classes Train Valid Test Truncated Len

IMDB 2 25000 0 25000 300
AG’s News 4 120000 0 7600 70
SST-2 2 6920 872 1821 32

Table 1: Dataset statistics.

each channel size is 100. Both LSTM and Word-
CNN use the 300-dimensional pre-trained GloVe
embeddings (Pennington et al., 2014). BERTBASE
contains 12 layers of 768-dimensional transformer
blocks and one linear layer for classification.

Attack Methods Three strong word-level adver-
sarial attack methods are employed as attackers.
Ren et al. (2019) propose PWWS which considers
the word saliency to determine the word replace-
ment order for greedy attack. Jin et al. (2020) first
identify the important words and then replace them
with the semantically similar and grammatically
correct words, named TextFooler. Li et al. (2020)
propose BERT-Attack which uses BERT to find
and substitute the vulnerable words in a semantic-
preserving way.

Defense Methods Six defense baselines across
empirical defense and certified robustness are com-
pared. Following Si et al. (2021), adversarial train-
ing (AT) is implemented by augmenting generated
adversarial data into the training set. SEM (Wang
et al., 2021) deploys synonym encoding to map
each cluster of synonyms to a unique encoding for
defense. AMDA (Si et al., 2021) linearly inter-
polates the representations of inputs to form vir-
tual samples for enhanced AT. Freelb++ (Li et al.,
2021) extends the search region to a larger ℓ2-norm
of Freelb (Zhu et al., 2020). Flooding-X (Liu et al.,
2022) improves Flooding (Ishida et al., 2020) to
boost model generalization by preventing further re-
duction of the training loss. Similar to our method,
RanMASK (Zeng et al., 2021b) defends against
attacks during inference but it aims at the ensem-
ble prediction to achieve certified robustness by
masking the input text hundreds of times.

Evaluation Metrics Five metrics are used to
measure the performance. ↑ and ↓ represent higher
or lower is better, respectively. (1) Clean accuracy
(CA% ↑) is the classification accuracy of the model
on clean data. (2) Post-attack accuracy (PAA% ↑)
is the accuracy under adversarial attacks. (3) Attack
success rate (ASR% ↓) is the percent of adversarial
examples among all test samples that can success-
fully fool the victim model. (4) Query count (QC
↑) is the number of queries the attacker needs to
search and craft one successful adversarial exam-
ple. (5) Modification rate (MR% ↑) is the percent
of words that are perturbed by the attacker.
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Method
No Attack PWWS TextFooler BERT-Attack

CA↑ PAA↑ ASR↓ QC↑ MR↑ PAA↑ ASR↓ QC↑ MR↑ PAA↑ ASR↓ QC↑ MR↑

IM
D

B
Original 92.604 6.7 92.7 1543 18.1 1.8 98.0 412 19.7 0.7 99.2 374 13.3
AT 92.684 28.3 69.1 1583 37.5 21.0 77.1 604 24.3 16.6 81.9 806 18.9
SEM 85.092 12.6 85.1 886 13.6 19.6 76.9 458 21.2 0.5 99.4 422 27.8
AMDA 92.588 49.0 46.7 1615 23.0 28.1 69.5 775 29.1 16.6 82.0 790 21.7
Freelb++ 93.808 46.9 49.6 1601 19.5 32.0 65.6 739 28.9 8.7 90.7 1021 31.6
Flooding-X 92.484 46.4 49.7 1600 20.0 34.6 62.5 754 17.8 28.4 69.2 1189 52.9
RanMASK 92.972 53.6 41.9 1610 13.1 51.6 44.1 906 19.4 24.7 73.3 1696 60.3
RMLM 92.260 47.6 47.4 1619 38.9 54.7 39.4 1036 41.0 32.5 64.0 1973 64.0

w/o Threshold 90.344 50.4 43.1 1616 44.8 57.6 34.8 1069 45.5 35.8 59.5 2083 46.1
w/o Detection 92.376 39.1 57.1 1610 39.3 51.6 43.4 991 41.4 17.7 80.6 1569 37.4

A
G

’s
N

ew
s

Original 94.368 45.1 52.0 248 26.8 39.0 58.5 151 29.9 38.8 58.7 220 22.8
AT 94.434 62.3 33.6 254 28.3 55.2 41.2 166 30.7 46.4 50.6 225 22.2
SEM 93.579 59.8 36.0 167 17.2 65.7 29.7 104 20.6 24.6 73.7 202 41.4
AMDA 94.224 59.3 34.8 253 26.9 53.2 41.5 166 28.0 36.3 60.1 230 18.6
Freelb++ 94.987 68.7 28.0 255 31.4 63.7 33.2 172 29.9 49.4 48.2 243 19.9
Flooding-X 93.579 50.5 44.1 251 22.7 46.6 48.4 158 27.8 35.2 61.0 209 28.5
RanMASK 92.842 45.5 50.8 251 32.2 59.7 34.9 174 33.4 44.0 36.6 406 25.3
RMLM 94.066 72.4 22.9 257 35.9 81.0 13.7 190 29.9 48.1 48.7 562 48.8

w/o Threshold 92.526 76.3 17.5 257 42.5 82.7 10.7 193 36.6 54.6 41.0 603 49.2
w/o Detection 94.118 59.4 36.3 254 38.9 77.0 17.5 188 28.8 27.2 70.8 458 44.8

SS
T-

2

Original 91.049 23.0 74.6 110 16.9 21.8 76.0 56 21.1 16.1 82.2 57 21.5
AT 89.951 35.8 60.1 113 21.2 33.9 62.2 64 22.7 18.8 79.0 63 21.7
SEM 82.812 23.7 70.7 88 18.7 24.5 69.7 49 22.0 10.7 86.8 49 33.6
AMDA 89.841 40.6 54.9 112 17.9 36.1 59.9 66 22.8 25.7 71.5 71 21.5
Freelb++ 91.104 34.5 62.0 112 18.4 33.8 62.7 64 21.8 25.3 72.1 68 22.2
Flooding-X 91.049 38.0 58.3 112 14.5 32.7 64.1 62 20.2 29.8 67.3 73 21.0
RanMASK 90.829 31.7 64.9 112 15.7 32.1 64.4 63 19.9 19.0 78.9 91 30.4
RMLM 87.919 34.9 59.8 113 27.9 52.6 39.5 78 26.4 18.5 78.7 95 30.6

w/o Threshold 81.604 44.1 45.2 114 27.6 56.8 29.4 85 29.7 24.9 69.1 115 29.0
w/o Detection 88.303 26.5 69.0 112 25.5 44.9 47.4 75 25.7 5.2 93.9 59 23.8

Table 2: The main results of BERT as the victim model. “Original” means that the victim model does not use any
defense methods. The best performance is marked in bold. The metric CA is evaluated on the whole test set, while
other metrics are on the aforementioned 1,000 sample set. We will take ablation studies on detection later in §5.2.

Method Original AT SEM Flooding-X RMLM

IM
D

B

No Attack CA 89.768 89.280 86.604 89.404 90.144

PWWS
PAA(ASR) 4.3(95.1) 5.5(93.8) 1.8(97.9) 15.8(82.3) 42.0(52.4)
QC(MR) 1528(18.5) 1523(28.4) 1524(10.1) 1555(13.3) 1586(40.0)

TextFooler
PAA(ASR) 4.7(94.7) 7.5(91.5) 5.3(93.8) 11.2(87.5) 53.0(40.2)
QC(MR) 446(28.4) 520(29.4) 438(16.3) 562(26.0) 995(39.0)

BERT-Attack
PAA(ASR) 0.7(99.2) 0.5(99.4) 0.1(99.9) 3.9(95.6) 25.0(71.5)
QC(MR) 414(12.4) 397(14.2) 343(8.6) 585(52.4) 1720(60.7)

A
G

’s
N

ew
s

No Attack CA 93.421 93.553 92.474 93.276 93.355

PWWS
PAA(ASR) 51.1(45.3) 47.9(48.4) 45.2(50.9) 51.7(44.6) 75.8(18.8)
QC(MR) 251(15.2) 250(19.2) 249(16.8) 250(18.4) 258(33.9)

TextFooler
PAA(ASR) 44.5(52.4) 41.8(55.0) 35.8(61.1) 45.2(51.6) 81.2(13.0)
QC(MR) 150(21.9) 151(25.0) 140(23.4) 154(25.8) 191(33.0)

BERT-Attack
PAA(ASR) 19.8(78.8) 27.4(70.5) 13.1(85.8) 33.0(64.7) 48.3(48.1)
QC(MR) 256(30.2) 211(25.8) 213(25.8) 263(29.1) 582(48.1)

SS
T-

2

No Attack CA 81.490 82.317 77.705 81.933 78.693

PWWS
PAA(ASR) 17.5(77.9) 17.5(78.0) 12.6(83.4) 19.6(75.5) 27.7(63.8)
QC(MR) 108(14.5) 109(18.3) 109(14.4) 108(15.7) 112(27.5)

TextFooler
PAA(ASR) 20.3(74.4) 19.7(75.2) 14.8(80.5) 22.7(71.7) 41.0(46.1)
QC(MR) 53(16.0) 54(20.9) 52(18.5) 53(17.2) 74(24.8)

BERT-Attack
PAA(ASR) 12.7(84.0) 10.6(86.7) 7.9(89.6) 24.7(69.2) 16.9(77.8)
QC(MR) 58(23.2) 54(23.5) 53(19.0) 86(22.8) 88(27.3)

Table 3: The main results of LSTM as the victim.

Method Original AT SEM Flooding-X RMLM

IM
D

B

No Attack CA 89.252 85.236 87.384 89.712 86.404

PWWS
PAA(ASR) 1.6(98.2) 0.8(99.0) 1.6(98.2) 2.4(97.2) 29.2(65.5)
QC(MR) 1531(11.2) 1553(7.3) 1528(9.1) 1521(11.2) 1588(35.6)

TextFooler
PAA(ASR) 1.7(98.1) 0.7(99.2) 1.2(98.6) 1.8(97.9) 40.6(51.8)
QC(MR) 372(19.3) 355(14.4) 378(17.1) 384(18.1) 928(39.5)

BERT-Attack
PAA(ASR) 0.0(100.0) 0.0(100.0) 0.1(99.9) 0.2(99.8) 13.2(84.5)
QC(MR) 342(14.2) 328(6.2) 345(7.7) 367(50.9) 1263(58.0)

A
G

’s
N

ew
s

No Attack CA 92.237 89.737 91.000 92.171 91.447

PWWS
PAA(ASR) 39.4(57.1) 20.0(77.4) 34.2(61.9) 42.3(53.8) 54.0(40.3)
QC(MR) 248(18.7) 242(14.8) 246(17.2) 247(17.5) 252(28.7)

TextFooler
PAA(ASR) 41.0(55.4) 19.1(78.4) 36.3(59.5) 42.7(53.3) 68.9(23.9)
QC(MR) 146(24.4) 114(19.0) 139(21.8) 147(23.7) 182(26.4)

BERT-Attack
PAA(ASR) 9.4(89.8) 3.1(96.5) 5.1(94.3) 9.4(89.7) 35.6(60.7)
QC(MR) 152(25.0) 131(14.2) 143(21.4) 168(30.0) 496(40.8)

SS
T-

2

No Attack CA 79.572 68.314 78.034 78.198 78.199

PWWS
PAA(ASR) 16.0(79.2) 7.3(88.8) 12.3(83.8) 17.3(76.9) 19.6(74.5)
QC(MR) 110(17.1) 111(12.7) 110(13.2) 110(15.7) 111(25.9)

TextFooler
PAA(ASR) 20.8(73.0) 9.7(85.1) 15.6(79.4) 21.0(72.0) 34.5(54.9)
QC(MR) 55(18.9) 46(15.4) 52(18.0) 55(17.9) 69(26.4)

BERT-Attack
PAA(ASR) 5.6(92.7) 4.1(93.7) 3.7(95.1) 19.8(73.6) 8.3(89.2)
QC(MR) 51(23.9) 41(17.0) 45(18.3) 90(25.6) 73(26.7)

Table 4: The main results of WordCNN as the victim.

Implementation Following Wang et al. (2021);
Li et al. (2021); Alzantot et al. (2018); Zeng et al.
(2021b), we uniformly sample 1,000 examples
from the distribution of the entire test set for the
evaluation. The evaluation is conducted with the
help of OpenAttack (Zeng et al., 2021a). To make
the evaluation more challenging, we allow attack-
ers without limitations on QC and MR to generate
different adversarial examples to target different
methods dynamically. Hyperparameter and imple-
mentation details are listed in Appendix A.

4.2 Main Results

Table 2, 3, and 4 show experimental results of
BERT, LSTM and WordCNN, respectively. We
have the following observations: (1) In such chal-
lenging settings, DNNs are so fragile that their PAA
drops sharply. SEM proposed for static evaluation
is powerless to defend against attacks. (2) Our
framework RMLM is universally effective for mod-
els with different architectures. Compared to the
state-of-the-art method Flooding-X across all vic-
tim models and datasets, RMLM yields average
absolute gains 15.9, 18.2, 199, and 12.2 for PAA,
ASR, QC, and MR, respectively. For CA, RMLM
is only 1.2 lower. The substantial increase in QC
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Dataset Method
LSTM WordCNN BERT

PAA ASR QC MR PAA ASR QC MR PAA ASR QC MR

IMDB

PWWS 47.5 44.8 1601 44.8 32.5 60.4 1602 39.9 50.4 43.1 1616 44.8
+Adaptive 34.6 60.7 2237 85.3 7.5 91.2 2172 75.8 33.4 63.0 2279 84.2
Variation 27.2%↓ 35.5%↑ 39.7%↑ 90.5%↑ 76.9%↓ 51.0%↑ 35.6%↑ 89.9%↑ 33.7%↓ 46.2%↑ 41.0%↑ 87.9%↑

AG‘s News

PWWS 76.8 15.6 259 39.0 61.2 29.8 256 33.3 76.3 17.5 257 42.5
+Adaptive 60.5 35.4 383 60.4 35.2 61.1 375 49.9 46.4 50.3 380 63.4
Variation 21.2%↓ 126.7%↑ 47.9%↑ 55.0%↑ 42.5%↓ 105.1%↑ 46.5%↑ 49.8%↑ 39.2%↓ 187.4%↑ 47.9%↑ 49.0%↑

SST-2

PWWS 33.4 51.4 111 31.8 25.5 62.5 112 30.3 44.1 45.2 114 27.6
+Adaptive 14.2 81.4 158 48.0 10.4 86.3 158 46.6 18.7 78.3 161 51.8
Variation 57.5%↓ 58.5%↑ 42.3%↑ 51.1%↑ 59.2%↓ 38.0%↑ 41.1%↑ 53.5%↑ 57.6%↓ 73.1%↑ 41.2%↑ 87.6%↑

Table 5: The performance of different models with RMLM against PWWS and adaptive attack (“+Adaptive”) on
three datasets. The threshold of RMLM is disabled to enhance the defense. The variation indicates the relative gap
between adaptive attack and original PWWS.

<20
20~40

40~60
60~80 >80

MR

0

20

40

60

80

Sa
m

pl
e 

Fr
ac

tio
n 

(%
)

58.69

7.27 7.40 10.66
15.98

(a) Flooding-X

Average PWWS TextFooler BERT-Attack

<20
20~40

40~60
60~80 >80

MR

32.20

11.70 14.01 16.46
25.63

(b) RMLM

Figure 2: Sample fraction of successful adversarial ex-
amples by MR for attacking Flooding-X and RMLM.

and MR indicates the success of mitigating attacks
by confusing attackers and correcting adversarial
contexts, respectively. Fig. 2 also shows that at-
tacking RMLM is more costly since attackers often
have to perturb more words for success. (3) Com-
pared to RanMASK, our method performs aver-
age 22.4%, 15.5%, 12.3%, and 57.8% relative bet-
ter on PAA, ASR, QC, and MR. Additionally, our
method has an advantage over RanMASK in terms
of computation resources, where is shown in Fig. 5.

4.3 Adaptive Attack
We attempt to break our framework by devising
an adaptive attack (Athalye et al., 2018). The
adaptive attack is constructed after the defense
method has been completely designed (Athalye
et al., 2018; Tramèr et al., 2020), where the at-
tacker can take advantage of the architecture of
our framework RMLM. Based on the fact that
the BERT defender would take a sampling oper-
ation to recover abnormal tokens before feeding
into the victim model, we can insert several trig-
ger tokens to attack the BERT defender. Specif-
ically, PWWS algorithm (Ren et al., 2019) is en-
hanced with trigger insertions. We insert triggers
(e.g., [MASK], [SEP], [unused]) to search the tex-
tual space to find vulnerable positions. These trig-

gers are likely to be recovered by the BERT de-
fender to other meaningful tokens that may change
the contexts, leading to a malicious attack to the
follow-up victim model.

Table 5 reports the results of RMLM against
adaptive attack (“+Adaptive”) on three datasets.
We find that this adaptive attack is more effective
than PWWS in breaking RMLM, resulting in a
sharp drop in PAA for three different types of vic-
tim models. However, we also notice that QC and
MR significantly increase due to a mass of queries
and perturbations. Although this adaptive attack
is not a complete success, we believe that it still
exposes potential vulnerabilities of RMLM.

5 Analysis and Discussion

In this section, we dig into the following questions:
(1) What is the effectiveness of each component in
mitigating attacks? §5.1. (2) How effective is our
detection method in filtering adversarial examples?
§5.2. (3) What is the impact of hyperparameters?
§5.3. (4) How to handle additional computation
burden problem in realistic scenarios? §5.4.

5.1 Analysis about Mitigating

The top block of Table 6 shows the results of the
victim model directly equipped with our transfor-
mation and BERT defender which are the key com-
ponents for mitigating attacks. We find that, (1) en-
abling the transformation during inference signif-
icantly boosts average PAA by 16.5. Attackers
often have to double QC and MR, which is strong
evidence that our word-level transformation can
effectively confuse attackers. (2) It also shows im-
provement in defense when we directly insert the
BERT defender before the input layer of the victim
(w/ Defender), confirming it can correct adversarial
contexts to mitigate attacks. (3) The performance
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Method
No Attack PWWS TextFooler BERT-Attack

CA↑ PAA↑ ASR↓ QC↑ MR↑ PAA↑ ASR↓ QC↑ MR↑ PAA↑ ASR↓ QC↑ MR↑

Victim 92.604 6.7 92.7 1542 18.1 1.8 98.1 412 19.7 0.7 99.2 373 13.3
Victim w/ Transformation 91.848 22.5 75.3 1564 32.3 30.0 67.0 818 38.4 6.2 93.2 868 19.7
Victim w/ Defender 88.980 15.8 82.1 1540 37.9 36.9 57.7 882 38.6 2.9 96.7 895 26.1
Victim w/ Transformation & Defender 88.692 16.3 81.2 1555 37.5 39.7 54.8 904 39.7 2.9 96.7 872 24.5

RMLM 92.260 47.6 47.4 1619 38.9 54.7 39.4 1036 41.0 32.5 64.0 1973 64.0
RMLM w/o Fine-tuning 92.080 40.7 55.1 1584 43.1 51.9 42.8 996 38.9 24.1 73.5 1727 60.0
RMLM w/ MLM Masking 92.568 29.7 67.4 1581 40.4 48.5 47.7 1001 41.4 15.5 83.0 1502 59.3

Table 6: Analysis of RMLM with BERT as the victim model against various attacks on the IMDB dataset.

except defending against TextFooler stops growing
when two components are applied together, sug-
gesting that the joint training is necessary.

In the bottom block of Table 6, we validate the
fine-tuning of the BERT defender and compare our
transformation with masking. (1) Compared to
RMLM w/o Fine-tuning, we find that fine-tuning
on downstream tasks can improve the performance
of the BERT defender. (2) The re-trained RMLM
w/ MLM Masking achieves inferior defense per-
formance than RMLM, indicating that corruption
integrated with our synonyms substitution can bet-
ter defend against attacks than simply masking.

5.2 Effect of Detection

As shown in Table 2, we first disable the prior
threshold (w/o Threshold), this variant increases
the risk of miss-detecting original samples though
it can offer more defense, indicating that the thresh-
old is a double-edged sword. Next, we totally dis-
able the detection (w/o Detection), causing a 20.5%
average drop in PAA. It confirms that this simple
detection is effective in filtering adversarial inputs.

We quantitatively measure the detection error
rate of original samples by comparing the CA met-
ric among these detection variants. The error rates
on IMDB, AG’s News and SST-2 datasets for de-
tection (1) w/o Threshold are 2.0%, 1.5%, 6.7%,
and (2) w/ Threshold are 0.1%, 0.05%, 0.3%. It is
clearly that setting a threshold can reduce the risk
of miss-detecting original samples particularly in
datasets with data scarcity and short text length.

We conduct a further study on SST-2, as shown
in Table 7. Our detection can identify the majority
of original samples and a hand of adversarial ones.
The prediction is still satisfying3. After disabling
the threshold, the average accuracy of identifying
original ones drops by 11.4 and the variation also
increases. We conjecture that the lack of training

3Miss-detected adversarial samples may be finally pre-
dicted correctly. The same is true for correct detection of the
original ones, which cannot guarantee predictions are correct.

Original Adversarial Prediction

LSTM 96.85±0.58(84.35±0.62) 5.60±0.68(21.39±0.62) 77.54±0.38(73.29±0.27)
WordCNN 96.31±0.28(83.58±0.96) 6.75±1.07(24.87±2.15) 76.74±0.44(73.21±0.61)
BERT 97.11±0.45(88.14±0.93) 5.89±0.52(29.75±1.69) 80.84±0.48(79.49±0.47)

Table 7: Accuracy for detecting original and adversarial
samples, and prediction on SST-2 mixed with adversar-
ial ones. Numbers in brackets represent w/o Threshold.

data makes both the BERT defender and victim
models poorly trained. Coupled with the short
input length, predictions for original samples can
also vary significantly, increasing the risk of miss-
detection. Some suggestions are offered in §6.

5.3 Hyperparameter Analysis
Fig. 3 shows the impact of hyperparameters in-
cluding the transformation rate s, max synonyms
number k and prior threshold τ .

Transformation Rate The PAA increases when
s > 0, showing that our transformation can help
mitigate attacks. The CA keeps relatively stable
for IMDB and AG’s News when s < 0.5, while for
SST-2 when s < 0.15. Both CA and PAA decrease
sharply if s is too large, since corrupting too much
makes the BERT defender powerless to recover.

Max Synonym Number A moderate k can help
the BERT defender identify more synonyms sub-
stituted by the attacker, while have little effect on
the performance in the inference stage. However,
the benefits of increasing k are limited and storing
more synonyms would consume more resources.

Prior Threshold Setting τ to 0.0 or 1.0 indicates
disabling detection or prior threshold, respectively.
A proper τ can help RMLM balance CA and PAA.
For the SST-2 dataset, a higher τ greatly increases
the risk in miss-detecting original samples. Calcu-
lating this threshold using Eq. 6 is usually a good
choice and can save a lot of tuning costs.

5.4 Flexibility in Realistic Scenarios
First, we would like to introduce a variant that has
no additional overhead during inference.
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Figure 3: Hyperparameter impacts with 100 samples
of each dataset. PAA is averaged over all three attack-
ers. Red points represent for the calculated threshold
τ through Eq. 6. In exploring s and k, we disable the
threshold since it depends on them.

A Computation-Friendly Variant The victim
model after being jointly trained can be directly
deployed for defense thanks to large training sam-
ples provided by our BERT defender. As shown
in Table 8, this variant beats AMDA the best AT
method on IMDB under 2 out of 3 attackers. An-
other realistic advantage is that it does not require
augmenting adversarial examples. Further, it can
achieve performance on par with Flooding-X when
enabling the transformation, while only incurring a
slight increase in computational overhead.

Through analysis, we argue that our framework
RMLM is well-suited to realistic scenarios be-
cause it is a flexible framework that can easily
reduce the computational overhead or improve de-
fense performance by switching among variants,
which is costless since they share the same trained
model weights. Fig. 4 compares various variants of
RMLM in terms of CA, PAA, and computational
Resource. We have several practical suggestions:
(1) For already deployed models, they can benefit
from mitigating attacks by using our transforma-
tion (Victim w/ Transformation §5.1). (2) For most
services, the best option is to deploy Victim w/
Joint Training introduced in §5.4. The computa-
tional resource keeps the same with the original

Metric No Attack PWWS TextFooler BERT-Attack

CA / PAA 92.576(92.112) 38.3(40.5) 33.6(42.3) 33.8(31.9)
ASR \ 57.77(54.02) 62.95(52.04) 62.73(63.91)
QC \ 1578(1605) 679(967) 1016(1879)
MR \ 13.16(39.96) 14.70(40.16) 20.25(37.03)

Table 8: Results of BERT w/ Joint Training on IMDB.
Numbers in brackets mean enabling our transformation.

CA
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0.4

0.6
0.8

1.0

0.03

Original
w/ Transformation §5.1
w/ Joint Training §5.4
RMLM
RMLM w/o Threshold §5.2

Figure 4: Comparison of various variants of RMLM
using normalized results. The inverse of model forward
time is as the metric for Resource. Higher scores indi-
cate better performance. Details are in Appendix B.

model but owns dozens of times better defense per-
formance. (3) When adversarial inputs dominate
services, depending on the training data, RMLM
or RMLM w/o Threshold (§5.2) can be selected to
offer more defense performance though there is no
free lunch in computational overhead.

6 Conclusion

In this paper, we propose a framework RMLM for
defending against word-level adversarial attacks
during inference by confusing attackers and cor-
recting adversarial contexts in both the word and
representation levels. We also introduce a simple
detection method to effectively filter out adversar-
ial examples. Besides, we show that the robustness
of victim models can be greatly improved by joint
training with our BERT defender. Extensive exper-
iments in a challenging evaluation setting demon-
strate that RMLM owns superior defense perfor-
mance across a range of models, attackers, and
datasets. The analysis shows that RMLM’s flexi-
bility allows it to balance defense performance and
computation resources for handling realistic sce-
narios. We believe that our findings will facilitate
future research on the security of NLP.

2765



Limitations

In this section, we discuss limitations of RMLM
with integrity and attempt to provide valuable di-
rections to further improve our method. There are
some potential limitations as follows:

1) RMLM does not perform well on the SST-2
dataset, indicating it may not be applicable to
phrase-level datasets with data scarcity. And in
some extreme cases of short text, RMLM may
often give incorrect predictions. We recommend
doing more MLM pre-training using our word-
level transformation if resources are available.

2) The mitigation is mainly contributed by the
transformation and the BERT defender. How-
ever, there is a lack of exploration of different
types of them in this paper. It is worth explor-
ing different transformation schemes (e.g., span
masking) and a lightweight model (e.g., AL-
BERT (Lan et al., 2020)) as a defender to reduce
the computation overhead.

3) The adopted evaluation is for testing the perfor-
mance of defense against word-level adversarial
attacks. RMLM may expose flaws in mitigating
character-level or sentence-level attacks. The
applicability of the proposed approach needs
more investigation.
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Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-Ung
Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant
Swarnkar, Edwin Simpson, and Iryna Gurevych.
2019. Text processing like humans do: Visually
attacking and shielding NLP systems. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1634–1647, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: BERT-based adversarial examples for text clas-
sification. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6174–6181, Online. Association for
Computational Linguistics.

Tao Ge, Xingxing Zhang, Furu Wei, and Ming Zhou.
2019. Automatic grammatical error correction for
sequence-to-sequence text generation: An empirical
study. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
6059–6064, Florence, Italy. Association for Compu-
tational Linguistics.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stan-
forth, Rudy Bunel, Chongli Qin, Jonathan Uesato,
Relja Arandjelovic, Timothy Arthur Mann, and Push-
meet Kohli. 2019. Scalable verified training for prov-
ably robust image classification. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November
2, 2019, pages 4841–4850. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computing, 9(8):1735–
1780.

Po-Sen Huang, Robert Stanforth, Johannes Welbl, Chris
Dyer, Dani Yogatama, Sven Gowal, Krishnamurthy
Dvijotham, and Pushmeet Kohli. 2019. Achieving
verified robustness to symbol substitutions via in-
terval bound propagation. In Proceedings of the

2766

https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/C18-1055
https://aclanthology.org/C18-1055
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/P19-1609
https://doi.org/10.18653/v1/P19-1609
https://doi.org/10.18653/v1/P19-1609
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.18653/v1/D19-1419


2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4083–4093, Hong Kong,
China. Association for Computational Linguistics.

Takashi Ishida, Ikko Yamane, Tomoya Sakai, Gang Niu,
and Masashi Sugiyama. 2020. Do we need zero
training loss after achieving zero training error? In
Proceedings of the 37th International Conference on
Machine Learning, pages 4604–4614.

Maor Ivgi and Jonathan Berant. 2021. Achieving model
robustness through discrete adversarial training. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
1529–1544, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categori-
cal reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy
Liang. 2019. Certified robustness to adversarial word
substitutions. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4129–4142, Hong Kong, China. Association
for Computational Linguistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT really robust? A strong
baseline for natural language attack on text classifi-
cation and entailment. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 8018–8025. AAAI Press.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Linguis-
tics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Thai Le, Noseong Park, and Dongwon Lee. 2022.
SHIELD: Defending textual neural networks against
multiple black-box adversarial attacks with stochastic
multi-expert patcher. In Proceedings of the 60th An-
nual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 6661–
6674, Dublin, Ireland. Association for Computational
Linguistics.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193–6202, Online. Association for Computational
Linguistics.

Zongyi Li, Jianhan Xu, Jiehang Zeng, Linyang Li, Xiao-
qing Zheng, Qi Zhang, Kai-Wei Chang, and Cho-Jui
Hsieh. 2021. Searching for an effective defender:
Benchmarking defense against adversarial word sub-
stitution. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3137–3147, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian,
Xirong Li, and Wenchang Shi. 2018. Deep text classi-
fication can be fooled. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden, pages 4208–4215. ijcai.org.

Qin Liu, Rui Zheng, Bao Rong, Jingyi Liu, ZhiHua Liu,
Zhanzhan Cheng, Liang Qiao, Tao Gui, Qi Zhang,
and Xuanjing Huang. 2022. Flooding-X: Improv-
ing BERT’s resistance to adversarial attacks via loss-
restricted fine-tuning. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5634–
5644, Dublin, Ireland. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous re-
laxation of discrete random variables. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

2767

https://doi.org/10.18653/v1/2021.emnlp-main.115
https://doi.org/10.18653/v1/2021.emnlp-main.115
https://doi.org/10.18653/v1/D19-1423
https://doi.org/10.18653/v1/D19-1423
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.18653/v1/2022.acl-long.459
https://doi.org/10.18653/v1/2022.acl-long.459
https://doi.org/10.18653/v1/2022.acl-long.459
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2021.emnlp-main.251
https://doi.org/10.18653/v1/2021.emnlp-main.251
https://doi.org/10.18653/v1/2021.emnlp-main.251
https://doi.org/10.24963/ijcai.2018/585
https://doi.org/10.24963/ijcai.2018/585
https://doi.org/10.18653/v1/2022.acl-long.386
https://doi.org/10.18653/v1/2022.acl-long.386
https://doi.org/10.18653/v1/2022.acl-long.386
https://aclanthology.org/P11-1015


Rishabh Maheshwary, Saket Maheshwary, and Vikram
Pudi. 2021. A strong baseline for query efficient
attacks in a black box setting. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 8396–8409, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

George A Miller. 1998. WordNet: An electronic lexical
database. MIT press.
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A Implementation Details

A.1 Hyperparameter Settings
The training hyperparameters across all three
datasets for our framework RMLM are listed in
Table 9. AdamW (Loshchilov and Hutter, 2019) is
used as the optimizer for both fine-tuning and joint
training. BERT defender of RMLM is initialized
with pre-trained BERTBASE

4. Then it is fine-tuned
on the training set of each dataset with MLM task.
The transformation rate s = 0.25 and the maxi-
mum synonyms number k = 32 are set in default.
During joint training, s = 0.25 and k = 32 are
often the same as that in the fine-tuning stage. For
the SST-2 dataset, we set s and k to 0.15 and 16 in
default, reducing randomness to keep stable perfor-
mance. The prior threshold τ is calculated by Eq. 6
over the training set of each dataset.

To ensure the reproducibility, we set a consistent
random seed across all experiments.

Hyperparameter Value

Batch size 64
LR for BERT Defender (MLM Fine tuning) 3e-5
LR for BERT Defender (Joint training) 1e-5
LR for Victim Models (Joint training) 1e-3
β of AdamW (0.9, 0.999)
ϵ of AdamW 1e-8
Weight Decay 1e-3
Warm-up steps 600

Table 9: Hyperparameter settings. “LR” is short for the
learning rate.

Algorithm 2 Preparing the lookup table.
Require: synonyms from WordNet; maximum synonym

number k; threshold t; training data Dtrain = {(x, y)}.
Ensure: synonym lookup table T
1: procedure PREPARING THE SYNONYM LOOKUP TABLE
2: x = [w1, w2, · · · , wn]
3: for wi in x do
4: Try to collect k synonyms from WordNet
5: Obtain k − r synonyms
6: if r > 0 then
7: if r > t then
8: Pad r−t remaining positions with random

tokens, [UNK], and [MASK]
9: else

10: Pad r remaining positions with random
tokens, [UNK], and [MASK]

11: return synonym lookup table T

A.2 Implementation of Lookup Table
The size of synonyms lookup table should be
|V| × k, where |V| and k are the vocabulary size

4https://huggingface.co/
bert-base-uncased

Original Token Synonyms

glad good, amazed, pleased, impressed,
gladly, hopefully, delighted, happy,
proud, grateful, optimistic, thankful,
fantastic, hopeful, hope, nice, awesome,
beaming, relieved, king, definitely, sure,
speechless, sword, thank, regrets

movie film, hollywood, sequel, miniseries,
popcorn, filmmaker, bollywood, pic, ac-
tor, actress, anime, comics, filming, cin-
ematographer, comedy, adaptation, pic-
ture, disney, cinema, netflix, gore, flick,
blockbuster, motion, thriller

swim lifeboat, backstroke, surf, aquatics, mer-
maid, gymnastics, butterfly, diver, div-
ing, swimming, freestyle, surfer, float,
skate, drown, ski, drowning, boating,
sailing, sprint, invitational, portage, re-
lay, javelin, gymnast, volleyball

Table 10: Synonyms examples. Tokens colored in red
are the irrelevant tokens.

of BERT defender and the number of synonyms
of one token, respectively. Table 10 shows the
collected synonym examples. Note that these syn-
onyms can also include irrelevant tokens or even
antonyms since we do not apply any constraints
(e.g., counter-fitting (Mrkšić et al., 2016)). While
these noisy tokens may contribute to improving the
robustness of BERT defender.

The WordPiece tokenization (Wu et al., 2016)
can cut words to sub-tokens which have rare syn-
onyms. Besides, nouns often have less synonyms
than other words. For words with less than k syn-
onyms, we pad 10%, 20%, and 70% of the unfilled
positions of the lookup table with random tokens,
[UNK] token, and [MASK] token, respectively. As
Devlin et al. (2019) mentioned, masking too much
will harm BERT’s performance. For our transfor-
mation, padding too many meaningless tokens (e.g.,
[UNK] token) contributes to increasing the proba-
bility of substituting tokens with them instead of
synonyms. Thus, we set a threshold t = ⌊k/5⌋ to
control the maximum padding number. The proce-
dure of preparing the synonym lookup table T is
shown in Algorithm 2.

A.3 Implementation of Detection

The attacker query the victim model to get logits
feedback for iterations and prediction for confirm-
ing whether it is a successful adversarial example.
For example, given an original input pair (x, y), the
attacker perturbs some words to craft xadv and feeds
it to the victim model f . If argmax f(xadv) ̸= y,
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xadv is called a successful adversarial example, and
the attack procedure will terminate.

We return a special prediction label “−1” instead
of argmax f(xadv) for “Adversarial” in Eq. 5 to
tell the attacker that this query has been detected.
Thus, the attack procedure will continue. Note that
we will count it as an incorrect prediction if RMLM
miss-detects original samples because of −1 ̸= y.

A.4 Attack and Defense Methods
Attack Methods For attackers including
PWWS (Ren et al., 2019), TextFooler (Jin et al.,
2020), and BERT-Attack (Li et al., 2020), we use
default hyperparameters provided by OpenAttack
library5 (Zeng et al., 2021a).

Defense Methods The original codes of
AMDA (Si et al., 2021)6, Freelb++ (Li
et al., 2021)7, Flooding-X (Liu et al., 2022)8,
SEM (Wang et al., 2021)9 and RanMASK (Zeng
et al., 2021b)10 are integrated to our evaluation
framework. In almost all the cases, we use the
original hyperparameters mentioned in their orig-
inal papers. For a few cases, the best performed
parameters are used instead of the original ones.
The details are as follows:

1) AT. Following Si et al. (2021), the vanilla adver-
sarial training method is implemented by aug-
menting 3000, 3000, and 4000 additional ad-
versarial samples to the training set for IMDB,
AG’s News, and SST-2, respectively.

2) SEM. We follow the original paper to set the
size of the synonyms cluster to 10. The syn-
onyms in each synonyms cluster are mapped
into one unique word. The upper bound of the
distance between the original word and its syn-
onyms is set to 0.5. The clustering process is
conducted in the word embedding space. The
pre-trained 300-dimensional GloVe (Penning-
ton et al., 2014) word embeddings after counter-
fitting (Mrkšić et al., 2016) are adopted to im-
plement synonym encoding.

3) AMDA. We augment the training data with
3000, 3000, and 4000 adversarial examples gen-
5https://github.com/thunlp/OpenAttack
6https://github.com/thunlp/MixADA
7https://github.com/RockyLzy/

TextDefender
8https://github.com/QLiu-NLP/

Flooding-X
9https://github.com/xiaosen-wang/SEM

10https://github.com/zjiehang/RanMASK

erated from PWWS and TextFooler for IMDB,
AG’s News, and SST-2 datasets, respectively.
We mix up the pairs of hidden representations
at the layer i of BERT. i is randomly chosen
from {7, 9, 12}. The representation of [CLS]
token is used for mixing. The linearly inter-
polation rate comes from a beta distribution
Beta(α, α). We select the best performed
α ∈ {0.2, 0.4, 2.0, 4.0, 8.0} for each dataset.

4) Freelb++. The ℓ2-norm bound is removed by
increasing the ascent steps t. For the AG’s News
dataset, t = 30 is adopted following the original
paper. The authors set t = 10 for the IMDB
dataset in the original paper. However, it per-
forms badly under our settings. The reason
may be we set a much longer truncated length
(208 → 300). And the SST-2 dataset is not in-
volved in the original paper. Thus we select t
from the range {5, 10, 15, 20, 25} to search for
the best model of defending against attackers
for each dataset. The training time increases dra-
matically, and the clean accuracy drops when t
grows up. Finally, the t = 20 and t = 10 are
set for the IMDB and SST-2 datasets.

5) Flooding-X. We use the original hyperparam-
eters setting in their paper (Liu et al., 2022)
of BERT model. However, the hyperparame-
ters of LSTM and WordCNN are not available.
Besides, source codes do not contain criterion
component. We have to implement a brute-force
searching method with Flooding (Ishida et al.,
2020) method to approximate the effectiveness.

6) RanMASK. We use the original hyperparam-
eters in their paper (Zeng et al., 2021b) of
RoBERTa (Liu et al., 2019). In details, the mask
rates are 0.3, 0.9 and 0.3 for IMDB, AG’s News
and SST-2 datasets. Majority voting strategy is
adopted for the ensemble. The ensemble num-
ber is set to 100 which indicates each sample
would require the model to forward 100 times
to get the final ensemble prediction.

B Computational Overhead

We measure the computational overhead by testing
the forward time of the model with one Nvidia
RTX 3090 card. The inference time is averaged
over the entire training set of IMDB. The metric
Resource in Fig. 4 is calculated by averaging the
inverse of model’s forward propagation time across
4 different batch sizes.

2771

https://github.com/thunlp/OpenAttack
https://github.com/thunlp/MixADA
https://github.com/RockyLzy/TextDefender
https://github.com/RockyLzy/TextDefender
https://github.com/QLiu-NLP/Flooding-X
https://github.com/QLiu-NLP/Flooding-X
https://github.com/xiaosen-wang/SEM
https://github.com/zjiehang/RanMASK


1 16 32 64
Batch Size

4
5
6
7
8
9

10
11

Ti
m

e 
in

 lo
g 2

 sc
al

e 
(m

s)
Original
w/ Transformation

RMLM
w/o Threshold

RanMASK

Figure 5: Inference time of different variations of
RMLM with different batch sizes on the IMDB dataset.
We compare RanMASK which also applies corruption
during inference. “Original” also stands for “w/ Joint
Training” introduced in §5.4.

As shown in Fig. 5, the additional computation
of enabling our transformation is acceptable, con-
sidering that the defense performance can improve
dozens of times. In details, the average additional
overhead is about 12%. For RMLM or RMLM
w/o Threshold, the costs are high but they can
bring more defense performance. Note that the
efficiency of RMLM is significantly better than
RanMASK (Zeng et al., 2021b) which relies on
costly hundreds of ensemble predictions.
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�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix B.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix A.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Sec. 4 Experiments.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix A.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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