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Abstract

Although achieving promising performance,
current Natural Language Understanding mod-
els tend to utilize dataset biases instead of learn-
ing the intended task, which always leads to
performance degradation on out-of-distribution
(OOD) samples. To increase the performance
stability, previous debiasing methods empiri-
cally capture bias features from data to prevent
the model from corresponding biases. However,
our analyses show that the empirical debiasing
methods may fail to capture part of the dataset
biases and mistake semantic information of in-
put text as biases, which limits the effective-
ness of debiasing. To address these issues, we
propose a debiasing framework IEGDB that
comprehensively detects the dataset biases to
induce a set of biased features, and purify the
biased features with the guidance of informa-
tion entropy. Experimental results show that
IEGDB can consistently improve the stability
of performance on OOD datasets for a set of
widely adopted NLU models.

1 Introduction

The Natural Language Understanding (NLU) task
requires a model to understand the semantics of
input text and then infer the target label. State-of-
the-Art NLU models such as BERT have achieved
impressive performance on various NLU tasks (De-
vlin et al., 2019; Liu et al., 2019). However, recent
analyses have demonstrated that these models may
exploit the dataset biases, i.e., superficial surface
cues that are spuriously associated with the target
labels for making inferences (McCoy et al., 2019;
Zellers et al., 2019; Utama et al., 2020a). This leads
to performance degradation on out-of-distribution
(OOD) challenge sets that are designed for making
models relying on spurious associations obtaining
incorrect predictions (McCoy et al., 2019; Zhang
et al., 2019; He et al., 2019).

*Corresponding Author
†These authors contributed equally to this work

To increase the stability of model performance
on OOD samples, debiasing methods are proposed
to mitigate the influence of dataset biases. In gen-
eral, the debiasing methods work by first extracting
a set of biased features characterizing the dataset bi-
ases, then regularizing the main NLU model using
the biased features by various existing regularizers,
to prevent it from fitting dataset biases (Schuster
et al., 2019; Clark et al., 2019; Utama et al., 2020a).
Hence, the key of debiasing lies in how to identify
the dataset bias and extract corresponding biased
features.

Early debiasing methods rely on the prior knowl-
edge of researchers to design biased features (He
et al., 2019; Clark et al., 2019; Mahabadi et al.,
2020). However, the assumption that the types of
biases should be known a-priori limits their appli-
cation to many NLU tasks and datasets. To lift
the reliance on human prior knowledge, automatic
debiasing methods are proposed. These methods
induce biased features using certain biased models,
which are constructed based on certain empirical
assumptions about the inductive bias of models.
For example, weak learners or models overfitted
tiny training sets are prone to capture the dataset
biases, and can capture most of the dataset biases
(Utama et al., 2020b; Sanh et al., 2020). With
such generic assumptions, these automatic debias-
ing methods can be employed for inducing biased
features for any NLU tasks.

The effectiveness of the automatic debiasing
methods depends on how well the empirical as-
sumptions for building biased feature induction
models can hold. However, the validity of these as-
sumptions may not have theoretical guarantees. By
analyzing the biased features extracted by previous
automatic debiasing methods, we show that, these
methods may not fully recognize all the dataset
biases, meanwhile they may mistake part of the
semantics of the input text as dataset biases. As a
result, the induced biased features may be not com-
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prehensive enough to characterize all the biases,
and not pure enough with only the information
about the biases involved. Hence, if regularizing
the NLU model using such biased features, on the
one hand, the main NLU model cannot be effec-
tively prevented from capturing the dataset biases
that remained unrecognized, on the other hand, part
of the semantic information would be mistaken as
biases and excluded from the main NLU model.
These would impair both the in-distribution and
OOD performance.

In this paper, we propose an Information
Entropy Guided automatic DeBiasing (IEGDB)
framework. To quantitatively increase the com-
prehensiveness of the biased features, IEGDB pro-
vides a random biased feature induction forest. By
assembling multiple biased feature induction mod-
els, the random biased feature induction forest can
maximize the mutual information between the bi-
ased features and the dataset biases, to find (nearly)
all dataset biases. The key challenge in purifying
the extracted biased features lies in how to identify
the semantic component of the biased features with-
out reliance on prior knowledge, as the semantic
component is mixed up with the bias component.
To solve this problem, We turn to the guidance
of information entropy. As the biased features
primarily focus on dataset biases (Utama et al.,
2020b), among the two components of biased fea-
tures, the component carrying relatively less infor-
mation would correspond to the semantics. Hence,
the semantic component can be figured out by mod-
eling the mixture distribution of biased features
and quantifying the Information Entropy of each
component of the mixture distribution. Then the
biased features can be purified by excluding the
semantic component.

Experimental results show that, our approach
can enhance the comprehensiveness and purity of
biased features, to consistently improve model sta-
bility on multiple OOD datasets, meanwhile perse-
vere the in-distribution performance.

2 Background and Preliminary Analysis
Previous analyses demonstrate that NLU models
may utilize dataset biases, leading to performance
degradation on the OOD datasets (McCoy et al.,
2019; Sharma et al., 2018). Hence, debiasing meth-
ods are proposed to increase the performance sta-
bility by detecting the dataset biases, and then regu-
larizing the NLU model to enforce it focusing more
on the semantics of input text.

Formally, given an instance (Xi, Yi) where Xi

is the input text and Yi is the target label, the de-
biasing methods aim at extracting a set of features
hbi ∈ Rd, which characterize the dataset biases
within Xi. Then hbi can be employed to regular-
ize an NLU model MNLU for preventing MNLU

captures the dataset biases.

Early debiasing methods extract biased features
based on human priors. However, the dataset bi-
ases could range from simple lexical overlap to
complex language stylistic patterns (Poliak et al.,
2018; Zellers et al., 2019; Nie et al., 2020). Hence,
manually designing biased features can be rather
time-consuming. To address this issue, recent debi-
asing methods propose to train a biased model Mb

for automatically inducing a set of biased features
hib = Mb(Xi) for each instance (Xi, Yi).

Previous automatic debiasing methods construct
biased models by training an NLU model such as
BERT upon a tiny subset of the original training set
(Utama et al., 2020b), or a weak learner optimized
upon the whole training set (Sanh et al., 2020; Du
et al., 2021). Essentially, these methods are con-
structed based on two main empirical assumptions
about the inductive bias of models: (1) By restrict-
ing the available information for the biased feature
induction model, it would have to overfit the dataset
and capture the ungeneralizable dataset biases; (2)
By restricting the strength of the biased feature
induction model, it would focus on more the su-
perficial features and cannot understand the more
complex semantic information (Sanh et al., 2020).

However, the validity of these empirical assump-
tions does not have a theoretical guarantee. The
overfitted models or weak models would also cap-
ture the semantic information. This leads to the
impurity of the extracted biased features. Further-
more, it leads to a dilemma: a model trained upon
a tiny sub-training set or a weak learner can hardly
learn to represent all the dataset biases. While if
the amount of instances for training the model or
the strength of the model is enhanced, the biased
feature model would not focus on dataset biases
only and would involve the semantic information.
We conducted experiments to validate these argu-
ments. The specific results are shown in Sec 1 of
the Appendix.

The incompleteness and impurity of biased fea-
tures would affect the effectiveness of debias-
ing. Hence we propose an information entropy
guided automatic debiasing framework to compre-

2869



hensively enrich and purify the biased features.

3 Methodology
As Figure 1 shows, the IEGDB framework contains
three parts: (1) A random biased feature induction
forest to enrich the biased features; (2) Informa-
tion entropy guided biased features purification for
excluding the semantic components within the ex-
tracted biased features; (3) Then the main NLU
model can be regularized using the identified biased
features to increase the stability of performance.

3.1 Random Biased Feature Induction Forest

Inspired by ensemble learning, the random biased
feature induction forest enhances the completeness
of biased feature induction by assembling several
biased feature induction models trained upon mul-
tiple different sub-training sets. We conduct a the-
oretical analysis, showing that the random biased
feature induction forest can maximize mutual in-
formation with the dataset biases.

Specifically, the training of the biased feature
induction forest applies the general technique of
bagging, by assembling multiple biased feature in-
duction models trained by overfitting tiny training
sets. Given the training dataset D = {(Xi, Yi)}Ni=1

containing N instances, we randomly sample with
replacement by L times from D to obtain a serial of
sub-training sets T = {T1, . . . , TL}, with each sub-
training sets containing n instances. Then among a
set of language models (e.g., BERT, Tiny-BERT),
we choose one kind of model M as the biased
feature induction model. Upon an arbitrary sub-
training set Tl, M is trained to learn to induce the
biased features in the same way of the previous au-
tomatic debiasing method of Utama et al. (2020a).
After the training process on total L sub-training
sets, we can obtain a serial of biased feature induc-
tion models {MTl}M,TL

, which constitute a forest
F , where MTl is the M th kind of model trained
upon the lth sub-training set. Then given each in-
stance {Xi, Yi} ∈ D, we can derive the biased
features using the random biased feature induction
forest as:

Hb
i = F(Xi) =

⋃

Tl

MTl(Xi) =
⋃

Tl

hb
i,MTl , (1)

where Hb
i ∈ Rd×L. As the output layer of language

models is generally activated with tanh function,
which makes hb

i,MTl
∈ [−1, 1].

Theoretical analysis of the random biased fea-
ture induction forest Intuitively, by assembling

multiple biased feature induction models, the ran-
dom biased feature induction forest can detect more
dataset biases compared to only using a single bi-
ased feature induction model. We argue that, in
theory, through the assembling operation, the ran-
dom biased feature induction forest can maximize
the mutual information between the extracted bi-
ases features and the dataset biases.

As proved by Harald Cramér and C. R. Rao,
(Cramér, 1999), given a single sub-training set Tl

containing n instances and a certain model M that
mainly captures dataset biases, the Fisher Informa-
tion of the biased feature induction model MTl is
proportional to the size of the sub-training set n:

IFisher (M
Tl ) ∝ n. (2)

Moreover, the Fisher information of MTl pro-
vides a lower bound of the mutual information be-
tween all the biased features induced from sub-
training set Tl (i.e.,

⋃
i∈Tl

hbi ) and all the dataset
biases contained in Tl (Wei and Stocker, 2016;
Brunel and Nadal, 1998):

MI(
⋃

i∈Tl

hb
i ,Tl) ≥ IFisher (M

Tl ). (3)

Therefore, the lower bound of MI(⋃i∈Tl
hb
i , Tl)

is proportional to n, i.e,. the size of Tl. However,
the dilemma between model inductive bias and the
size of the training set restricts us from recogniz-
ing more dataset biases by simply enlarging the
size of the sub-training set. Hence, alternately, to
recognize more dataset biases, we enlarge the to-
tal instances exploited for inducing biased features
by assembling multiple biased feature induction
models trained upon different sub-training sets.

As shown in Eq. (2,3), the mutual informa-
tion between the extracted biased features and
dataset biases depends on the number unique
instances. It can be proved that after L sampling
operations with each sub-training set containing n
instances, the expectation of total unique instances
u equals:

E(u) = N(1− e
Ln
N ). (4)

The specific proving process is provided in Sec 2
of the Appendix. Hence,

MI(
⋃

i∈T
Hb

i ≥ N(1− e
Ln
N ), (5)

where T = {T1, . . . , TL}.
This inequality indicates that, in theory, all the

dataset biases can be captured once the number of
unique instances within T converges to the total
number of instances N . In other words, when u →
N , Hb

i =
⋃

i∈T hbi can contain the information of
almost all dataset biases.
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Figure 1: The architecture of the IEGDB framework.

3.2 Information Entropy Guided Biased
Features Purification

Given the union of biases features Hb
i ∈ Rd×L, we

purify Hb
i to exclude the semantic components, for

producing a set of features hbi ∈ Rd for regularizing
the main NLU model. The main difficulty lies in
that, without prior knowledge, it would be rather
challenging to precisely point out which element
of Hb

i that semantic information has been involved
in, and then disentangle them from the remaining.

To address this issue, we resort to the statistical
regularity of Hb

i and purify Hb
i with the guidance

of information entropy. Specifically, as Figure 1
shows, we assume that: (1) Each dimension of Hb

i ,
i.e., Hb

ij , j ∈ [1, d] essentially contains two kinds
of information, i.e., dataset biases and semantic
information. Hence, Hb

ij could be characterized by
a mixture distribution. (2) Hb

i can be purified, by
excluding the component with less information en-
tropy for each dimension Hb

ij . The rationale lies in
that, as the biased feature induction models mainly
focused on dataset biases (Utama et al., 2020b;
Sanh et al., 2020), Hb

i induced by these models
would also contain more dataset bias information
compared to semantic information. Hence, it can
be assumed that, with a high probability, among
the two components of each Hb

ij , the component
carrying more information would correspond the
dataset biases. While the amount of information
can be quantified by information entropy. Hence,
for two components of Hb

ij , the component carry-
ing less information entropy would correspond to
semantic information.

Therefore, the problem turns to how to split the
two components of Hb

ij into two isolated distribu-
tions, then estimate the entropy of each distribu-
tion. However, to obtain the information entropy,
the probability density function (PDF) of the dis-
tributions should be known. To this end, classical

methods model the mixture distributions using pa-
rameterized models such as Gaussian Mixture Dis-
tribution, and then estimate the parameters of each
distribution to obtain the PDF of each distribution.

However, the estimation of the parameters re-
quires an iterative solution, and it would be rather
time-consuming to apply such an iterative process
for each dimension of the biased features of each
sample. Moreover, it would also be an over-strong
assumption that the two components of Hb

ij fol-
low a certain distribution. Hence, to lower the
computational burden, we adopt a non-parametric
approximation.

Specifically, we first formalize Hb
ij as:

Hb
ij = αZ

(1)
ij + (1− α)Z

(2)
ij , (6)

where Z
(1)
ij , Z(2)

ij are two distributions, with each one
corresponding to either the semantic or dataset bi-
ases component of Hb

ij , respectively. Without loss
of generality, we assume that both Z

(1)
ij and Z

(2)
ij are

unimodal distribution. α is a coefficient. Hence,
Hb

ijcould be characterized by a bimodal distribu-
tion, with each “peak” corresponding to Z

(1)
ij and

Z
(2)
ij , respectively.
Under such formalization, one reasonable ap-

proximation for obtaining Z
(1)
ij and Z

(2)
ij could be sim-

ply separating the two peaks of Hb
ij at the local

minimum between two peaks, as long as the lo-
cal minimum is small enough. Hence, for calcu-
lating the local minimum, as well as the entropy
of Z

(1)
ij and Z

(2)
ij , estimating the PDF of Hb

ijis still
necessary. Rather than parameterize Hb

ij , we ap-
proximate the PDF of Hb

ijusing Kernel Density
Estimation, which is a non-parametric method to
obtain the empirical PDF of a random variable by
using kernels as weights:

P̂ (hb
ij = h) =

1

Lw

L∑

k=1

Φ(
h− hij,k

ω
), (7)
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where hij,k is the jth dimension of the biased fea-
tures of instance i induced by the kth biased feature
induction model, Φ is the kernel function, ω > 0 is
a smoothing parameter called bandwidth.

Given the empirical PDF of Hb
ij , i.e., p̂(hb

ij), we
simply split the two peaks of Hb

ijat the local min-
imum between two peaks to separate Hb

ijinto two
distributions Zb

ij,1and Zb
ij,2:

P (Z
(1)
ij = h) =

{
β1p̂(h) if ∈ [−1, ϵ];
0 otherwise. (8)

P (Z
(1)
ij = h) =

{
β2p̂(h) if ∈ (ϵ, 1];
0 otherwise. (9)

where β1 and β2 are two normalization constants,
and ϵ is the local minimum. To find ϵ, we take a se-
ries of points δ0, . . . , δ⌊ 2

δ
⌋ from the [−1, 1] interval,

using δ as the interval. Then by substituting these
points into the empirical PDF, the local minimum
can be found. Our empirical analysis shows that
bimodal distributions are widespread in extracted
biased features, and in most cases, the bimodal
distribution can be well approximated by two iso-
lated peaks. Moreover, in practice, we introduce a
threshold τ and regard Hb

ij as a bimodal distribu-
tion only if ϵ is smaller than τ . By controlling τ to
be a small value, the dimensions of biased features
which cannot be well approximated by a bimodal
distribution would be skipped.

Then given the empirical PDF of two distribu-
tions, the information entropy of Z(k)

ij can be approx-
imated as:

IE
(k)
ij =

∑

δ

−P(Z
(k)
ij = δ)log2 (P(Z

(k)
ij = δ)). (10)

By excluding the component corresponding to
the semantic information, we can obtain the puri-
fied biased features distribution p(Hb

ij
∗
):

p(H b
ij
∗
) =

{
p(Z

(1)
ij ) if IE(1)

ij > IE
(2)
ij ;

p(Z
(2)
ij ) otherwise.

(11)

where Hb
ij
∗ describes the distribution of the jth

dimension of the purified biased feature union.
Finally, we pool Hb

ij
∗to obtain the jth biased

feature hb
ijby estimating the expectation of Hb

ij
∗:

hb
ij =

∑

δ

P (Hb
ij

∗
= δ)δ. (12)

In this way, for each instance i, given Hb
i ∈ Rd×L,

we can obtain d biased features for regularizing the
main NLU model. Moreover, using the information
entropy we can quantify the loss of information
during the biased feature purification process.

Task Dataset Challenge Set

NLI MNLI (Williams et al., 2018) HANS (McCoy et al., 2019)
FV Fever (Thorne et al., 2018) symm (Schuster et al., 2019)
PI QQP1 PAWS (Zhang et al., 2019)

Table 1: Tasks and datasets for evaluating model perfor-
mance.

3.3 Regularization of the Main NLU Model
Given the identified biased features, we regularize
the main NLU model to prevent it from learning
dataset biases. Among various previous methods,
in this paper, we use the widely adopted method
Product-of-Expert (Hinton et al., 2015) for regular-
izing the main NLU model.

The loss function of the Product-of-Expert regu-
larization is formulated as:

L = −Yi softmax(pNLU · pb). (13)

where fb is a biased features based prediction
model, pb is the probability predicted by fb, pNLU

is the probability predicted by the main NLU model.
Hinton (2002) proved that, with this loss function,
for instances where pNLU has high similarity with
pb, i.e., the main NLU model makes similar predic-
tions with the biased model fb, the weight of these
instances would be decreased.

4 Experiments

4.1 Evaluation Tasks
We evaluate our approach on three NLU tasks: natu-
ral language inference (NLI), fact verification (FV),
and paraphrase identification (PI). We evaluate the
in-distribution performances using the test set of
each task and examine the stability of the model
on OOD samples by comparing the zero-shot per-
formance on corresponding challenge datasets. On
the Paraphrase Identification task, following De-
vlin et al. (2019) and Radford et al. (2018), model
performance is measured using the F1 score. As
the challenge datasets are designed to remove the
dataset biases, models relying on the dataset bi-
ases often perform close to a random baseline on
the challenge datasets. On the NLI and the fact
verification task, model performance is evaluated
using prediction accuracy. Table 1 lists the dataset
and corresponding challenge set employed in each
NLU task. More details about each task and the
datasets are provided in Sec 5 of the Appendix.

4.2 Experimental Details
On all three tasks, the biased feature induction
model is chosen as BERT-base (Devlin et al., 2019).
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Method MNLI HANS ∆ Gen. G Fever symm. ∆ Gen.G QQP PAWS ∆ Gen. G
Bert-base 84.5 61.5 - 23.0 85.6 55.7 - 29.9 87.9 48.7 - 39.2
Known-bias Reweighting 83.5 69.2 +7.7 14.3 84.6 61.7 +6.0 22.9 85.5 49.7 +1.0 35.8
Known-bias POE 82.9 67.9 +6.4 15.0 86.5 60.6 +4.9 25.9 84.3 50.3 +1.6 34.0
Known-bias Conf-reg 84.5 69.1 +7.6 15.4 86.4 60.5 +4.8 25.9 85.0 49.0 +0.3 36.0
Shallow Model DB Reweighting 82.3 69.1 +7.6 13.2 87.2 60.8 +5.1 26.4 79.4 46.5 -2.3 32.9
Shallow Model DB POE 82.7 69.8 +8.3 12.9 85.4 60.9 +5.2 24.5 80.7 47.4 -1.3 33.3
Shallow Model DB Conf-reg 83.9 67.7 +6.2 16.2 87.9 60.4 +4.7 27.5 83.9 49.2 +0.5 34.7
Weak Learner DB 83.3 67.9 +6.4 15.4 85.3 58.5 +2.8 26.8 - - - -
LGTR 84.4 58.0 -3.5 25.6 85.5 57.9 +2.2 27.6 - - - -
IEGDB 82.8 72.4 +10.9 10.4 84.9 66.5 +10.8 18.4 84.6 51.7 +3.0 32.9

Table 2: Model performance (MNLI / Fever: accu. (%); QQP: F1) on in-distribution and corresponding challenge
instances. Gen. G refers to generalization gap, i.e., the difference between the in-distribution and OOD performance.

We derive the biased features of each instance by
employing the embedding vector of the [CLS] to-
ken at the top transformer layer of the biased fea-
ture induction model, where [CLS] is a special
token. On each task, totally 40 sub-training sets
are sampled for training the random biased feature
induction forest, with each sub-training set con-
taining 2,000 instances. The BERT-base model
is chosen as the main NLU model. In the biased
feature purification process, the kernel function
is set as the normal kernel Φ = exp(−x2/2ω2).
The bandwidth ω is set as 0.5. The interval width
δ = 0.02. τ = 0.06. Before regularizing the
main NLU model, we implement the biased feature
based model fb using a one-layer MLP. More de-
tails about the hyperparameters are provided in Sec
6 of the Appendix.

4.3 Baseline Methods

We make comparisons with the following methods:
(i) BERT (Devlin et al., 2019) refers to the

BERT-base model trained without debiasing.
Prior-knowledge-based Debiasing Methods
These methods rely on the intuition of researchers
on dataset biases. The major difference between
these methods lies in how to regularize the main
NLU model using the biased features.

(ii) Known-biasReweighting (Clark et al., 2019;
Schuster et al., 2019) down-weights the instances
that target labels can be well predicted by the biased
features. (iii) Known-biasPoE (Clark et al., 2019)
down-weights the instances that the prediction of
main NLU models is similar to prediction based on
biased features. (iv) Known-biasConf-reg (Utama
et al., 2020a) decreases the model confidence on
examples in which biased features lead to correct
prediction to regularize the main NLU model.
Auto-Debiasing Methods

(v) Shallow Model Debiasing (Utama et al.,
2020b) employs a BERT-base model trained upon
a tiny subset of the original training set to induce

biased features. (vi) Weak Learner Debiasing
(Sanh et al., 2020) uses the Tiny-BERT model (Turc
et al., 2019) as a weak learner to induce biased fea-
tures from the whole training set. (vii) LTGR (Du
et al., 2021) employs a teacher model to capture
the long-tailed biased features for regularizing the
main NLU model.

In this paper, all the baseline debiasing methods
take the BERT-base model as the main NLU model.

4.4 Main Results
From Table 2 we observe that:

(1) Comparison between the automatic debias-
ing methods with the prior knowledge-based de-
biasing methods shows that, in general, the prior
knowledge-based methods still show better perfor-
mance on both in-distribution test sets and OOD
challenge sets. This is because the distribution
of biases in NLU datasets can be rather com-
plex, which leads to challenges in automatically
detecting the biases precisely and comprehensively.
Compared to the prior-knowledge-based debias-
ing methods which rely on a laborious and time-
consuming manual biased features identification
process, our approach can achieve better perfor-
mance on all three challenge datasets and have com-
parable in-distribution performance. This indicates
the effectiveness and efficiency of our approach.

(2) Compared with the Shallow Model Debias-
ing and the Weak Learner Debiasing which em-
ploys a single shallow model as the biased feature
induction model, IEGDB can consistently improve
model performance on all three challenge datasets,
and promote or keep the in-distribution perfor-
mance. This indicates that, by assembling multiple
biased feature induction models, our approach can
more comprehensively detect the dataset biases to
increase the stability of performance, and through
the biased feature purification process, the seman-
tic components within the biased features can be
excluded to keep or promote the in-distribution
performance.
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Model MNLI HANS

IEGDB 82.8 72.4
IEGDB -w/o puri 83.6 68.7
IEGDB -w smaller IE 81.8 62.9

Table 3: Results of the ablation study.

4.5 Ablation Study
To further illustrate the effects of each compo-
nent of our approach, we conduct an ablation
study by removing the biased feature purification
of the IEGDB framework and only aggregating
the biased features by a mean pooling (denoted
as IEGDB -w/o puri), and keeping the compo-
nent with smaller Information Entropy (denoted
as IEGDB -w smaller IE). Experiments are con-
ducted on the MNLI dataset and corresponding
challenge set HANS. The results are shown in
Table 3. From which we observe, (1) Eliminat-
ing the biased feature purification leads to OOD
performance degradation. This is because, the bi-
ased feature purification process can effectively
remove the semantic components within the bi-
ased features, so that the semantic information
will not be mistaken as the biases, and the main
NLU model can more adequately capture the se-
mantic information for increasing the OOD perfor-
mance. (2) IEGDB -w smaller IE has both lower
in-distribution and OOD performance compared to
the original IEGDB and IEGDB -w/o puri. The
OOD performance of IEGDB -w smaller IE is even
close to the original BERT. These results indicate
that, taking the component with smaller Informa-
tion Entropy as the biased features leads to a severe
loss of the semantic information for the main NLU
model. This suggests the reasonability of regarding
the component with smaller Information Entropy
as semantic information.

4.6 Sensitivity Analysis
All experiments are conducted on the MNLI dataset
and corresponding challenge set HANS.

4.6.1 Influence of the Number of Biased
Feature Induction Models

We induce the biased features with different num-
bers of biased feature induction models and show
the performance of the main NLU model regular-
ized with these biased features in Figure 2. We
also make a comparison with IEGDB -w/o puri
to further illustrate the effects of the biased fea-
ture purification. We have the following observa-
tions: (1) With the number of biased induction

Figure 2: Influence of the number of biased feature
induction models on model performance.

Figure 3: Model performance and the proportion of
purified features with different threshold τ .

models increasing from 1 to 40, the accuracy on
the HANS dataset increases from 68.4% to 72.4%.
This highlight the importance of including more
biased feature induction models in increasing the
comprehensiveness of the detected biased detec-
tion to promote the stability of model performance.
(2) The OOD performance increases with the num-
ber of biased feature induction models, while the
speed of performance improvement decreases with
more biased feature induction models (and hence
with instances) involved and tends to converge to a
constant value. This is because, as the analysis in
section 3.1 shows, the total information the random
biased feature induction forest can capture grows
at a negative exponential speed and would finally
converge to 0. (3) Eliminating the biased feature
purification leads to consistent performance degra-
dation on the OOD challenge set, and the maximum
OOD performance appears with less biased feature
induction models. This highlights the effects of the
biased feature purification process in excluding the
semantic components within the biased features to
increase the OOD performance.

4.6.2 Influence of the Threshold τ

Figure 3 shows the performance of our approach
IEGDB on MNLI and HANs dataset with different
τ , together with the proportion of dimensions of bi-
ased features that are purified. As τ increases, more
biased features would be purified. From Figure 3
we can observe that, (1) As τ increases from 0 to
0.09, the performance of IEGDB increases, as more
biased features are purified to exclude the seman-
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BERT RoBERTa DeBERTa
Dataset base large base large base large

MNLI 84.5 85.6 87.4 89.5 87.3 90.8
HANS 61.5 69.5 71.5 75.2 76.8 77.3

IEGDBBERT IEGDBRoBERTa IEGDBDeBERTa
Dataset base large base large base large

MNLI 82.8 85.5 86.9 89.3 87.3 88.3
HANS 72.4 72.6 75.8 78.8 79.0 78.1

Table 4: Performance (Accu.(%)) of different kinds of
main NLU model debiased by our approach.

tic component. While the performance of IEGDB
decreases when τ > 0.09, part of biased features
with less semantic information involved are also
mistaken as a bimodal distribution and purified,
leading to undesired information loss. (2) With a
relatively small value of τ , a large proportion of
the biased features can be deemed as a bimodal
distribution. This suggests the reasonability of our
approach by approximating the bimodal distribu-
tion of biased features using two peaks; (3) The
performance of IEGDB keeps relatively stable with
a wide range of τ , indicating the robustness of our
approach on hyperparameter settings.

4.7 Generality Analysis

To investigate whether our approach can also im-
prove the performance stability of other kinds of
more advanced pretrained language models (PLMs)
and larger-sized PLMs, we conduct experiments
with BERT-large (Devlin et al., 2019), RoBERTa(-
large) (Liu et al., 2019) and Deberta(-large) (He
et al., 2020), respectively, with the biased features
unchanged. The results are shown in Table 4.

From which we observe that: (1) The perfor-
mance gap between MNLI and corresponding chal-
lenge dataset HANs still exists for more powerful
PLMs, such as large-sized BERT, RoBERTa, and
Deberta, suggesting that these models may still cap-
ture dataset biases for making predictions and in-
dicating the urgent need for debiasing these PLMs.
(2) Compared to the vanilla PLMs, our approach
can improve the performance stability for different
kinds of PLMs, and different-sized PLMs, using
the same set of biased features. This suggests the
generality of our approach. We also make com-
parisons with the baseline method Shallow Model
DebiasingPoE and the full results are provided in
Sec 4 of the Appendix. From which we observe
that our approach can improve the OOD perfor-
mance for multiple PLMs compared to the baseline
method.

5 Related Work
Previous analysis demonstrates that the existence
of dataset biases allows an NLU model to complete
the task without learning the semantic information
(Gururangan et al., 2018; McCoy et al., 2019; Be-
linkov et al., 2019). This phenomenon exists in
various different tasks, such as reading compre-
hension (Kaushik et al., 2019), question answer-
ing (Mudrakarta et al., 2018), and fact verification
(Schuster et al., 2019).

One line of debiasing methods mitigates the
dataset biases based on prior knowledge Min et al.
(2020); Belinkov et al. (2018); Clark et al. (2019);
He et al. (2019). However, these methods are lim-
ited by the dependence on human prior. More-
over, researches indicate that hidden biases may
still remain after manually debiasing (Sharma et al.,
2018), highlighting the necessity of automatically
and comprehensively detecting the dataset biases.
To address these issues, automatic debiasing meth-
ods are proposed. Utama et al. (2020b) automat-
ically captures the dataset bias by training a shal-
low model on a tiny training set, while Sanh et al.
(2020) captures the dataset bias using a learner
with limited capacity. However, these methods still
rely on certain empirical assumptions that are not
bounded to be valid, which affects the comprehen-
siveness and purity of the extracted biased features,
and then limits the effectiveness of debiasing.

In this paper, we propose an Information Entropy
Guided debiasing framework, which comprehen-
sively and quantitatively extracts and purifies the
biased features to further improve the stability of
NLU models.

6 Conclusion
In this paper, we propose an information en-
tropy guided automatic debiasing NLU framework
IEGDB. By assembling multiple biased feature in-
duction models, IEGDB can induce biased features
more comprehensively characterizing the dataset
biases. Then the extracted biased features are
purified by identifying and excluding the seman-
tic components within the biased features using
information-guided blind source separation. Fur-
thermore, we provide a theoretical framework for
quantitatively analyzing the comprehensiveness
and purity of the extracted features. Experimental
results show that our approach can significantly in-
crease the performance stability on OOD samples
for various NLU models, meanwhile keeping the
in-distribution performance.
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Limitations

In this paper, we employ an information entropy-
guided algorithm for purifying the induced biased
features. For each dimension of the biased features,
the component with less information entropy is pri-
orly regarded as the component corresponding to
semantic information, and excluded when deriv-
ing the purified biased features. However, there
is still the risk that the discarded component still
account for part of the dataset biases. This would
lead to a decrease in the effectiveness of the debias-
ing process. Hence, although the prior-knowledge
free nature endows our proposed biased features
purification algorithm with strong generality, in
cases when resources indicating the distribution
of dataset biases are available, incorporating these
resources would further enhance the purification of
the biased features.
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A Appendix

A.1 The Comprehensiveness and Purity of the
Biased Features Induced by the
Empirical Automatic Debiasing Methods

As stated in Section 2, the empirical automatic
debiasing methods may fail to recognize part of
dataset biases, and mistake part of semantic infor-
mation as the dataset biases, which leads to the
incompleteness and impurity of biased features in-
duced by these methods. We conduct experiments
to investigate this issue.

Remind that (1) By restricting the available in-
formation for training the biased feature induction
model, it would have to overfit the dataset, and
capture the ungeneralizable dataset biases; (2) By
restricting the strength of the biased feature induc-
tion model, it would focus on more the superficial
features and cannot understand the more complex
semantic information. For clarity, we call these
two lines of automatic debiasing methods as shal-
low model debiasing and weaker leaner debiasing,
respectively. In general, a weaker learner would
not capture all predictive information within train-
ing data. Previous research has demonstrated that
weak learners such as MLP or LSTM can also cap-
ture semantic information (Mikolov et al., 2013;
Matthew, 2018; Jiao et al., 2020). These all suggest
the incompleteness and impurity of biased features
induced by the weaker leaner debiasing. Hence, in
this section, we mainly focus on investigating the
completeness and purity of shallow model debias-
ing.

A.1.1 Whether the Empirical biased feature
induction Method Can Recognize All
Dataset Biases

To investigate this issue, we compare the similarity
between biased features extracted by three differ-
ent biased feature induction models: Tiny-BERT
(Jiao et al., 2020), BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), on the same training
set. And compare the similarity between biased
features extracted by BERT under three different
randomly sampled subsets of training data. Ideally,
if any biased feature induction model can recog-
nize all the potential dataset biases, then given an
instance, then the biased features extracted by dif-
ferent models should have high similarity, as they
essentially characterized the same dataset biases.
Similarly, if different sub-training sets contain the
same dataset biases, then the same model finetuned

Figure 4: Visualization of the biased features induced
with: (a) different models upon the same sub-training
set. (b) the same model upon different sub-training set.
(c) The loss value of training a biased feature based
model upon the corresponding dataset.

upon different sub-training sets would capture sim-
ilar information, and then extract similar biased
features for a given instance.

Specifically, we visualized the biased features
induced Tiny-BERT (Jiao et al., 2020), BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019) on
the same dataset using t-SNE in Figure 4 (a), with
each color corresponds to biased features induced
by each kind of model. As Figure 4 (a) shows,
the biased features induced by different kinds of
models distributed upon different isolated clusters.
In other words, different models indicate the low
similarity between these biased features. While as
Figure (b) shows, the biased features induced by the
BERT model trained upon different sub-training
sets also fall into different clusters. These results
all indicate that the biased features induced using a
single model or induced upon a single sub-training
set may not be comprehensive enough to represent
all the dataset biases, and hence part of the dataset
biases still remain unrecognized.

A.1.2 Whether the Empirical Biased Feature
Induction Methods Focus Only on
Dataset Biases

We conduct a correlation analysis to investigate this
issue. Specifically, we train a biased model on the
MNLI dataset using the method of (Utama et al.,
2020b), and employ the biased model to derive
a representation of instances on the correspond-
ing challenge set HANS. Then a three-layer-MLP-
based model is trained to capture the correlation
between the representations of input text and tar-
get labels on the HANS dataset. As the challenge
set HANS is constructed by removing the dataset
biases in MNLI, if the biased model only focuses
on the dataset biases, then it cannot extract the
semantic information of input text, hence the repre-
sentations of instances on HANS obtained by such
biased feature induction model will not be predic-
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tive, and the loss function will not have substantial
decrease during the training process. However, as
Figure 4 (c) shows, the loss continuously decreases.
This indicates that the semantic information is still
involved in the induced biased features.

A.2 Prove of Eq. 4
The problem of Eq.4 can be described as:

Drawing with replacement, Ln instances from a
bin of N different instances, with an equal probabil-
ity of drawing each instance, what is the expected
number of ‘unique’ instances? How many different
instances are we expected to get?

Using the classic technique of probability, we
start by defining a set of so-called indicator (i.e.
binary-valued) random variables, and then use lin-
earity of expectation.

We begin by defining each of the N bins of the
random variable

Ij =

{
1 if draw at least one instance from the jth bin
0 otherwise.

(14)

Let u be the random variable denoting the num-
ber of different instances we draw, the expectation
of u equals:

u =
Ln∑

j=1

Ij (15)

Using linearity of expectation,

E[u] = E




Ln∑

j=1

Ij


 (16)

=
Ln∑

j=1

E [Ij ] (17)

It remains to compute E[u][Ij ] for j = 1, . . . , N .
Note that for any j

E[u] = E




N∑

j=1

Ij


 (18)

=

n∑

j=1

E [Ij ] (19)

So the expected number of u is

E[u] = n

[
1−

(
N − 1

N

)Ln
]

(20)

Model ANLI-R1 R2 R3

BERT-base 0 28.9 28.8
Shallow Model Debiasing 25.8 28.1 30.1
IEGDB 26.3 30.6 30.4

Table 5: Zero-shot performance on target datasets.

Furthermore, we can approximate u as:
(
N − 1

N

)Ln

=

(
1− 1

N

)Ln

(21)

=

(
1− 1

N

)n·Ln
N

≈ e−Ln/N (22)

which is the expectation of unique instances after
total Ln instances are sampled from N instances.

A.3 Transferability Analysis
We further examine the stability of our approach
through a transferability analysis. In specific, we
train IEGDB on the MNLI dataset, and then eval-
uate its zero-shot performance on three challenge
sets ANLI R1-R3 (Nie et al., 2020). ANLI R1-R3
contain instances designed to fool the model to
make wrong predictions by human edition on
input text. Hence, to make correct predictions,
models have to understand the semantics of input.
Models utilizing biased information always have a
zero-shot performance close to 0. The reason for
not adopting other NLI datasets is that different
NLI datasets could probably share similar dataset
bias patterns (McCoy et al., 2019; Geva et al., 2019;
Du et al., 2021). Hence, it would be hard to dis-
tinguish the performance improvement brought by
utilizing the same bias pattern, or by promoting the
understanding of the semantic information. Two
baselines are involved for comparison: BERT-base,
and Shallow Model Debiasing.

The results are shown in Table 5. We observe
that: (1) The BERT-base model has poor perfor-
mance on all three target tasks, especially on the
ANLI R1 dataset, as it is specifically designed to
fool the BERT model to make its performance
close to 0. This suggests that BERT may utilize a
large number of biased features for making predic-
tions. (2) Shallow Model Debiasing and IEGDB
can enhance model performance on all three target
datasets, indicating the effectiveness of automatic
debiasing methods in mitigating the influence of
dataset bias to improve model stability. (3) Com-
pared to Shallow Model Debiasing, our approach
can further increase the model performance on all
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BERT RoBERTa DeBERTa
Dataset base large base large base large

MNLI 84.5 85.6 87.4 89.5 87.3 90.8
HANS 61.5 69.5 71.5 75.2 76.8 77.3

Shallow-DBBERT Shallow-DBRoBERTa Shallow-DBDeBERTa
Dataset base large base large base large

MNLI 82.7 85.3 87.2 89.3 86.5 90.5
HANS 69.8 70.9 74.7 77.2 77.3 77.6

IEGDBBERT IEGDBRoBERTa IEGDBDeBERTa
Dataset base large base large base large

MNLI 82.8 85.5 86.9 89.3 87.3 88.3
HANS 72.4 72.6 75.8 78.8 79.0 78.1

Table 6: Performance (Accu. (%)) of different kinds of main NLU model debiased by our approach.

three target datasets and has more consistent perfor-
mance. This suggests that guided by information
entropy, IEGDB can better recognize the biased
information from the dataset, for regularizing the
model to further increase the stability.

A.4 Generality Analysis

Table 6 show the performance of vanilla PLMs,
PLMs debiased with Shallow Model Debiasing
(Utama et al., 2020a), and our approach. The re-
sults show that our approach can also outperform
the baseline method to increase the OOD perfor-
mance while preserving the in-distribution perfor-
mance, by assembling multiple biased feature in-
duction models to increase the comprehensiveness
of the biased features, then purifing the biased fea-
tures for excluding the semantic components.

A.5 Details of Evaluation Tasks and Datasets

Natural Language Inference This task requires
the model to predict the semantic entailment rela-
tionship between a premise and a hypothesis. We
use the MNLI dataset (Williams et al., 2018) as
the benchmark, and use the corresponding chal-
lenge dataset HANS (McCoy et al., 2019) to test
the stability on OOD samples. HANS is built by
removing the lexical overlap bias that extensively
exists in the MNLI dataset. Models trained on
MNLI often perform close to a random baseline on
HANS.
Fact Verification This task requires a model to
predict whether a claim can be supported or refuted
by corresponding evidences. We train the model
on the Fever dataset (Thorne et al., 2018), and eval-
uate the stability of models on the FeverSymmetric
V 0.1 (Schuster et al., 2019) dataset, which is col-
lected to remove the claim-only biases (i.e., the
biases within the claims which make models able

to make predictions without evidence).
Paraphrase Identification We conduct experi-
ments on the QQP dataset2, which consists of 362K
questions pairs annotated as either duplicate or non-
duplicate, and the corresponding challenge dataset
PAWS (Zhang et al., 2019), which is constructed
by removing the lexical overlap biases within the
QQP dataset.

A.6 Experimental Details
We provide more details about the settings of hy-
perparameters on each task:
MNLI

• batch size: 64

• number of epochs: 3

• learning rate: 5e-5

• Optimizer: Adam

Fever

• batch size: 64

• number of epochs: 3

• learning rate: 5e-5

• Optimizer: Adam

QQP

• batch size: 64

• number of epochs: 3

• learning rate: 5e-5

• Optimizer: Adam

2https://data.quora.com
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