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Abstract

Multimodal abstractive summarization (MAS)
aims to produce a concise summary given the
multimodal data (text and vision). Existing
studies mainly focus on how to effectively use
the visual features from the perspective of an
article, having achieved impressive success on
the high-resource English dataset. However,
less attention has been paid to the visual fea-
tures from the perspective of the summary,
which may limit the model performance, es-
pecially in the low- and zero-resource scenar-
ios. In this paper, we propose to improve the
summary quality through summary-oriented vi-
sual features. To this end, we devise two auxil-
iary tasks including vision to summary task and
masked image modeling task. Together with
the main summarization task, we optimize the
MAS model via the training objectives of all
these tasks. By these means, the MAS model
can be enhanced by capturing the summary-
oriented visual features, thereby yielding more
accurate summaries. Experiments on 44 lan-
guages, covering mid-high-, low-, and zero-
resource scenarios, verify the effectiveness and
superiority of the proposed approach, which
achieves state-of-the-art performance under all
scenarios. Additionally, we will contribute a
large-scale multilingual multimodal abstractive
summarization (MM-Sum) dataset.1

1 Introduction

Given an article and several images as inputs, as
shown in Fig. 1, multimodal abstractive summa-
rization (MAS) (Sanabria et al., 2018; Li et al.,
2017, 2018a; Zhu et al., 2018; Jangra et al., 2020)
aims to generate a concise textual summary, which
can help people quickly grasp the core information.
Therefore, MAS has widespread application and

∗Work was done when Liang and Wang was interning at
Pattern Recognition Center, WeChat AI, Tencent Inc, China.

† Jinan Xu is the corresponding author.
1The code and data are publicly available at: https://

github.com/XL2248/SOV-MAS.

Figure 1: An example of our MM-Sum dataset. Inputs:
an article and image sequence pair; Output: summary.
As we can see, the image sequence also concisely para-
phrases the summary. The red content indicates its asso-
ciated object is useless to the summary while the green
counterparts represent important information.

attracts increasing attention with the rapid prolif-
eration of multimedia content (Apostolidis et al.,
2021; Feng et al., 2022; Qiu et al., 2022).

Recently, many studies have been carried out to
effectively inject the visual features into MAS mod-
els (Li et al., 2018b, 2020b; Zhu et al., 2020, 2021;
Zhang et al., 2021b,a; Palaskar et al., 2019; Liu
et al., 2020; Yu et al., 2021a). For instance, Palaskar
et al. (2019) and Zhang et al. (2021a) explore the
hierarchy between the textual article and visual fea-
tures, and integrate them into the MAS model. Liu
et al. (2020) design a multistage fusion network
to model the fine-grained interactions between the
two modalities. And Yu et al. (2021a) study multi-
ple multimodal fusion methods to infuse the visual
features into generative pre-trained language mod-
els, e.g., BART (Lewis et al., 2020). Despite their
success on the high-resource English dataset, they
only model visual features from the perspective of
an article and neglect the relevance of visual fea-
tures to the summary, which restricts their poten-
tial performance especially on the training dataset
with limited scale. For example, though the object
“black clothes” in the first image of Fig. 1 is associ-
ated with the article content (red part), the object
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contributes little to the summary. Thus, the MAS
model should focus on summary-oriented visual
features. However, the visual features are generally
implicitly learned via the MAS objective, which
cannot help the model learn to explicitly discard
the needless visual information.

To address this issue, in this paper, we propose a
Summary-Oriented Vision enhanced MAS (SOV-
MAS) training framework to generate more accu-
rate summaries through explicitly improving the
relevance of visual features to the summary. To
this end, we design two summary-oriented vision
modeling tasks, namely vision to summary task,
and masked image modeling task. Specifically, as
shown in Fig. 2, (1) the vision to summary task is
to produce the concise summary by only taking the
image sequence; (2) the masked image modeling
task aims to predict the semantic class distribution
of the regions in one fully masked image given the
summary and the remaining images. Together with
the main multimodal summarization task, the MAS
model is optimized through the joint objectives of
all these tasks. In this way, the model is enhanced
to explicitly exploit the summary-oriented visual
features, thus leading to more accurate summaries.

To validate the SOV-MAS framework on var-
ious languages and diverse settings, we con-
struct the first large-scale Multilingual Multimodal
Summarization dataset (MM-Sum) based on XL-
Sum (Hasan et al., 2021), a multilingual summa-
rization dataset. The MM-Sum covers 44 lan-
guages with mid-high-, low- and zero-resource sce-
narios. Experiments on these settings show that our
model significantly outperforms related methods
in terms of ROUGE (Lin, 2004) scores, especially
under the low- and zero-resource settings, demon-
strating its effectiveness. Besides, we extend our
approach to two previous best MAS models (i.e.,
VG-BART and VG-T5 (Yu et al., 2021a)). Human
evaluation and the results on How2 (Sanabria et al.,
2018) benchmark further suggest the superiority
and generalizability of our approach. In summary,
our main contributions are:

• To the best of our knowledge, we are the first
that contributes a large-scale multilingual mul-
timodal summarization dataset (44 languages,
1.1M article-summary pairs with 3.5M images).

• We propose two general summary-oriented vi-
sion modeling tasks, which substantially boost
the summary quality and are flexible and easy to
be extended to existing MAS models.

• Experiments on MM-Sum show that our model
builds new state-of-the-art performance in all
scenarios, especially on the low and zero re-
source where the fewer the data are (mid-
high→low→zero), the greater the improvement
we gain. Besides, results on the How2 dataset
show the generalizability of our approach.

• When jointly training the MAS model on mul-
tiple languages, we find that our model learns
transferable visual features among languages,
where the vision serves as an anchor in the zero-
resource languages.

2 Background

2.1 Problem Formulation

Given an input article X={xk}|X |
k=1 and the corre-

sponding object sequence O={oij}i≤n,j≤m
i=1,j=1 , where

xk denotes the k-th token and oij represents the de-
tected j-th object of the i-th image (n, m is the
number of images and detected objects in each im-
age, respectively), the MAS task is defined as:

p(Y|X ,O) =

|Y|∏

t=1

p(yt|X ,O, y<t),

where y<t indicates the tokens before the t-th time
step in the summary Y={yt}|Y|

t=1.

2.2 The MAS Model

Based on the pre-trained language models (e.g.,
BART), Yu et al. (2021a) design a variant of trans-
former (Vaswani et al., 2017) with four modules:
textual encoder, visual encoder, text-vision fusion,
and decoder, as shown in the left part of Fig. 2,
which achieves good performance on MAS.
Textual Encoder. The input text X is firstly to-
kenized and mapped to a sequence of token em-
beddings X. Then, the positional encodings Epe

are pointwisely added to X to keep the positional
information (Vaswani et al., 2017):

Z0
T = X+Epe, {Z0

T ,X,Epe} ∈ R|X |×d,

where d is the feature dimension. It forms the input
features Z0

T to the encoder, which consists of L
stacked layers and each layer includes two sub-
layers: 1) Multi-Head Attention (MHA) and 2) a
position-wise Feed-Forward Network (FFN):

Sℓ
T = MHA(Zℓ−1

T ) + Zℓ−1
T , Sℓ

T ∈ R|X |×d,

Zℓ
T = FFN(Sℓ

T ) + Sℓ
T , Z

ℓ
T ∈ R|X |×d,

where Zℓ
T is the state of the ℓ-th encoder layer.
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Figure 2: The overview of our model architecture. The left part is a general MAS model, which is enhanced by
two summary-oriented vision modeling tasks. As shown in the right part, the two auxiliary tasks including (a)
vision to summary task (Vis2Sum) and (b) masked image modeling task (MIM), are proposed to focus on the
summary-oriented visual features and thus benefit the multimodal summarization task.

Visual Encoder. Following Yu et al. (2021a);
Zhang et al. (2021a,b); Liang et al. (2021, 2022a,b),
the object sequence O is extracted from the image
by the Faster R-CNNs (Ren et al., 2015) (actually,
we have several images instead of only one image,
please refer to § 3.1 for details). Then the visual
features are fed into the visual encoder with H lay-
ers. Finally, we obtain the output visual features
ZH
V :

Sh
V = MHA(Zh−1

V ) + Zh−1
V , Sh

V ∈ R|O|×dv ,

Zh
V = FFN(Sh

V ) + Sh
V , Z

h
V ∈ R|O|×dv ,

where Zh
V is the extracted visual features O.

Text-Vision Fusion. The fusion method is vision-
guided multi-head attention. Firstly, the query Q
is linearly projected from the textual features ZL

T ,
and the key K and value V are linearly projected
from the visual features ZH

V . Secondly, a Cross-
modal Multi-Head Attention (CMHA) is applied
to get the text queried visual features M. Then, a
forget gate G is used to filter redundant and noisy
information from the visual features. Finally, we
obtain the vision-guided output ZT+V by concate-
nating the textual features ZL

T and the result of a
point-wise multiplication G⊗M, and then linearly
project it to the original dimension d. Formally, the
text-vision fusion process is:

Q = ZL
TWq, Q ∈ R|X |×dc ,

K = ZH
V Wk, V = ZH

V Wv, K,V ∈ R|O|×dc ,

M = CMHA(Q,K,V), M ∈ R|X |×dc ,

G = Sigmoid(Concat(ZL
T ,M)Wg + bg),

ZT+V = Concat(ZL
T ,G⊗M)Wz + bz,

where Concat is the concatenation operation and
W∗ and b∗ are trainable weights.

Decoder. Similar to the encoder, but each of L
decoder layers includes an additional Multi-Head

Cross-Attention sub-layer (MHCA):

Sℓ
dec = MHA(Zℓ−1

dec ) + Zℓ−1
dec , S

ℓ−1
dec ∈ R|Y|×d,

Cℓ
dec = MHCA(Sℓ

dec,ZT+V ) + Sℓ
dec,

Zℓ
dec = FFN(Cℓ

dec) +Cℓ
dec, C

ℓ
dec ∈ R|Y|×d,

(1)

where Zℓ
dec ∈ R|Y|×d denotes the state of the ℓ-th

decoder layer. Then, at each decoding time step t,
the top-layer (L-th) decoder hidden state ZL

dec,t is
fed into the softmax layer to produce the probability
distribution of the next target token as:

p(yt|X ,O, y<t) = Softmax(WoZ
L
dec,t + bo),

where Wo and bo are trainable weights.
Finally, the loss function is formalized as:

LMAS = −
|Y|∑

t=1

log(p(yt|X ,O, y<t)). (2)

3 SOV-MAS Framework

Based on the vision-guided pre-trained language
model described in § 2.2, we introduce the pro-
posed Summary-Oriented Vision enhanced MAS
((SOV-MAS)) framework. Specifically, we firstly
describe the process of visual features extraction
in § 3.1. Then, to make the best use of visual
features, we design two summary-oriented vision
modeling tasks in § 3.2, namely vision to summary
task and masked image modeling task. Finally, we
describe the training and inference in § 3.3.

3.1 Visual Features Extraction

As described in § 2.2, there is an image sequence
to be extracted by the Faster R-CNNs (Ren et al.,
2015) pre-trained on Visual Genome (Krishna et al.,
2017). Specifically, for the i-th input image, we ob-
tain a set of detected objects from Faster R-CNNs,
i.e., Ii = {vi,1,vi,2,vi,3, ...,vi,m}, where m is the
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number of extracted objects and vi,∗ ∈ Rdv . Each
object is captured by a dense feature representa-
tion, which can be mapped back to a bounding
box / region (i.e., Region-of-Interest (RoI)). Finally,
the image sequence is converted to visual features
I={vij}i≤n,j≤m

i=1,j=1 .
Besides these features from Faster R-CNN,

given the fact that Transformer (Vasava et al., 2022)
is becoming popular in computer vision, we exper-
iment with the visual features extracted by the pre-
trained Transformer models (i.e., ViT (Dosovitskiy
et al., 2020)).

To keep the order information of the image se-
quence, each image region is encoded as a sum of
four types of features (Cho et al., 2021):

oij = vij +Ebox
ij +Eimg

i +Ereg
j ; i ≤ n, j ≤ m,

where Ebox
ij ∈ Rdv denotes RoI bounding box co-

ordinates, which are encoded with a linear layer;
Eimg

i ∈ Rdv denotes image id embedding, which is
used to discriminate regions from different images;
and Ereg

j ∈ Rdv denotes region id embedding. The
image ids and region ids are encoded with learned
embeddings (Devlin et al., 2019). The final vi-
sual embeddings are denoted as O={oij}i≤n,j≤m

i=1,j=1 .
Then, they are fed into the visual encoder for better
modeling the intramodal dynamics and enhancing
the vision-specific order information.

3.2 Summary-Oriented Vision Modeling

We elaborately design two summary-oriented vi-
sion modeling tasks, namely vision to summary
task and masked image modeling task, to focus on
the summary-oriented visual features.
Vision to Summary Task (Vis2Sum). As illus-
trated in the right part of Fig. 2 (a), given the object
sequence O extracted from the image sequence, the
Vis2Sum task forces the MAS model to directly
generate the corresponding summary Y without
seeing the article X . In this manner, the MAS
model could acquire the ability to roughly under-
stand the summary and grasp the overall situation.
Particularly, we firstly use the visual encoder to
encode O, and then use the MAS decoder to pre-
dict Y . The training objective of this task can be
formulated as:

LVis2Sum = −
|Y|∑

t=1

log(p(yt|O, y<t)),

p(yt|O, y<t) = Softmax(WoZ
L,V
dec,t + bo),

(3)

where ZL,V
dec,t is the top-layer decoder hidden state

at the t-th decoding step, while the input of MHCA
is the visual features ZH

V instead of ZT+V in Eq. 1.
Masked Image Modeling Task (MIM). Our MIM
task aims to predict the semantic class distribution
of the regions in one fully masked image. As illus-
trated in the right part of Fig. 2 (b), for the input of
the visual encoder, we firstly mask all regions in
one random image (i.e., m objects/regions), which
are replaced with zero vectors. Then, we concate-
nate the masked object sequence Omask and the
summary Y . After feeding the concatenated in-
put [Omask; Y] to the encoder, an MLP classifier
is stacked over the output of each masked region
to predict the semantic class distribution. Specif-
ically, we denote the predicted class distribution
of the r-th masked region as p(ZH,mask

V,r ), and use
q(Or) to represent the class distribution detected
by the Faster R-CNNs (Ren et al., 2015). The loss
function for the MIM is to minimize the KL diver-
gence (Kingma and Welling, 2013) of the two class
distributions:

LMIM =
m∑

r=1

DKL(q(Or)||p(ZH,mask
V,r )). (4)

Besides, as a variant, we randomly mask regions
in the image sequence with a probability of 15%
following previous work (Xing et al., 2021). We
denote it as masked region modeling (MRM) and
show its effect in Tab. 4.

3.3 Training and Inference

Monolingual Training. For monolingual summa-
rization, with the main MAS task and the two aux-
iliary tasks, the training objective on one specific
language is finally formulated as:

JMono = LMAS + αLVis2Sum + βLMIM, (5)

where α and β are balancing factors for the trade-
off between LMAS and the auxiliary objectives.
Multilingual Training. For multilingual summa-
rization, the model can deal with inputs in multiple
languages and predict the summary in the corre-
sponding language. Specifically, for each language
lk in the set of K languages Lang = {l1, l2, ..., lK},
the training objective is:

JMulti =

K∑

k=1

(J lk
Mono). (6)

During inference, the two auxiliary tasks are
not involved and only the MAS model is used to
conduct summarization.

2937



Monolingual Training Multilingual Training
Languages mT5 VG-mT5 SOV-MAS (ours) mT5 VG-mT5 SOV-MAS (ours)
Arabic 33.67/14.06/27.83 33.88/14.20/28.00 33.63/13.83/27.64 34.34/14.30/28.43 33.42/13.58/27.62 34.74/14.48/28.84
Chinese 40.20/25.39/33.49 39.99/25.19/33.19

::::::::::::::::
40.59/25.32/33.36 40.30/24.97/33.04 40.14/25.29/33.31 41.59/26.52/34.53

English 36.99/15.18/29.64 37.17/14.88/29.41 37.26/15.02/29.61 36.65/13.91/28.53 36.62/14.13/28.76 37.86/15.23/29.89
Hindi 33.66/13.14/27.71 34.82/13.94/28.59 34.83/13.60/28.25 35.50/13.91/28.52 35.36/14.16/28.87 36.42/14.95/29.77
Indonesian 35.10/15.44/28.91 35.47/15.47/29.12 35.17/15.35/28.85 35.84/15.66/29.40 36.50/16.31/30.13 37.50/17.33/31.22
Persian 36.14/15.55/29.25 36.12/15.59/29.15 36.44/15.92/29.50 36.39/15.84/29.45 36.71/16.19/29.80 37.69/16.90/30.71
Portuguese 30.13/10.32/22.06 29.69/ 9.82/22.10 29.83/10.05/21.78 30.84/10.92/22.64 31.22/11.43/23.24 32.32/11.90/23.83
Russian 30.01/12.47/24.28 31.38/13.02/25.22

::::::::::::::::
31.86/13.38/25.45 31.12/12.33/24.67 30.42/12.29/24.38 31.96/13.30/25.69

Spanish 29.51/10.48/22.51 29.50/10.62/22.47 29.27/10.40/22.43 29.91/10.70/22.66 30.57/10.96/23.21 31.20/11.64/23.73
Tamil 22.31/10.08/20.36 22.30/10.15/20.39

::::::::::::::::
22.82/10.55/20.67 22.96/10.05/20.75 23.04/10.25/20.94 24.22/10.79/21.92

Turkish 30.37/14.39/26.79 30.51/14.41/26.76
::::::::::::::::
31.02/14.64/27.20 31.93/14.69/27.76 31.44/14.73/27.71 32.94/15.77/29.01

Ukrainian 21.57/ 8.66/18.64 21.71/ 8.89/18.79 21.84/ 8.62/18.69 22.79/ 9.13/19.46 22.60/ 9.27/19.55 23.91/ 9.97/20.53
Urdu 38.22/17.25/31.37 38.07/17.31/31.54 38.10/16.98/31.18 38.15/17.12/31.36 38.04/17.32/31.67 39.38/18.38/32.76
Vietnamese 32.18/15.84/24.83 32.18/15.98/24.84 32.22/15.99/24.95 33.71/16.72/25.97 33.78/17.06/26.32 34.78/17.85/27.17
Avg. 32.14/14.16/26.26 32.34/14.24/26.39 32.49/14.26/26.40 32.88/14.30/26.61 32.84/14.49/26.82 34.04/15.36/27.83

Table 1: The R-1/R-2/R-L results on the mid-high-resource scenario. “
::::
*/*/* ” and “ */*/* ” denote statistically

significant better than the “VG-mT5” model with t-test p < 0.05 and p < 0.01 hereinafter, respectively. The “Avg.”
indicates average score for each group and the best average scores are bold.

4 Experiments

4.1 MM-Sum Dataset

There is no multilingual MAS benchmark dataset
until now. We construct one as follows.
Data Source and Data Construction. Based
on the XL-Sum dataset (Hasan et al., 2021), we
construct a Multilingual Multimodal abstractive
Summarization (MM-Sum) dataset. The original
XL-Sum dataset is crawled from the BBC web-
site2 and its quality has been verified and ensured
reliability by Hasan et al. (2021). However, the
lack of associated image sequence in XL-Sum,
makes it impossible to directly conduct research
on MAS. Therefore, we strictly follow the proce-
dure of (Hasan et al., 2021) to further offer the
image sequence for the corresponding textual sum-
marization dataset, where we maintain the article-
summary pair if it contains images and keep the
image order appearing in the article.
Dataset Statistics and Splits. Tab. 7 of Ap-
pendix A shows the detailed statistic of our MM-
Sum and please refer to it for details. According to
the dataset size of each language, we split them into
three settings: Mid-High Resource, Low Resource,
and Zero Resource. For mid-high and low-resource
languages, following Hasan et al. (2021), we uti-
lize about 80% training:10% validation:10% test
splitting with one exception (English splitting is
93%:3.5%:3.5%). For zero resource, we follow-
ing Bugliarello et al. (2022) investigate two sce-
narios: few-shot and zero-shot. Therefore, we also
randomly sample 100 instances as the few-shot

2https://www.bbc.com/

learning data and then split the rest with about 50%
validation and 50% test.

4.2 Setup and Metrics

Implementation Details. Please refer to Ap-
pendix B for implementation details including data
pre-processing and hyper-parameters settings.
Metrics. Following Hasan et al. (2021), we use the
standard ROUGE scores (R-1, R-2, and R-L) (Lin,
2004) with the statistical significance test (Koehn,
2004) for a fair comparison.

4.3 Comparison Models

Text-Only MAS Systems.

• mT5: We choose the mT5 (Xue et al., 2021),
a multilingual language model pre-trained on a
large dataset of 101 languages, as the text-only
baseline which is fine-tuned on our dataset.

Vision-Guided MAS Systems.

• VG-mT5: We implement the fusion method de-
scribed in § 2.2 to inject visual features into the
mT5 model, which is a strong baseline.

• SOV-MAS: It is the proposed model with two
summary-oriented auxiliary tasks to enhance
MAS model as described in § 3.

All the above models involve two training man-
ners: monolingual training and multilingual
training. Specifically, for monolingual training,
we train the model on the training dataset of each
language. For multilingual training, we train the
model on the whole training dataset of mid-high-
resource and low-resource languages.
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Monolingual Training Multilingual Training
Languages mT5 VG-mT5 SOV-MAS (ours) mT5 VG-mT5 SOV-MAS (ours)
Bengali 25.34/ 9.52/22.04 26.02/ 9.88/22.14

::::::::::::::::
26.76/10.08/23.07 27.95/10.64/23.43 27.34/10.87/23.42 28.89/11.69/24.59

French 32.05/12.98/25.06 32.41/13.40/25.50
::::::::::::::::
33.16/14.21/25.89 34.36/14.90/26.92 34.94/15.41/27.56 36.06/16.36/28.63

Gujarati 19.30/ 6.34/17.74 19.45/ 6.26/17.65 19.83/ 6.64/18.02 21.59/ 7.38/19.26 21.44/ 7.61/19.46 22.31/ 8.12/20.14
Hausa 36.36/15.37/28.85 35.69/14.75/28.22 36.81/15.31/29.12 38.37/16.59/30.34 38.14/16.60/30.45 39.40/17.53/31.04
Japanese 44.54/21.33/34.44 45.03/21.64/34.99

::::::::::::::::
45.97/22.63/35.84 47.36/22.20/35.88 46.65/22.66/35.68 47.96/23.76/36.78

Marathi 20.39/ 8.96/18.65 20.60/ 9.06/18.75 21.08/ 9.46/19.09 21.91/ 9.52/19.64 21.72/ 9.49/19.82 22.59/ 9.98/20.39
Oromo 15.91/ 5.03/13.91 15.65/ 4.95/13.67 16.68/ 5.39/14.60 17.77/ 5.72/15.53 17.82/ 5.75/15.20 19.13/ 6.29/16.47
Pashto 36.14/14.06/29.74 35.97/14.08/29.67

::::::::::::::::
36.45/14.06/29.79 37.34/14.41/30.39 37.21/14.70/30.59 38.11/15.53/31.44

Pidgin 35.22/12.93/27.27 35.14/12.88/27.27 35.58/13.02/27.46 36.33/13.60/28.29 37.21/14.48/29.14 38.02/15.31/30.07
Punjabi 27.43/10.07/22.68 27.27/ 9.76/22.44

::::::::::::::::
28.25/10.57/23.14 29.98/11.14/24.41 29.75/11.48/24.72 30.78/12.10/25.52

Serbian Cyrillic 18.52/ 4.90/15.44 19.01/ 4.92/15.72
:::::
19.80/

:::::::::::
5.20/16.41 23.11/ 7.18/19.14 22.92/ 7.43/19.39 23.85/ 7.93/20.06

Serbian Latin 18.50/ 4.40/15.11 18.49/ 4.67/15.42 18.55/ 4.75/15.29 21.28/ 6.04/17.41 20.66/ 5.82/17.21 22.39/ 6.84/18.59
Swahili 34.22/14.76/27.61 34.79/15.07/28.00 34.56/14.99/27.75 36.75/16.26/29.49 37.19/17.23/30.33 38.04/17.87/30.99
Telugu 17.06/ 5.83/15.29 17.20/ 5.95/15.30 17.56/ 6.09/15.66 18.68/ 6.50/16.52 18.92/ 6.77/16.84 20.19/ 7.38/17.91
Welsh 30.41/ 9.23/24.11 30.63/ 9.78/24.23

::::::::::::::::
31.32/10.97/24.77 31.86/10.88/25.06 31.91/10.62/25.08 32.89/11.79/26.10

Avg. 27.42/10.38/22.52 27.55/10.47/22.59 28.16/10.90/23.06 29.64/11.53/24.11 29.59/11.79/24.32 30.71/12.57/25.25

Table 2: The R-1/R-2/R-L results on the low-resource scenario.

4.4 Main Results

Tab. 1, Tab. 2, and Tab. 3 present the main results
on mid-high-, low-, and zero-resource scenarios un-
der monolingual and multilingual training settings.
Overall, our model obtains notably better results
than the text-only “mT5” model on both settings.
1) In the monolingual training setting, we find that
the fewer the data are (mid-high→low→zero), the
greater the improvement we gain, showing that our
approach plays an increasing role in vision mod-
eling. 2) In the multilingual training setting, the
results show that our approach learns transferable
visual features among languages, especially on the
zero-resource ones where the vision serves as an an-
chor. These results not only show the effectiveness
of our approach but also the value of our MM-Sum
dataset.

Results on Mid-High-Resource Scenario. In
Tab. 1, 1) on the whole, the results of the multi-
lingual training group (e.g., SOV-MAS) substan-
tially outperform those of the monolingual training
group, demonstrating the task knowledge among
languages is transferable. 2) Under the monolin-
gual training setting, the text-only baseline “mT5”
performs worse than the “VG-mT5” model on most
languages, showing that the visual features indeed
supplement some crucial information for the sum-
marization. With the summary-oriented vision
modeling tasks, our model further promotes the
quality of the summary (“SOV-MAS” vs. “VG-
mT5”), demonstrating the effectiveness of our ap-
proach. 3) Under the multilingual training setting,
our model consistently and significantly surpasses
both the text-only and vision-guided baselines by
large margins (e.g., the previous best “VG-mT5”,

up to 1.20/0.87/1.01 ROUGE scores on average).
Further, in the monolingual setting, the data scale

is large while it may be not enough to learn better
summary-oriented image features. That’s, the im-
proved image features may not supplement much
more information compared with the large textual
data. However, in multilingual training, the data
scale is much larger and enough for learning the bet-
ter summary-oriented image features, which help
the model capture more summary-related informa-
tion. Thus, the SOV-MAS achieves more signifi-
cant results than in a monolingual setting.

Results on Low-Resource Scenario. Under the
low-resource languages, in Tab. 2, we observe sim-
ilar findings as in the Mid-High-Resource scenario.
This demonstrates that our conclusions are solid
and convincing on general languages. All these
results prove the effectiveness of our approach.

Further, in this setting, the data may be not
enough for learning the better summary-oriented
image features. However, the learned image fea-
tures still could offer a sketch of the summary and
help the model to focus more on the summary-
related parts. This may compensate for the impact
of insufficient data. Therefore, the SOV-MAS also
obtains significant gains.

Results on Zero-Resource Scenario (Zero-Shot).
On the zero-shot setting in the left group of Tab. 3,
the “VG-mT5” model notably exceeds the text-
only “mT5” model by averagely 0.56/0.22/0.49↑
ROUGE scores. It indicates that the image in our
MM-Sum plays a key role when transferring knowl-
edge from mid-high and low-resource languages to
zero-resource languages via considering vision as
the anchor, where the vision is free from different
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Zero-Shot Setting Few-Shot Setting
Languages mT5 VG-mT5 SOV-MAS (ours) mT5 VG-mT5 SOV-MAS (ours)
Amharic 0.05/0.00/ 0.05 0.06/0.01/ 0.07 0.15/0.01/ 0.15 10.50/ 2.50/ 9.39 10.86/ 2.58/ 9.68 9.61/ 2.06/ 8.33
Azerbaijani 6.79/1.66/ 6.25 6.92/1.76/ 6.42

::::::::::
7.55/1.93/

:::::
6.99 10.57/ 2.85/ 9.39 10.91/ 3.07/ 9.80 12.39/ 3.53/10.93

Burmese 1.21/0.71/ 1.07 1.27/0.67/ 1.11 1.41/0.74/ 1.18 33.67/14.16/23.67 33.45/14.23/23.77 32.97/13.12/22.87
Igbo 18.61/3.00/14.00 19.35/3.61/14.78 21.21/4.08/15.95 21.83/ 4.53/16.62 24.17/ 5.16/18.14 24.63/ 5.47/18.21
Kirundi 14.39/4.15/11.75 15.70/4.93/13.10 17.31/5.39/14.29 22.09/ 6.65/16.81 23.35/ 7.28/17.76 24.61/ 8.15/18.65
Korean 1.07/0.03/ 1.04 1.23/0.02/ 1.23 1.13/0.04/ 1.09 9.49/ 4.47/ 8.90 10.00/ 4.73/ 9.41 8.65/ 4.22/ 8.15
Kyrgyz 4.99/1.55/ 4.70 5.52/1.61/ 5.19

::::::::::
6.40/1.82/

:::::
5.85 9.20/ 2.25/ 7.83 9.98/ 2.67/ 8.75

:::::
10.96/

::::::
2.96/

:::::
9.37

Nepali 10.62/2.27/ 9.53 11.58/2.55/10.10 12.92/3.01/11.42 18.39/ 5.24/16.55 18.86/ 5.48/17.01 20.11/ 6.18/18.11
Scottish Gaelic 7.46/0.91/ 6.63 6.61/1.11/ 6.01 8.03/1.45/ 7.01 21.68/ 5.55/16.96 20.99/ 6.32/17.03 24.25/ 6.59/18.85
Sinhala 0.11/0.00/ 0.11 0.12/0.01/ 0.12 0.15/0.01/ 0.14 14.82/ 5.28/12.77 14.12/ 5.24/12.14 13.76/ 4.52/11.48
Somali 9.32/1.89/ 7.76 9.58/2.37/ 8.13 11.64/2.70/ 9.65 23.96/ 5.43/16.93 23.96/ 5.72/17.34 26.26/ 6.71/18.79
Thai 16.34/0.74/16.21 17.79/0.72/17.60 17.83/0.73/17.67 24.09/ 4.88/18.36 23.76/ 4.45/17.65 24.89/ 4.42/19.55
Tigrinya 0.08/0.01/ 0.08 0.08/0.01/ 0.08 0.13/0.00/ 0.12 16.49/ 3.35/13.46 16.59/ 3.30/13.47 14.50/ 2.29/11.84
Uzbek 3.49/0.65/ 3.25 4.77/1.01/ 4.46 6.02/1.32/ 5.54 9.83/ 2.31/ 8.54 10.18/ 2.43/ 8.98 11.36/ 2.96/ 9.87
Yoruba 11.01/2.16/ 9.11 13.38/2.70/10.54 12.61/2.64/10.18 24.39/ 6.49/18.07 24.84/ 6.58/18.23 26.06/ 7.22/19.16
Avg. 7.03/1.31/ 6.10 7.59/1.53/ 6.59 8.30/1.72/ 7.15 18.07/ 5.07/14.29 18.40/ 5.28/14.61 19.00/ 5.36/14.96

Table 3: The R-1/R-2/R-L results on the zero-resource scenario, which includes zero-shot and few-shot settings.

languages. Furthermore, our model presents sig-
nificant improvements over the “mT5” model by
averagely 1.27/0.41/1.05↑ ROUGE gains, which
shows its effectiveness again.

Results on Zero-Resource Scenario (Few-Shot).
On the few-shot setting, we merge the 100 samples
of each zero-resource language to continue training
the multilingual training model for 3,000 steps.
The results are shown in the right group of Tab. 3,
which shows that with a handful of data the models
can greatly increase the ROUGE scores compared
with zero-shot results. Our approach still achieves
the best results, showing the effectiveness of our
approach again. It also suggests that there is much
room for further improvement using more data or
other more advanced text-vision fusion methods.

Besides, we listed the results with the visual
features extracted by the pretrained Transformer
vision encoder, i.e., ViT (Dosovitskiy et al., 2020),
in Tab. 8 and Tab. 9 of the appendix, demonstrat-
ing that our SOV-MAS still achieves better perfor-
mance in almost all cases, showing its superiority.

5 Analysis

5.1 Ablation Study

We conduct ablation studies to investigate how well
the two auxiliary tasks work. The results are shown
in Tab. 4. We have the following findings:

• The Vis2Sum task shows a positive impact on the
model performance (row 1 vs. row 0), demon-
strating that the image sequence may reflect a
sketch of the summary, which is beneficial to the
summary generation;

• The MIM substantially improves the MAS model

Models Mid-High Resource Low Resource Zero Resource
0 Baseline 32.84/14.49/26.82 29.59/11.79/24.32 7.59/1.53/6.59
1 w/ Vis2Sum 33.74/15.12/27.56 30.43/12.37/25.01 8.16/1.68/7.07
2 w/ MIM 33.59/15.04/27.48 30.37/12.21/24.94 7.93/1.65/6.98
3 w/ Vis2Sum&MIM 34.04/15.36/27.83 30.71/12.57/25.25 8.30/1.72/7.15
4 w/ MRM 33.18/14.58/26.92 29.99/11.85/24.43 7.68/1.57/6.65

Table 4: Ablation results under the multilingual training
setting (Avg. R-1/R-2/R-L results), where each auxiliary
task is separately added on the baseline.

in terms of ROUGE scores (row 2 vs. row 0),
suggesting that reconstructing the masked image
with the summary is helpful to summarization;

• The two summary-oriented vision modeling
tasks exhibit notable cumulative benefits (row
3 vs. rows 0∼2), showing that focusing on the
summary-oriented visual features is effective;

• The variant MRM makes relatively smaller con-
tributions to the MAS model compared with the
MIM (row 4 vs. row 2). The reason may be that
it is easy for the concise summary to complete
the masked globally full image rather than the
masked locally disordered regions (actually, the
local regions might not be mentioned in the sum-
mary as described in § 1, and thus it is hard to
reconstruct them given the concise summary).

5.2 Human Evaluation
To further evaluate the performances of mT5, VG-
mT5 and our SOV-MAS, we conduct human stud-
ies on 50 samples randomly selected from English
and Chinese test sets. We invited three Chinese
postgraduate students who are highly proficient in
English comprehension 3 to compare the generated

3One student has passed TEM-8 (with 81 points out of 100
points). The other two students have passed the IELTS exam
(their scores of reading comprehension are 8.0 and 7.0 out of
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Models English Chinese
Flu. Conci. Info. Flu. Conci. Info.

mT5 4.04 3.86 3.18 3.42 3.20 3.08
VG-mT5 4.22 4.08 3.36 3.74 3.42 3.26
SOV-MAS 4.56 4.38

:::
3.88 3.98 3.76

:::
3.64

Table 5: Human evaluation results in terms of fluency
(Flu.), conciseness (Conci.) and informativeness (Info.).

summaries under the multilingual training setting
and assess each summary from three independent
perspectives: fluency (Flu.), conciseness (Conci.)
and informativeness (Info.). We ask them to assess
each aspect with a score ranging from 1 (worst) to 5
(best). The average results are presented in Tab. 5.

Tab. 5 shows the human results on English and
Chinese. We find that our SOV-MAS outperforms
all compared models from all criteria in both lan-
guages, which further demonstrates the effective-
ness and superiority of our model. The Fleiss’
Kappa scores (Fleiss and Cohen, 1973) of Flu.,
Conci and Info. are 0.69, 0.65 and 0.56, respec-
tively, which indicates a substantial agreement
among three evaluators. We also present a case
study in Appendix C.

5.3 Results on How2 Dataset
To investigate the generality of the two summary-
oriented vision modeling tasks, we extend them to
two existing MAS models (i.e., VG-T5 and VG-
BART (Yu et al., 2021a)), denoted as “SOV-MAS
(T5)” and “SOV-MAS (BART)”, respectively. As
shown in Tab. 6, we also compare our models with
the following systems, including text-only models:
S2S, PG, Trans., T5, and BART, and prior best
vision-guided models: HA (RNN/Trans.), MFFG
(RNN/Trans.), VG-T5, and VG-BART.

The results on How2 dataset (Sanabria et al.,
2018), a widely-used English MAS dataset, show
that our approach effectively boosts the model per-
formance and notably outperforms both text-only
and vision-guided methods, suggesting the effec-
tiveness and generalizability of our approach.

6 Related Work

Abstractive Text Summarization (ATS). Given
the input textual article, the goal of ATS is to gen-
erate a concise summary (Hermann et al., 2015;
Wang et al., 2022b). Thanks to generative pre-
trained language models (Lewis et al., 2020), ATS
has achieved remarkable performance (Paulus et al.,
2018; Liu and Lapata, 2019; Zhang et al., 2020;

9.0 points, respectively)

T

S2S (Luong et al., 2015)∗ 58.6/40.6/53.8
PG (See et al., 2017)∗ 57.2/39.5/52.8
Transf. (Vaswani et al., 2017)∗ 59.0/41.0/54.3
T5 (Raffel et al., 2020)∗ 62.8/45.0/57.5
BART (Lewis et al., 2020)∗ 64.0/46.4/58.9

T+V

HA (RNN) (Palaskar et al., 2019)∗ 60.3/42.5/55.7
HA (Trans.) (Palaskar et al., 2019)∗ 60.2/43.1/55.9
MFFG (RNN) (Liu et al., 2020)∗ 62.3/46.1/58.2
MFFG (Trans.) (Liu et al., 2020)∗ 61.6/45.1/57.4
VG-T5 (Yu et al., 2021a)∗† 63.3/45.3/58.0
VG-BART (Yu et al., 2021a)∗† 66.3/49.4/61.4
SOV-MAS (T5) 64.8/46.7/59.5
SOV-MAS (BART) 67.7/50.9/62.8

Table 6: The R-1/R-2/R-L results on test sets of How2
dataset (Sanabria et al., 2018). “∗” indicates that the
results are taken from Yu et al. (2021a). “†” indicates
the previous state-of-the-art models. T/V: text/vision.

Goodwin et al., 2020; Rothe et al., 2021; Xiao
et al., 2022; Xu et al., 2020; Yu et al., 2021b; Liang
et al., 2022c; Wang et al., 2022a).

Multimodal Abstractive Summarization (MAS).
With the rapid growth of multimedia, many MAS
datasets have been built such as: SportsSum (Tjon-
dronegoro et al., 2011), MovieSum (Evangelopou-
los et al., 2013), MSMR (Erol et al., 2003),
MMSS (Li et al., 2017), MSS (Li et al., 2018a),
How2 (Sanabria et al., 2018), MSMO (Zhu et al.,
2018), E-DailyMail (Chen and Zhuge, 2018), EC-
product (Li et al., 2020a), and MM-AVS (Fu et al.,
2021). All these datasets, covering video summa-
rization, movie summarization, meeting records
summarization, sentence summarization, product
summarization, and news summarization, aim to
generate a summary based on multimodal inputs
(text, vision, or audio). With the data resources
extensively used, the MAS task has attracted much
attention, where the existing work mainly focuses
on how to effectively exploit the additional features
which are generally implicitly learned by the MAS
objective, having achieved impressive performance
on these high-resource English datasets (Li et al.,
2018b, 2020b; Zhu et al., 2020, 2021; Zhang et al.,
2021b,a; Yu et al., 2021a). For example, Palaskar
et al. (2019) and Zhang et al. (2021a) explore the
hierarchy between the textual article and visual fea-
tures, and integrate them into the MAS model. Liu
et al. (2020) design a multistage fusion network
to model the fine-grained interactions between the
two modalities. And Yu et al. (2021a) study multi-
ple multimodal fusion methods to infuse the visual
features into generative pre-trained language mod-
els, e.g., BART (Lewis et al., 2020).
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Multilingual Abstractive Summarization. It
aims to train a model that can produce a sum-
mary in any language. Existing studies mainly
pay attention to constructing the multilingual ab-
stractive summarization dataset and there have
been many datasets publicly available: Multi-
Ling2015 (Giannakopoulos et al., 2015), Glob-
alVoices (Nguyen and Daumé III, 2019), Mul-
tiSumm (Cao et al., 2020), MLSUM (Scialom
et al., 2020), MultiHumES (Yela-Bello et al., 2021),
MassiveSumm (Varab and Schluter, 2021), ML-
GSum (Wang et al., 2021), and XL-Sum (Hasan
et al., 2021). Most of these datasets are automati-
cally constructed from online websites due to high
human cost, which involves at least two languages.

There are two essential differences between the
above work and ours:
i) The MAS datasets and multilingual abstractive

summarization datasets are either in multimodal or
multilingual, while ours includes both. It is ob-
vious that conducting multilingual MAS is more
challenging due to the more complex scene (Jan-
gra et al., 2021). Besides, our MM-Sum includes
44 languages, covering three settings: mid-high,
low, and zero resource. What is more, our MM-
Sum has the property that the knowledge can be
transferred from mid-high resource languages to
low- and zero-resource ones through visual fea-
tures (as the bridge) while they have not. Tab. 10
of Appendix D provides a detailed comparison of
available languages, modalities, and scenes for all
datasets.
ii) We mainly focus on how to obtain the

summary-oriented visual features from the perspec-
tive of the summary rather than the article as ex-
isting work does. We thus propose two summary-
oriented vision modeling tasks which are flexible
and easy to be extended to existing MAS models.

7 Conclusion

In this paper, we propose to enhance the MAS
model through two summary-oriented vision mod-
eling tasks namely vision to summary task and
masked image modeling task. They can explic-
itly force the MAS model to exploit the summary-
oriented visual features and thus improve the sum-
mary quality. Extensive experiments on multiple
settings demonstrate that our model significantly
outperforms related baselines in terms of ROUGE
scores and human evaluation. Furthermore, we con-
tribute a large-scale multilingual MAS (MM-Sum)

dataset to the research community.

Limitations

Although we show that our SOV-MAS outperforms
the VG-mT5 model under different setups, there
are some limitations worth considering to study
in future work: (1) In this study, we only pro-
vide 44 languages and conduct experiments on
them, and future work could extend our method to
more languages; (2) The used MAS model is based
on the generative pre-trained language model, i.e.,
mT5 (Xue et al., 2021). The large-scale model size
can bring promising performance while it also con-
sumes more training time (all mT5-based models
in this work cost about five days under the mul-
tilingual training setting) and releases more car-
bon dioxide, which may be inconsistent with the
theme of green AI. Therefore, the work related to
model compression (e.g., knowledge distillation)
may be possibly future work for the multilingual
MAS task.

Ethics Statement

In this section, we consider the potential ethical is-
sues of our model. In this paper, we propose SOV-
MAS which is trained on the publicly-available
BBC datasets. Therefore, SOV-MAS might lead to
incorrect summaries in applications and involve the
same biases and toxic behaviors exhibited by the
datasets. Besides, we crawled the dataset from the
BBC website4 and its permissions are granted to
copy, distribute and modify the contents under the
terms of the Creative Commons AttributionShare-
Alike 3.0 Unported License and Creative Commons
CC0 License, respectively.
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A Dataset Statistics and Splits.

Tab. 7 shows that our MM-Sum covers 44 lan-
guages and in total includes 1,078,215 article-
summary pairs with 3,479,348 images, where each
article-summary pair contains about 3.23 images on
average. The average article and summary length
for all languages are about 520 and 84, respectively.
According to the dataset size of each language, we
split them into three settings: Mid-High Resource,
Low Resource, and Zero Resource. For mid-high
and low-resource languages, following Hasan et al.
(2021), we utilize about 80% training:10% valida-
tion:10% test splitting with one exception (English
splitting is 93%:3.5%:3.5%). For zero resource,
we follow Bugliarello et al. (2022) who investigate
two scenarios: few-shot and zero-shot. Therefore,
we also randomly sample 100 instances as the few-
shot learning data and then split the rest with about
50% validation and 50% test.

B Implementation Details

Data Pre-Processing. Following Hasan et al.
(2021), we pre-process the textual data by truncat-
ing or padding them into sequences of 512 tokens
for X and the outputs Y to 84 tokens after using
the 250k wordpiece (Xue et al., 2021) vocabulary
provided with the mT5 checkpoint. For the image
sequence, after the feature extraction as described
in § 3.1, we also truncate or pad the sequence length
to 180 (i.e., five images: 5 * 36; n=5, m=36).

Hyper-Parameters. Following Hasan et al.
(2021), we use the base5 model of mT5 (Xue
et al., 2021), in which L = 12 for both encoder and
decoder. For the vision-related hyper-parameters
mentioned in § 2.2, we follow Yu et al. (2021a) for
a fair comparison. Specifically, we use a 4-layer
encoder (i.e., H = 4) with 8 attention heads and a
2048 feed-forward dimension. For all models, the
dropout is set to 0.1 and the label smoothing is set
to 0.1. The d, dc, and dv are 768, 256, and 2048,
respectively. The balancing factor α and β in Eq. 5
are set to 1.0, which are not tuned. The K of Eq. 6
is 29, which is the sum of the number of mid-high-
and low-resource languages. During the monolin-
gual training, we train all models on each language
separately for 6-20 epochs (since the total training
samples were limited, we had to be careful to pre-
vent overfitting) on an NVIDIA Tesla V100 GPU

5https://huggingface.co/google/mt5-base/tree/
main

with a batch size of 32. The models are optimized
using Adam (Kingma and Ba, 2014) with β1=0.9
and β2=0.998. We train all model weights with
a slanted learning rate schedule (learning rate to
5e-4). During the multilingual training, following
a similar training strategy (Conneau and Lample,
2019; Hasan et al., 2021), we sample each batch
from a single language containing 256 samples
and use a smoothing factor (0.5) so that batches
of low-resource languages would be sampled at a
higher rate, increasing their frequency during train-
ing. We set the training step to 35,000 steps on a
distributed cluster of 8 NVIDIA Tesla V100 GPUs
and trained about 5 days. We use the Adafactor
optimizer (Shazeer and Stern, 2018) with a linear
warm-up of 5,000 steps and the “inverse square
root” learning rate schedule.

For inference, we use beam search with beam
size 4 and length penalty of γ = 0.6. When calcu-
lating the ROUGE scores, we use the multi-lingual
rouge6 toolkit following Hasan et al. (2021). All
experimental results reported in this paper are the
average of three runs with different random seeds.

C Case Study

Fig. 3 shows an example multimodal English docu-
ment, the generated summary, and the ground truth
summary. Though all generated summaries exhibit
the core idea of the document and present factual
consistency, ours has good lexical and semantics
overlaps with the ground truth. And it is not diffi-
cult to find that with enhanced visual features our
SOV-MAS can capture a sketch of the document,
i.e., mourning the king with true devotion, and sup-
plement a lot of details, i.e., dressed in black and
weeping. These observations show that through
two summary-oriented vision modeling tasks, our
model could generate a better summary. We also
believe that a more informative summary would
meet the demand of the user.

D Comparison to the Related Datasets

Tab. 10 provides information on the number of
available languages, modalities, and scenes for
all datasets. Specifically, multimodal abstractive
summarization datasets and multilingual abstrac-
tive datasets are either multimodal or multilingual,

6https://github.com/csebuetnlp/xl-sum/tree/
master/multilingual_rouge_scoring
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Mid-High Resource Low Resource Zero Resource
Languages #Samples #Images Languages #Samples #Images Languages #Samples #Images
Arabic 41,977 95,762 Bengali 10,008 33,447 Amharic 7,153 11,895
Chinese 41,126 101,672 French 10,478 23,698 Azerbaijani 7,392 21,612
English 311,999 867,817 Gujarati 10,917 72,196 Burmese 5,614 13,727
Hindi 49,059 209,559 Hausa 7,536 17,023 Igbo 4,773 17,113
Indonesian 45,248 132,048 Japanese 8,802 25,261 Korean 5,049 15,908
Persian 29,547 87,768 Marathi 12,354 59,553 Kyrgyz 3,187 11,169
Portuguese 25,230 124,136 Oromo 7,551 16,160 Kirundi 7,088 15,352
Russian 65,276 216,237 Pashto 15,683 33,851 Nepali 6,766 18,891
Spanish 45,730 219,365 Pidgin 11,173 26,031 Scottish Gaelic 2,303 14,213
Tamil 19,939 72,441 Punjabi 10,068 46,874 Sinhala 3,192 8,198
Turkish 21,970 61,443 Serbian Cyrillic 8,737 39,577 Somali 7,358 17,545
Ukrainian 34,202 117,587 Serbian Latin 8,737 39,561 Tigrinya 6,790 14,777
Urdu 40,672 106,960 Swahili 9,825 26,770 Thai 7,339 31,414
Vietnamese 23,100 62,436 Telugu 12,388 58,206 Uzbek 4,421 11,840
Total Samples 1,078,215 Welsh 12,162 140,638 Yoruba 7,368 20,388
Total Images 3,479,348 Avg. of Images 3.23 Num. of Lang. 44

Table 7: Languages covered by our MM-Sum dataset, and the number of samples with corresponding images
for each language. Here, a sample denotes an article-summary pair. We roughly split them into three scenarios
according to the number of samples, i.e., Mid-High Resource, Low Resource, and Zero Resource.

Monolingual Training Multilingual Training
Languages mT5 VG-mT5 SOV-MAS (ours) mT5 VG-mT5 SOV-MAS (ours)
Arabic 33.67/14.06/27.83 33.79/14.11/27.95 33.86/14.53/28.06 34.34/14.30/28.43 33.40/13.49/27.51 34.69/14.39/28.54
Chinese 40.20/25.39/33.49 40.31/25.45/33.51 40.61/25.37/33.39 40.30/24.97/33.04 40.19/25.31/33.35 41.51/26.34/34.41
English 36.99/15.18/29.64 37.25/14.97/29.54 37.29/15.18/29.82 36.65/13.91/28.53 36.69/14.16/28.79 37.77/15.14/29.81
Hindi 33.66/13.14/27.71 34.55/13.47/28.26 34.78/13.55/28.11 35.50/13.91/28.52 35.66/14.26/28.97 36.33/14.91/29.68
Indonesian 35.10/15.44/28.91 35.16/15.49/29.09 35.14/15.31/28.81 35.84/15.66/29.40 36.55/16.38/30.19 37.46/17.13/31.18
Persian 36.14/15.55/29.25 36.01/15.45/29.08 36.37/15.75/29.35 36.39/15.84/29.45 36.88/16.34/29.93 37.65/16.92/30.58
Portuguese 30.13/10.32/22.06 29.46/ 9.72/21.91 29.77/10.01/21.55 30.84/10.92/22.64 31.01/11.22/23.11 31.77/11.76/23.79
Russian 30.01/12.47/24.28 31.01/12.43/24.52

::::::::::::::::
31.58/12.77/24.96 31.12/12.33/24.67 30.55/12.65/24.58 31.57/13.12/25.21

Spanish 29.51/10.48/22.51 29.37/10.59/22.52 29.19/10.32/22.37 29.91/10.70/22.66 30.37/10.94/23.02 31.00/11.56/23.58
Tamil 22.31/10.08/20.36 22.29/10.14/20.38

::::::::::::::::
22.80/10.51/20.62 22.96/10.05/20.75 23.14/10.29/20.98 24.01/10.82/21.89

Turkish 30.37/14.39/26.79 30.44/14.40/26.77
::::::::::::::::
30.91/14.60/27.16 31.93/14.69/27.76 31.41/14.71/27.70 32.67/15.70/28.77

Ukrainian 21.57/ 8.66/18.64 21.69/ 8.78/18.65 21.77/ 8.61/18.77 22.79/ 9.13/19.46 22.79/ 9.39/19.75 23.84/ 9.94/20.49
Urdu 38.22/17.25/31.37 38.11/17.27/31.51 38.19/17.12/31.38 38.15/17.12/31.36 38.01/17.21/31.55 39.22/18.31/32.62
Vietnamese 32.18/15.84/24.83 32.19/15.99/24.87

::::::::::::::::
32.87/16.59/25.24 33.71/16.72/25.97 33.79/17.08/26.34 34.75/17.82/27.09

Avg. 32.14/14.16/26.26 32.25/14.16/26.32 32.49/14.26/26.40 32.88/14.30/26.61 32.89/14.53/26.84 33.87/15.27/27.69

Table 8: The R-1/R-2/R-L results on the mid-high-resource scenario with visual features extracted by Vision
Transformer (ViT) (Dosovitskiy et al., 2020). “

::::
*/*/* ” and “ */*/* ” denote statistically significant better than the

“VG-mT5” model with t-test p < 0.05 and p < 0.01 hereinafter, respectively. The “Avg.” indicates the average score
for each group and the best average scores are bold.

while ours includes both. It is obvious that conduct-
ing multilingual multimodal abstractive summa-
rization is more challenging due to the more com-
plex scene (Jangra et al., 2021). Furthermore, our
MM-Sum includes 44 languages, covering three
settings: mid-high resource, low resource, and zero
resource. What is more, our MM-Sum has the
property that the knowledge can be transferred for
MAS from mid-high-resource languages to low-
and zero-resource languages via additional visual
features as a bridge while they have not.
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Monolingual Training Multilingual Training
Languages mT5 VG-mT5 SOV-MAS (ours) mT5 VG-mT5 SOV-MAS (ours)
Bengali 25.34/ 9.52/22.04 25.86/ 9.81/22.11

::::::::::::::::
26.49/10.02/23.01 27.95/10.64/23.43 27.88/10.82/23.67 28.58/11.45/24.27

French 32.05/12.98/25.06 32.36/13.35/25.48 33.12/14.21/25.81 34.36/14.90/26.92 34.89/15.35/27.39 35.93/16.31/28.42
Gujarati 19.30/ 6.34/17.74 19.48/ 6.29/17.73 19.81/ 6.61/17.89 21.59/ 7.38/19.26 21.49/ 7.68/19.47 22.18/ 8.21/20.04
Hausa 36.36/15.37/28.85 35.77/14.88/28.34 36.55/15.12/29.03 38.37/16.59/30.34 38.11/16.64/30.47 39.28/17.51/31.01
Japanese 44.54/21.33/34.44 44.89/21.62/34.87

::::::::::::::::
45.91/22.59/35.81 47.36/22.20/35.88 46.77/22.61/35.79 47.79/23.67/36.72

Marathi 20.39/ 8.96/18.65 20.61/ 9.09/18.88 21.09/ 9.55/19.27 21.91/ 9.52/19.64 21.79/ 9.55/19.83 22.61/ 10.12/20.45
Oromo 15.91/ 5.03/13.91 15.49/ 4.95/13.51 16.52/ 5.42/14.57 17.77/ 5.72/15.53 17.79/ 5.79/15.43 18.82/ 6.36/16.48
Pashto 36.14/14.06/29.74 36.09/14.10/29.81 36.41/14.00/29.71 37.34/14.41/30.39 37.28/14.73/30.63 38.15/15.56/31.46
Pidgin 35.22/12.93/27.27 35.01/12.67/27.19

::::::::::::::::
35.59/13.01/27.49 36.33/13.60/28.29 36.88/14.27/29.00 37.91/15.30/30.01

Punjabi 27.43/10.07/22.68 27.29/ 9.78/22.51 28.27/10.56/23.11 29.98/11.14/24.41 29.67/11.35/24.57 30.57/12.02/25.41
Serbian Cyrillic 18.52/ 4.90/15.44 18.96/ 4.96/15.75

:::::
19.67/

:::::::::::
5.18/16.40 23.11/ 7.18/19.14 22.91/ 7.41/19.34 23.88/ 7.98/20.00

Serbian Latin 18.50/ 4.40/15.11 18.55/ 4.69/15.53 18.58/ 4.88/15.42 21.28/ 6.04/17.41 20.54/ 5.80/17.20 21.89/ 6.81/18.32
Swahili 34.22/14.76/27.61 34.71/15.00/27.91 34.57/14.95/27.72 36.75/16.26/29.49 37.13/17.20/30.07 38.02/17.81/30.91
Telugu 17.06/ 5.83/15.29 17.21/ 5.98/15.35 17.51/ 6.01/15.61 18.68/ 6.50/16.52 18.93/ 6.71/16.80 19.87/ 7.33/17.83
Welsh 30.41/ 9.23/24.11 30.75/ 9.73/24.29

::::::::::::::::
31.31/10.65/24.76 31.86/10.88/25.06 31.90/10.77/25.11 32.86/11.75/26.02

Avg. 27.42/10.38/22.52 27.53/10.452/2.61 28.09/10.85/23.04 29.64/11.53/24.11 29.59/11.77/24.31 30.55/12.54/25.15

Table 9: The R-1/R-2/R-L results on the low-resource scenario with visual features extracted by Vision Transformer
(ViT) (Dosovitskiy et al., 2020).

Figure 3: An example of multimodal abstractive summarization in English.

Datasets Num. of Lang.Modalities Scenes

SportsSum (Tjondronegoro et al., 2011) 1 T,V,A Sports Video
MovieSum (Evangelopoulos et al., 2013) 1 T,V,A Movies
MSMR (Erol et al., 2003) 1 T,V Meeting Records
MMSS (Li et al., 2017) 2 T,V,A Multimedia
MSS (Li et al., 2018a) 1 T,V Sentence
How2 (Sanabria et al., 2018) 1 T,V,A YouTube Video
MSMO (Zhu et al., 2018) 1 T,V News
E-DailyMail (Chen and Zhuge, 2018) 1 T,V DailyMail Video
EC-product (Li et al., 2020a) 1 T,V E-Commerce Products
MM-AVS (Fu et al., 2021) 1 T,V,A CNN&DailyMail Video
MultiLing2015 (Giannakopoulos et al., 2015) 38 T Wikipedia
GlobalVoices (Nguyen and Daumé III, 2019) 15 T News
MultiSumm (Cao et al., 2020) 2 T News
MLSUM (Scialom et al., 2020) 5 T News
MultiHumES (Yela-Bello et al., 2021) 3 T Humanitarian Response
MassiveSumm (Varab and Schluter, 2021) 92 T News
MLGSum (Wang et al., 2021) 12 T News
XL-Sum (Hasan et al., 2021) 44 T News
MM-Sum (Ours) 44 T,V News

Table 10: Comparison of (1) previous multimodal
abstractive summarization, (2) multilingual abstrac-
tive summarization, and (3) our MM-Sum. T/V/A:
text/vision/audio modality.
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