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Abstract

In the U.S. Congress, legislators can use ac-
tive and passive cosponsorship to support bills.
We show that these two types of cosponsorship
are driven by two different motivations: the
backing of political colleagues and the backing
of the bill’s content. To this end, we develop
an Encoder+RGCN based model that learns
legislator representations from bill texts and
speech transcripts. These representations pre-
dict active and passive cosponsorship with an
F1-score of 0.88. Applying our representations
to predict voting decisions, we show that they
are interpretable and generalize to unseen tasks.

1 Introduction

Expressing political support through the cosponsor-
ship of bills is essential for the proper execution of
congressional activities.

In the US Congress, legislators can draft bills
and introduce them to the congress floor, after
which they are referred to a committee for assess-
ment. Once a legislative draft passes the commit-
tee, it is discussed in the plenary. Here, legislators
defend their stance and debate the bill’s merits. Fi-
nally, a bill is voted on. Throughout the entire
process—from a bills’ conception until the final
vote—legislators can cosponsor the bill.

Cosponsorship has a critical role in studies rela-
tive to legislative activities. For instance, cospon-
sorship is used to investigate alliance formation
(Fowler, 2006; Kirkland, 2011; Kirkland and Gross,
2014; Lee et al., 2017), the effect that such expres-
sion of support has on bill’s approval (Browne,
1985; Woon, 2008; Sciarini et al., 2021; Dock-
endorff, 2021), and how it signals the positions
of legislators on a specific political issue (Kessler
and Krehbiel, 1996; Wilson and Young, 1997).

In the US Congress, cosponsorship can be differ-
entiated between active and passive. As illustrated
in Figure 1, the timing of cosponsorship determines
this differentiation. Active cosponsorship entails
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Figure 1: Distinction between active and passive cospon-
sorship in time and their relation to the legislative work.
Active cosponsorship □ occurs at the initial phase, be-
fore the bill is introduced. Passive cosponsorship □

occurs during the deliberation phase of the bill.

involvement —together with the legislator intro-
ducing the bill (sponsor)—in the bill’s creation in
its initial stages. In contrast, passive cosponsorship
can be issued after the introduction of a bill to the
Congress floor.

So far, most studies analyzing cosponsorship
have not differentiated between active and passive
cosponsorship. These two actions have been quali-
tatively distinguished with respect to their effort re-
quired. Active cosponsorship can be considered as
a more resource-intense form of support, given that
legislators can be involved in the drafting process
of a bill and help gather support. In turn, passive
cosponsorship is viewed as less resource-intense
with a minimal effort to sign the bill (Fowler, 2006).
However, no studies so far have examined the un-
derlying motivations that drive a legislator to ac-
tively or passively cosponsor a bill. Given the im-
portance of cosponsorship as a signal of support
for a bill during a legislative process, we believe
that it crucial to understand not only if a legislator
cosponsors a bill, but why a legislator opts for an
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Figure 2: Overview of our Model. a) Our data contains bill texts, legislator speeches, and cosponsorship data
for all bills from the 112th to 115th U.S. Congress. b) We use Natural language processing to obtain contextual
embeddings of bills and speeches and to extract a citation network between legislators. c) We develop a Relational
Graph Convolutional Network (RGCN) is trained based on a subset of the cosponsorship relations. d) The trained
RGCN predicts active and passive cosponsorship relations in the validation and test data.

active or a passive cosponsorship.
This work demonstrates that active and passive

cosponsorship is driven by two different motiva-
tions. Active cosponsorship is people-centric and
primarily signals the backing of the sponsor of the
bill. In contrast, passive cosponsorship is driven by
backing a bill’s content. This result result yields
implication for studies in political science. For
instance, alliance formation studies can analyze
personal networks by considering the active con-
sponsorships. Similarly, studies in position taking
can focus on passive consporships to analyze the
alignment between legislators and political issues.

Our work makes the following contributions:
� We curate a data set containing information on

all bills and speeches from the 112th to 115th
U.S. Congress, which we make available1.

� We develop a novel encoder enabling us to learn
single embeddings from long documents, ex-
ceeding current token limitations of state-of-the-
art models.

� We propose a Relational Graph Convolutional
Network (RGCN) learning legislator representa-
tions accounting for (i) the speeches they give,
(ii) the bills they sponsor and cosponsor, and (iii)
the other legislators they cite in their speeches.
We show that the resulting legislator embeddings
proxy the legislators’ ideological positions.

� We train our model using three tasks from the po-
1link omitted for submission

litical science domain: (i) cosponsorship, (ii) au-
thorship, and (iii) citation prediction. Through a
rigorous ablation study, we show the substantial
benefits of such a multi-task learning procedure
for the first time in a social science application.

� Through our representation we disentangle the
underlying motivations behind active and passive
cosponsorship. Active cosponsorship relates pri-
marily to the backing of the sponsor of a bill,
whereas passive cosponsorship relates primarily
to the backing of the content of a bill.

� Finally, our representations achieve state-of-the-
art performance for voting prediction. This is
remarkable, as our result comes from a zero-shot
prediction, i.e., our representation has not been
trained on any voting data. This further empha-
sizes the value of our legislator representation as
a general proxy for legislators’ ideology.

2 Data

For our study, we collect fine-grained data on all
bills and legislators from the 112th to 115th U.S.
Congress, which we make freely available. Our
data set contains (i) metadata for all legislators, (ii)
bill texts, (iii) transcripts of all speeches mapped
to the corresponding legislator, (iv) disambiguated
data capturing which legislators sponsored and ac-
tively or passively cosponsored each bill, and (v)
the resulting roll-call votes for all bills. We provide
detailed statistics for our data set Appendix B.
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Legislator Metadata We obtain the BioGuide
ID, first name, last name, gender, age, party af-
filiation, state, and district of all legislators from
voteview.com, a curated database containing
basic data related to the U.S. Congress.

Bill Text As mentioned above, legislators intro-
duce bills to propose laws or amend existing ones
in order to further their agenda. We acquire IDs,
titles, and introduction dates of bills using the API
of propublica.org, a non-profit organisation
that collects and provides access to congressional
documents. We further collect summaries of the
bill’s content, which the API provides for around
95% of all cases. For bills where no summary is
available, we use the full-body texts instead. As
we create our data set to study active and passive
cosponsorship, we discard all bills for which no
cosponsorship links were recorded. Overall, our
data set contains information on over 50, 000 bills.

Legislator Speeches Legislators take the
floor to advocate or oppose bills. In these
speeches, they communicate their agenda to
their fellow colleagues in order to persuade
them to vote for (or against) a bill. We obtain
transcripts of congressional speeches by scraping
congress.gov, the official website of the U.S.
Congress. The transcripts are archived in so-called
daily editions, which are effectively concatenations
of all speeches from a day written verbatim.
All congressional speeches start with a formal
introduction of the legislator giving the speech
and the session’s chairperson, e.g., “Mr. POE
of Texas. Mrs. President.” or “Mr. BOEHNER.
Mr. Speaker” (cf. Figure 2a). Using this pattern,
we can split the daily editions and recover the
individual speeches and speakers as follows: First,
we tag names and geopolitical entities (e.g., “of
Texas”) using the Named Entity Recognition
model from SpaCy2 with [PERSON] and [GPE]
tags, respectively. Second, we tag all saluta-
tions (e.g., Mrs/Mr) and institutional roles (e.g.,
Speaker, President) with [SAL] and [ROLE]. In
doing so, the start of speeches is tagged either
as [SAL]+[PERSON]+[SAL]+[ROLE] or
[SAL]+[PERSON]+[GPE]+[SAL]+[ROLE].
The [PERSON] tag further identifies the legislator
giving the speech.
With this simple procedure, we map roughly
93% of the speeches to the correct legislator. We

2spacy.io/api/entityrecognizer

perform manual data cleaning on the speeches
excluding subsets for three reasons described
below. (i) Speeches for which we cannot deter-
mine an author are predominantly given by a
legislator representing a committee or an office.
When legislators speak on behalf of an office or
committee, the opinion expressed in the speech not
necessarily corresponds to their personal opinion.
(ii) We found many speeches with less than 10
sentences that only contain procedural information.
(iii) Similarly, very long speeches with more than
500 sentences are usually of a commemorative
nature, paying tribute to or praising a person,
an institution, or an event. Both (ii) and (iii)
convey no information on the legislators’ stances.
Excluding these speeches from our data set, we
obtain a total of over 120, 000 speech transcripts.
Finally, as shown in Figure 2a, legislators fre-
quently cite each other in speeches. To detect
citations in a speech, we first collect all entities
that SpaCy tags as [PERSON]. To distinguish
instances in which speeches cite other legislators
compared to third parties, we utilise the fact that in
daily editions, the names of legislators are always
written in upper case. We match the names of
legislators to their BioGuide IDs resulting in a
citation network.

Cosponsorship Data We identify the sponsor
of all bills using the API of propublica.org.
In addition, the API provides the names of the
legislators who cosponsored a bill and when this
cosponsorship occurred. We automatically match
the cosponsors’ names to their BioGuide ID. In
cases where automated matching was not possi-
ble —e.g., because legislators signed with their
nicknames— we resorted to manual matching. As
discussed in Section 1, we assign cosponsorship
their official label. Cospsonsorships recorded at
the bill’s introduction are active and those recorded
after its introduction are passive.

Roll-call votes Roll-call votes are records of how
legislators voted on bills. We scrape these data
using the Python package of Pujari and Goldwasser
(2021), yielding over 1.5 million votes, which we
match to the corresponding legislator and bill IDs.

3 Methodology

Our model to classify cosponsorship decisions
based on the legislator and bill data described in
the previous section consists of two main elements,
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an Encoder and a Relational Graph Convolutional
Network (RGCN). The Encoder computes high di-
mensional representations of legislators’ bills and
speeches based on their texts and transcripts, re-
spectively. These representations are used by an
RGCN and a downstream Feed-Forward Neural
Network (FFNN) allowing us to predict how (i.e.,
active or passive) a cosponsor supports a bill.

3.1 Encoder
The aim of our Encoder is to compute textual em-
beddings for bills and speeches while preserving
the contextual information contained in the texts
and transcripts of these documents. When develop-
ing such an encoder, we have to solve the problem
that both bills and speeches have lengths exceed-
ing the embedding capabilities of SOTA language
models (Devlin et al., 2018; Beltagy et al., 2020).
In our case, the average number of words for bills
and speeches is 2239.43 and 8129.23, respectively.
We, therefore, propose the Encoder architecture
shown in Figure 3 in which we split the original
bill/speech documents D into 512-word chunks
Ci, i.e., D = {C1, C2, ..., CT }. Subsequently, we
use BERT (Devlin et al., 2019) to compute em-
bedding vectors Cbert

i for each chunk Ci. We then
use a Bi-directional Long-Short-Term-Memory (Bi-
LSTM) neural network (Hochreiter and Schmid-
huber, 1997) to combine the individual BERT em-
beddings. The Bi-LSTM processes the BERT em-
beddings of a document’s chunks both in a forward
and a backward direction aggregating them to two
hidden states

−→
h T and

←−
h T . In a final step, we

concatenate and mean-pool them to obtain the fi-
nal document embedding f =

[−→
h T ;
←−
h T

]
. By

combining a BERT with a Bi-LSTM model, our
encoder succeeds in retaining a biderectional rep-
resentation of the full document. As a core charac-

teristic, BERT utilizes biderectionality to provide a
representation for each chunk. However, it cannot
provide a single document representation that lever-
ages the biderectionality across chunks. Instead,
using the Bi-LSTM, our encoder can provide rep-
resentation of the full-text based on biderectional
information from the chunks. We compare our
encoder against other possible embedding strate-
gies of long documents and report the results in
appendix D.1. Vocabulary and grammar of writ-
ten and spoken language can differ considerably
(Akinnaso, 1982; Biber, 1991). To account for this,
we train separate Encoder instances for the bill
texts and speech transcripts (see Bill and Speech
Encoder in Figure 2).

3.2 Relational Graph Convolutional Network

Our bill and speech encoders yield embeddings
for all bills and speeches, respectively. To model
the relations of legislators with these bills and
speeches, we use a multi-relational heterogeneous
graph G = (V, E).
� V = {S,L,B} is the set of all nodes where S is

the set of speeches, L is the set of legislators and
B is the set of bills. The bill and speech nodes
are initialized with the embeddings computed
by the encoders. Legislator nodes are initialized
with a hot-one encoding of their metadata (see
Section 2).

� E is the set of edges. All edges (u, v, r) ∈ E
have a source u, a target v, and a relation type
r ∈ R. The set of possible relations R =
{R1, R2, R3, R4, R5} contains: R1 authorship
of speech; R2 citation of legislator (directed);
R3 sponsorship of bill; R4 active cosponsorship
of bill; R5 passive cosponsorship of bill.
Based on this heterogeneous graph, we employ

a three-layer RGCN (Schlichtkrull et al., 2018).
RGCNs are graph neural networks specifically de-
signed to learn representations for multi-relational
data. With each layer, the RGCN iteratively up-
dates the initial embeddings of nodes based on their
neighborhood, while accounting for the type of re-
lation with the neighbors. This means that for each
node v ∈ V our RGCN computes its embedding
e
(k+1)
v in its convolutional layer (k + 1) as

e(k+1)
v = σ


∑

r∈R

∑

j∈N r
v

W
(k)
r ekj
cv,r

+W k
0 e

k
v


 ,
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In the self-supervised tasks, we predict if the cosponsor
is the author of a speech and if the cosponsor cited an-
other colleague in their speeches.

where N r
v is the set of neighbours of node v

connected by relation of type r, σ is the activa-
tion function, cv,r is a normalization constant, and
Wr and W0 denote the relation specific transforma-
tions used by the RGCN during the training. As
suggested by Schlichtkrull et al. (2018), we set
cv,r = |N r

v |. As a result, our RGCN yields holistic
representations of legislators based on the speeches
they give, the bills they sponsor and cosponsor, and
the other legislators they cite in speeches.

3.3 Model Training

We train our model by minimising the joint loss
function Ltot of three tasks

Ltot = λ1Lcosp + λ2Lauth + λ3Lcit,

where λ1 = 0.8 and λ2 = λ3 = 0.1. Lcosp relates
to our primary task of predicting active and passive
cosponsorship. Lauth and Lcit are the losses from
authorship prediction and citation prediction, two
additional self-supervised tasks that we use to im-
prove our model’s representation of legislators. An
overview of the three tasks, which we detail in the
paragraphs below, is shown in Figure 4. We provide
summary statistics for training and validation data
and report the results of the self-supervised tasks in
Appendix C. We assess how the two self-supervised
tasks influence our prediction performance in an
ablation study (see Appendix D.4).

Cosponsorship Classification The primary task
of our model is to predict whether a legislator’s

cosponsorship for a bill is active or passive. Ac-
tive and passive cosponsorship are mutually exclu-
sive. This means that a legislator l ∈ L in the set
of cosponsors C(b) of a bill b ∈ B, must be ei-
ther an active cosponsor, l ∈ CA(b), or a passive
cosponsor, l ∈ CP(b). Therefore, we can formal-
ize active/passive cosponsorship classification as
computing the probability that l is in the set of ac-
tive cosponsors CA(b) of bill b, given the bill b, the
bill’s sponsor S(b), and the knowledge that l is a
cosponsor of the bill.

pA = p(l ∈ CA(b)|b,S(b), l ∈ C(b))

To compute pA, we concatenate the node embed-
dings of the legislator l, the bill b and the bill’s
sponsor S(b). We use concatenated embeddings
as input for an FFNN with softmax which returns
pA. We use a binary cross-entropy loss to train the
model for this classification task:

Lcosp = − (yA log pA + yP log(1− pA)) .

yA and yP are binary vectors indicating if the true
cosponsorship is active or passive, respectively.

Authorship Prediction With our primary task,
we aim to distinguish between active and passive
cosponsorship based on the embeddings of legis-
lators and the cosponsored bill. To ensure that our
model appropriately learns the nuances between
the speeches of different legislators, we introduce
our first self-supervised task, authorship prediction.
For this task, we first sample a speech s every time
a legislator l cosponsors a bill. To obtain an equal
representation of positive and negative classes, we
bias our sampling such that, with a probability of
50%, s was given by l. In a binary classification
task, we then use an FFNN that takes the embed-
dings of the cosponsor l and the speech s as inputs
and computes the probability pauth that l is the au-
thor of s. We evaluate the performance of our
classifier using the binary cross-entropy loss Lauth,
where yauth is 1 if legislator l is the speaker of the
speech s, is zero otherwise.

Lauth = −yauth log pauth− (1−yauth) log(1−pauth)

Citation Prediction With our second self-
supervised task, we ensure that our model learns
the social relationships between legislators ex-
pressed in the citations of other legislators in their
speeches. To this end, we sample a legislator lo
every time a legislator lc cosponsors a bill. We

2956



Congress Ideology Metadata GloVe Encoder Encoder +
Metadata GCN RGCN Our

112 0.742±0.02 0.746±0.08 0.778±0.05 0.842±0.04 0.829±0.05 0.749±0.05 0.784 ±0.04 0.874±0.05
113 0.751±0.03 0.736±0.06 0.762±0.05 0.851±0.06 0.845±0.06 0.755±0.03 0.799 ±0.04 0.892±0.03
114 0.747±0.04 0.735±0.06 0.765±0.04 0.833±0.04 0.861±0.06 0.763±0.04 0.801 ±0.03 0.882±0.04
115 0.749±0.03 0.731±0.07 0.782±0.04 0.848±0.05 0.853±0.04 0.792±0.05 0.816 ±0.05 0.889±0.04

Avg 0.746±0.03 0.737±0.07 0.771±0.05 0.846±0.03 0.847±0.05 0.765±0.04 0.800 ±0.05 0.884±0.04

Table 1: F1-score (±s.d.) for our model (bold) and baselines for active and passive cosponsorship classification.

again bias our sampling such that, with a probabil-
ity of 50%, lc cites lo. We use a third FFNN which
outputs the probability pcit that lc cited lo. To train
the model, we use again a binary cross-entropy loss
Lcit, where ycit is 1 if lc cited lo and 0 otherwise.

Lcit = −ycit log p(ycit)− (1−ycit) log(1−p(ycit))

4 Experimental Setup and Results

Baselines We test our model against seven base-
lines (B1 to B7) which predict active and passive
cosponsorship based different representations of
the bill, its sponsor, and the cosponsor. The first
two baselines differ only in the way legislators
are represented. In B1 Ideology, legislators are
represented by their ideology scores computed ac-
cording to Gerrish and Blei (2011a). Instead, B2
Metadata represents legislators using their meta-
data introduced in Section 2. In both cases, bills
are captured by their topic (e.g., healthcare) and
the predictions are made using a Random-Forest-
Classifier. Analogous to Section 3.3, all other base-
lines make predictions using an FFNN. To this end,
B3 GloVe represents each bill based on the to 200
unigrams they contain and legislators using the
top 200 unigrams in their speeches using GLOVE-
840B-300D (Pennington et al., 2014) pre-trained
word vectors. B4 Encoder instead obtains bill and
speech representations using our Encoder intro-
duced in Section 3.1. To obtain representations
for legislators, we then average the representations
or their speeches. Baseline B5 Encoder + Meta-
data uses the identical approach but extends legisla-
tor representations using their corresponding meta-
data. Our final two baseline models operate on the
multi-relational heterogeneous graph introduced in
Section 3.2. As these baselines do not consider
textual information from our Encoder, the represen-
tations for legislators and bills are initialized ran-
domly, and the speech nodes are excluded. Based
on this graph, B6 GCN learns representations for
legislators and bills using a Graph Convolution

Network (GCN) (Zhang et al., 2019). Instead, B7
(RGCN uses an RGCN accounts for the multiple
types of relations existing in the data. Addition-
ally, in appendix D.3, we test our model against a
broader combination of baselines which combines
non-textual, textual and relational informations.

Model Performance We used the model speci-
fied in Section 3 and compare it to the baselines in-
troduced in Section 4 for our primary task of active
and passive cosponsorship prediction. Summariz-
ing our findings, our model yields a high prediction
performance with an F1-score of 0.88. This was
only possible because we incorporate contextual
language and relational features of legislators and
information about the bills they support to predict
cosponsorship decisions. The results reported in
Table 1 demonstrate that our model outperforms all
seven baselines. Our model has better performance
than the B1 Ideology and the B2 Metadata, which
relies on simple legislator characteristics, of 14%
and 15% respectively. This means that simple char-
acteristics of legislators cannot sufficiently explain
their cosponsorship behavior. Adding contextual in-
formation, B4 Encoder increases the prediction per-
formance over B1 and B2 by roughly the 10%. This
points to a topical alignment between the speeches
of legislators and the bills they cosponsor. By com-
bining the RGCN with the Encoder, our model
utilizes both language and relational information
(citation, authorship and cosponsorship), resulting
in an F1-score of 0.88. To conclude, the combi-
nation of textual and relational information proves
to be key for an accurate prediction of cosponsor-
ship decisions. We complement these results in
appendix D.2.

Active vs. passive cosponsorship Our model
learns representations for both legislators and bills
in order to predict active and passive cosponsorship.
Figure 5a illustrates that representations of active
cosponsors of a bill have a higher average cosine
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Figure 5: Density of cosine similarity between cosponsor representations and sponsor □ or bill □ representation.
Panel (a) shows active cosponsors. Panel (b) shows passive cosponsors.

similarity with the representation of the sponsor of
the bill. This means that active cosponsorship is pri-
marily used as a signal of support towards a person,
i.e., the sponsor. We verify with a test the validity
of this claim finding a p-value= 4.3 · 1012. On the
other hand, representations of passive cosponsors
have a higher average cosine similarity with the
representations of the bills (see Figure 5b). Once
again, we validate this observation using KS test.
We find a p-value = 3.37 · 106, which once again
support our claim about passive cosponsorship. To
summarize our findings, we can explain the differ-
ence between active and passive consponsorship by
distinguishing between two different motivations,
namely backing political colleagues or backing a
bill’s content. As such, information about active
cosponsorship can provide further insights into po-
litical alliances, whereas information about passive
cosponsorship can be useful for agenda setting and
campaigning.

Prediction of other legislative decisions Our
legislator representations can be further used to
study other legislative decisions, such as voting.

To do so, we use an additional FFNN that takes
as input the representations of legislators and bills
to predict the vote of a legislator on a bill ("yea",
"nay"). We compare the results of this model with
four models directly trained for the task of voting
predictions: (i) Majority (Maj) is a baseline which
assumes all legislators vote yea. (ii) Ideal-Vectors
(IV) are multidimensional ideal vectors for legis-
lators based on bill texts obtained following the
method of Kraft et al. (2016). (iii) CNN+meta is
based on CNN and adds the percentage of sponsors
of different parties as bill’s authorship information
(Kornilova et al., 2018). (iv) LSTM+GCN uses

Congr. Maj IV CNN LSTM+
GCN

Our
Repr.+
FFNN

112 0.781 0.874 0.888 0.895 0.928
113 0.775 0.882 0.891 0.894 0.904
114 0.784 0.874 0.878 0.896 0.901
115 0.776 0.882 0.885 0.903 0.895

Avg 0.778 0.879 0.8869 0.896 0.907

Table 2: F1-scores for Roll-Call-Vote predictions.

LSTM to encode legislation and applies a GCN to
update representations of legislators (Yang et al.,
2020). Table 6 shows that our model achieves an
F1-score of 0.907. To avoid leakage of information
we predict the voting decisions on bills that were
not cosponsored by the legislator voting.

Interpretation of legislator representations
Given that our representations can explain mul-
tiple legislators decisions, we can interpret them
as a proxy of legislators’ ideology. In Figure 6 we
plot a two-dimensional projection (using TSNE,
Van der Maaten and Hinton 2008) of our legislator
representations. We find a clear split between Re-
publican and Democrat legislators. Interestingly,
Republican and Democrat party leaders are located
at the center of their respective party. Moreover,
we highlight the so-called "Blue Dog Caucus", the
group of conservative Democrats who our represen-
tations place between Republicans and Democrats.

5 Related Work

The analysis of cosponsorship decisions has been
widely studied by experts of political science (e.g.,
Campbell, 1982; Krehbiel, 1995; Mayhew, 2004).
Research on cosponsorship often focuses on three
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aspects: the agenda-setting dynamics of bill intro-
ductions and cosponsorship (Koger, 2003; Kessler
and Krehbiel, 1996), how cosponsorship affects bill
passage (Wilson and Young, 1997; Browne, 1985;
Woon, 2008; Sciarini et al., 2021; Dockendorff,
2021), and alliances between legislators (Fowler,
2006; Kirkland, 2011; Kirkland and Gross, 2014;
Lee et al., 2017; Brandenberger, 2018; Branden-
berger et al., 2022). Despite political science re-
search directly linking cosponsorship to the texts of
bills and speeches in congress, cosponsorship has
so far received little to no attention from the NLP
community. However, recent advances of natural
language processing (Devlin et al., 2018; Vaswani
et al., 2017; Zhao et al., 2019; Russo et al., 2020)
provides tools to address questions related to po-
litical studies (Nguyen et al., 2015; Schein, 2019;
Stoehr et al., 2023a; Falck et al., 2020; Glavaš et al.,
2017). Among these studies, the prediction of roll-
call votes has received great attention. For example,
Eidelman et al. (2018) propose a model to predict
voting behavior using bill texts and sponsorship
information and find that the addition of the textual
information of the bill improves voting predictions
drastically. Similarly, Gerrish and Blei (2011b)
improve upon voting prediction by proposing a
congress model that proxies ideological positions
of legislators by linking legislative sentiment to
bill texts. This model has been extended to further
improve predictions of roll-call votes (Patil et al.,
2019; Kraft et al., 2016; Karimi et al., 2019; Ko-
rnilova et al., 2018; Xiang and Wang, 2019; Bud-
hwar et al., 2018; Vafa et al., 2020; Mou et al.,
2021).

6 Conclusion

In this work, we developed an Encoder+RGCN
based model that learns holistic representations of
legislators, accounting for the bills they sponsor
and cosponsor, the speeches they give, and other
legislators they cite. This representation enabled us
to predict the type of cosponsorship support legisla-
tors give to colleagues with high accuracy. Specifi-
cally, we differentiated between active cosponsor-
ship, which is given before the official introduction
of the bill to the Congress floor, and passive cospon-
sorship, which is given afterwards. So far, the
political science literature has distinguished these
forms of cosponsorship in terms of their resource-
intensity (Fowler, 2006) and their alliance forma-
tion dynamics (Brandenberger, 2018). However,

Figure 6: 2D projection of the legislator representations.
As shown, our representation of Legislators splits them
correctly along party lines (□, □). Party leaders are
found in the center of their respective party clusters. We
also find that members of the “Blue Dogs Caucus” are
correctly positioned between the two parties.

we showed that legislators in the U.S. Congress
use active and passive cosponsorship for two fun-
damentally different aims: active cosponsorship is
used to back a colleague and passive cosponsorship
serves to back a bills’ agenda. Studying the trans-
ferability of our representations to other legislative
activities, we showed that the resulting legislator
embeddings can be used to proxy their ideological
positions. Specifically, our representations separate
legislators, matching not only their party affiliation
but even their caucus membership. Finally, in an ap-
plication of zero-shot learning, we showed that our
representations match task-specific SOTA meth-
ods when predicting the outcomes of roll-call votes
without requiring any additional training. Hence,
our legislator representations are interpretable and
generalize well to unseen tasks. Our results have
important implications for both the study of cospon-
sorship and future studies of U.S. legislative activi-
ties. For cosponsorship, when aiming to study the
relations between legislators, data on active cospon-
sorship should be used. In turn, to study agenda
support among legislators, the information con-
tained in passive cosponsorship is most meaningful.
In future research, our holistic representations of
U.S. legislators allow for deeper insights into how
ideology affects alliance formation, agenda setting
and political influencing.

2959



References
F Niyi Akinnaso. 1982. On the differences between

spoken and written language. Language and speech,
25(2):97–125.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Douglas Biber. 1991. Variation across speech and writ-
ing. Cambridge University Press.

Laurence Brandenberger. 2018. Trading favors – exam-
ining the temporal dynamics of reciprocity in con-
gressional collaborations using relational event mod-
els. Social Networks, 54:238–253.

Laurence Brandenberger, Giona Casiraghi, Georges An-
dres, Simon Schweighofer, and Frank Schweitzer.
2022. Comparing online and offline political support.
Swiss Political Science Review, Online First:1–35.

William P Browne. 1985. Multiple sponsorship and bill
success in us state legislatures. Legislative Studies
Quarterly, pages 483–488.

Aditya Budhwar, Toshihiro Kuboi, Alex Dekhtyar, and
Foaad Khosmood. 2018. Predicting the vote using
legislative speech. In Proceedings of the 19th an-
nual international conference on digital government
research: governance in the data age, pages 1–10.

James E Campbell. 1982. Cosponsoring legislation in
the us congress. Legislative Studies Quarterly, 7:415–
422.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL HLT 2019 - 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies - Proceedings of the Conference.

Andrés Dockendorff. 2021. Why are some parliamen-
tarians’ bills more likely to progress? sponsorship as
a signal. The British Journal of Politics and Interna-
tional Relations, 23(1):139–157.

Vlad Eidelman, Anastassia Kornilova, and Daniel Ar-
gyle. 2018. How predictable is your state? leveraging
lexical and contextual information for predicting leg-
islative floor action at the state level. ArXiv PrePrint:
1806.05284, pages 1–16.

Fabian Falck, Julian Marstaller, Niklas Stoehr, Sören
Maucher, Jeana Ren, Andreas Thalhammer, Achim
Rettinger, and Rudi Studer. 2020. Measuring proxim-
ity between newspapers and political parties: the
sentiment political compass. Policy & internet,
12(3):367–399.

James H Fowler. 2006. Connecting the congress: A
study of cosponsorship networks. Political Analysis,
14(4):456–487.

Sean M Gerrish and David M Blei. 2011a. Predicting
legislative roll calls from text. In Proceedings of the
28th International Conference on Machine Learning,
ICML 2011.

Sean M. Gerrish and David M. Blei. 2011b. Predicting
legislative roll calls from text. In Proceedings of the
28th International Conference on Machine Learning,
ICML 2011.

Goran Glavaš, Federico Nanni, and Simone Paolo
Ponzetto. 2017. Unsupervised cross-lingual scaling
of political texts. In European semantic web confer-
ence, pages 593–607. Association for Computational
Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Hamid Karimi, Tyler Derr, Aaron Brookhouse, and Jil-
iang Tang. 2019. Multi-factor congressional vote
prediction. In Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Net-
works Analysis and Mining, ASONAM 2019.

Daniel Kessler and Keith Krehbiel. 1996. Dynamics of
cosponsorship. American Political Science Review,
90(03):555–566.

Justin H Kirkland. 2011. The relational determinants of
legislative outcomes: Strong and weak ties between
legislators. The Journal of Politics, 73(3):887–898.

Justin H Kirkland and Justin H Gross. 2014. Measure-
ment and theory in legislative networks: The evolv-
ing topology of congressional collaboration. Social
Networks, 36:97–109.

Gregory Koger. 2003. Position taking and cosponsor-
ship in the us house. Legislative Studies Quarterly,
28(2):225–246.

Anastassia Kornilova, Daniel Argyle, and Vladimir Ei-
delman. 2018. Party matters: Enhancing legislative
embeddings with author attributes for vote prediction.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 510–515, Melbourne, Australia.
Association for Computational Linguistics.

Peter E. Kraft, Hirsh Jain, and Alexander M. Rush. 2016.
An embedding model for predicting roll-call votes.
In EMNLP 2016 - Conference on Empirical Methods
in Natural Language Processing, Proceedings.

Keith Krehbiel. 1995. Cosponsors and wafflers from a
to z. American Journal of Political Science, pages
906–923.

2960

https://doi.org/https://doi.org/10.1016/j.socnet.2018.02.001
https://doi.org/https://doi.org/10.1016/j.socnet.2018.02.001
https://doi.org/https://doi.org/10.1016/j.socnet.2018.02.001
https://doi.org/https://doi.org/10.1016/j.socnet.2018.02.001
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1177/1369148120949978
https://doi.org/10.1177/1369148120949978
https://doi.org/10.1177/1369148120949978
http://arxiv.org/abs/1806.05284
http://arxiv.org/abs/1806.05284
http://arxiv.org/abs/1806.05284
https://doi.org/10.1145/3341161.3342884
https://doi.org/10.1145/3341161.3342884
https://doi.org/10.18653/v1/P18-2081
https://doi.org/10.18653/v1/P18-2081
https://doi.org/10.18653/v1/d16-1221


Sang Hoon Lee, José Manuel Magallanes, and Mason A
Porter. 2017. Time-dependent community structure
in legislation cosponsorship networks in the congress
of the republic of peru. Journal of Complex Networks,
5(1):127–144.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

David R Mayhew. 2004. Congress: The electoral con-
nection. Yale university press.

Xinyi Mou, Zhongyu Wei, Lei Chen, Shangyi Ning,
Yancheng He, Changjian Jiang, and Xuan-Jing
Huang. 2021. Align voting behavior with public
statements for legislator representation learning. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1236–
1246.

Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik,
and Kristina Miler. 2015. Tea party in the house: A
hierarchical ideal point topic model and its applica-
tion to republican legislators in the 112th congress.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1438–1448.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Pallavi Patil, Kriti Myer, Ronak Zala, Arpit Singh,
Sheshera Mysore, Andrew McCallum, Adrian Ben-
ton, and Amanda Stent. 2019. Roll call vote predic-
tion with knowledge augmented models. In CoNLL
2019 - 23rd Conference on Computational Natural
Language Learning, Proceedings of the Conference.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In EMNLP 2014 - 2014 Conference on
Empirical Methods in Natural Language Processing,
Proceedings of the Conference.

Rajkumar Pujari and Dan Goldwasser. 2021. Under-
standing politics via contextualized discourse pro-
cessing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 1353–1367, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Giuseppe Russo, Nora Hollenstein, Claudiu Cristian
Musat, and Ce Zhang. 2020. Control, generate, aug-
ment: A scalable framework for multi-attribute text

generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 351–
366, Online. Association for Computational Linguis-
tics.

Giuseppe Russo, Manoel Horta Ribeiro, Giona Casir-
aghi, and Luca Verginer. 2022a. Understanding on-
line migration decisions following the banning of
radical communities. Proceedings of the 15th ACM
Web Science Conference 2023.

Giuseppe Russo, Luca Verginer, Manoel Horta Ribeiro,
and Giona Casiraghi. 2022b. Spillover of anti-
social behavior from fringe platforms: The unin-
tended consequences of community banning. ArXiv,
abs/2209.09803.

Aaron Schein. 2019. Allocative poisson factorization
for computational social science. arXiv preprint
arXiv:2104.12133.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593–607. Springer.

Pascal Sciarini, Manuel Fischer, Roy Gava, and Frédéric
Varone. 2021. The influence of co-sponsorship on
mps’ agenda-setting success. West European Politics,
44(2):327–353.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Niklas Stoehr, Ryan Cotterell, and Aaron Schein. 2023a.
Sentiment as an ordinal latent variable. In Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 103–115, Dubrovnik, Croatia. Association for
Computational Linguistics.

Niklas Stoehr, Benjamin J. Radford, Ryan Cotterell, and
Aaron Schein. 2023b. The ordered matrix dirichlet
for state-space models. In Proceedings of The 26th
International Conference on Artificial Intelligence
and Statistics, volume 206 of Proceedings of Ma-
chine Learning Research, pages 1888–1903. PMLR.

Keyon Vafa, Suresh Naidu, and David M Blei.
2020. Text-based ideal points. arXiv preprint
arXiv:2005.04232.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

2961

https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.18653/v1/2021.emnlp-main.102
https://doi.org/10.18653/v1/2021.emnlp-main.102
https://doi.org/10.18653/v1/2021.emnlp-main.102
https://doi.org/10.18653/v1/2020.findings-emnlp.33
https://doi.org/10.18653/v1/2020.findings-emnlp.33
https://doi.org/10.18653/v1/2020.findings-emnlp.33
https://aclanthology.org/2023.eacl-main.8
https://proceedings.mlr.press/v206/stoehr23a.html
https://proceedings.mlr.press/v206/stoehr23a.html


Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Ling-
fan Yu, Yu Gai, Tianjun Xiao, Tong He, George
Karypis, Jinyang Li, and Zheng Zhang. 2019. Deep
graph library: A graph-centric, highly-performant
package for graph neural networks. arXiv preprint
arXiv:1909.01315.

Rick K Wilson and Cheryl D Young. 1997. Cosponsor-
ship in the us congress. Legislative Studies Quarterly,
pages 25–43.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Jonathan Woon. 2008. Bill sponsorship in congress: the
moderating effect of agenda positions on legislative
proposals. The Journal of Politics, 70(1):201–216.

Wei Xiang and Bang Wang. 2019. A Survey of Event
Extraction from Text. IEEE Access, 7:173111–
173137.

Yuqiao Yang, Xiaoqiang Lin, Geng Lin, Zengfeng
Huang, Changjian Jiang, and Zhongyu Wei. 2020.
Joint representation learning of legislator and legis-
lation for roll call prediction. In IJCAI, pages 1424–
1430.

Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Ma-
ciejewski. 2019. Graph convolutional networks: a
comprehensive review. Computational Social Net-
works, 6(1):1–23.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cotterell,
Vicente Ordonez, and Kai-Wei Chang. 2019. Gen-
der bias in contextualized word embeddings. arXiv
preprint arXiv:1904.03310.

2962

https://doi.org/10.1109/ACCESS.2019.2956831
https://doi.org/10.1109/ACCESS.2019.2956831


A Reproducibility

Data set splits We perform a time-based split-
ting of our full data set for each Congress. Specifi-
cally, we consider the first 60% of each Congress
period as training data, the subsequent 20% as vali-
dation data, and the final 20% as test data. For ac-
tive and passive cosponsorship classification, this
yields, a total of 370, 000 training observations,
and 120, 000 validation and testing samples, each.

Implementation Details We use BERT
(bert-base-uncased) from the HugginFace
library (Wolf et al., 2019). We fine-tune our two
language models (LMs) for 5 epochs, following
the indication provided by Devlin et al. (2018).
The dimension of the BERT embeddings is set
to 768. We use the implementation of Bi-LSTM
from PyTorch (Paszke et al., 2019). We set the
hidden states dimension of the Bi-LSTM to 384.
Finally, the mean pooling layer at the end of
the encoder outputs the initial node embeddings
whose dimension is set to 128. To implement
the RGCN we use the DGL library (Wang et al.,
2019). We use 2 layers for the RGCN as motivated
by model performance (reported in Appendix C).
The hidden layer sizes of the two convolutional
layers are 128 and 64, respectively. Additionally,
we use three different one-layer FFNNs with a
softmax activation function for our three tasks
(cosponsorship, author and citation prediction).
These FFNNs have dimensions 192, 128, and 128,
respectively. To train the model we use AdamW
(Loshchilov and Hutter, 2017) as optimizer. We
tested the following learning rates for the AdamW:
{10−1, 10−2, 10−3, 10−4}). We obtain the best
results with a learning rate of 10−4. Additionally,
we train our model with a batch size of 64. We
add dropout regularization (Srivastava et al., 2014)
and early stopping to prevent the model from
over-fitting. We stop the training after 8 epochs.

B Data

In this section we decide to provide additional in-
formation about our collected data. We provide a
summary statistics of our dataset in Table 3

B.1 Cosponsoring

In this section we provide additional information
about all the data we used. We collected all bills
that were supported by more than 10 cosponsors. In
particular, we collected all the bills of the following

Congress #Bill #Active #Passive

112 14042 68113 78507
113 12852 63176 82657
114 14550 77746 82149
115 15754 78751 85308

Table 3: Summary statistics of bills and cosponsorship
signatures.

Congress #Speeches #Speeches Speech length
(total) (avg. per MP) (avg. # words)

112 32189 60.16 224.82
113 36623 68.47 225.41
114 30121 56.30 218.10
115 31579 59.02 223.64

Table 4: Summary statistics of congressional speeches.

caterogies: (i) House Resolution, (ii) House Joint
Resolution, (iii) House Concurrent Resolution.

Active and Passive Cosponsoring To show that
the party affiliation does not affect significantly
the distribution of active and passive labels, we
provide in Figure 7 an analysis of the distribution
of the two labels. We notice that there is a higher
tendency of Republicans to cosponsor both actively
and passively.

Finally, in Table 4 we provide statistics about the
number of speeches and how they are distributed
among legislators. We also provide a visualization
of the number of bills proposed by Republicans and
Democrats during the four Congresses in Figure 8.

C Training Results

As discussed in Section 3.3, we use authorship and
citation prediction as two additional self-supervised
tasks to train our model. Here we discuss some of
the details about the implementation of these two
tasks. In particular, we first discuss how the data
are generated and two how the model performances
on these tasks are.

Authorship prediction For this particular task,
we first sample a speech s every time a legislator l
cosponsor a bill. This speech is sampled with 30%
chance from the speeches that l gave and with 70%
chance from other speeches not given by l. Fol-
lowing this procedure we generate our positive and
negative training samples for each legislator. These
data are split into training, validation and test sets
using the same splitting scheme (60-20-20) used
for the primary tasks of cosponsorship prediction
(see Section 3.3). We test the performance of our
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Figure 7: Distribution of active (left) and passive (right) cosponsorship across parties.

Model Training Validation Test

Authorship Prediction

Encoder 0.881 0.875 0.873
Our model 0.932 0.921 0.911

Citation Prediction

Encoder 0.667 0.652 0.639
Our model 0.699 0.685 0.665

Table 5: F1-scores for training, validation and testing
separated for the two learning tasks. For each task,
we compare our model (Encoder + RGCN) against the
encoder representations.

model on the training and validation set and com-
pare it with the performance yield by the Encoder
representations only. These results are shown in
Table 5.

Citation Prediction Similar to the authorship
prediction task, we sample a legislator lo every
time a legislator lc cosponsors a bill. This legis-
lator lo is sampled with a 50% chance from the
legislators that lc cited in their speeches. Addition-
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Figure 8: Distribution of the number of bills across
parties for the 112th-115th congresses.
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Figure 9: Model performance of our model w.r.t to the
number of convolutional layers.

ally, we substitute the name of the cited legislator
lo with the token <LEG> in all the speeches of leg-
islator lc. As before, we applied a 60-20-20 split to
the data that we generated with this procedure. Ta-
ble 5 provides the results from the performance of
our model on the training and validation set and a
comparison with the performance from the encoder
representations only.

D Results

D.1 Encoder Results

We test our textual encoder against other SOTA
models to embed long documents. To do so, we
subsitute oure textual encode with (1) Doc2Vec, (2)
BERT, and (3) LongFormer to compoute the em-
beddings for the speeches. In particular, the Long-
Former we divide the text of speechs in chunks of
4, 906 (maximum lenght of the LongFormer) we
then average these chunks. For BERT we divide
the text of the speeches in chunks of 512 words
and we average them, (3) Our textual encoder prov-
ifdes significantly higher performance compared to
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Figure 10: Error Analysis: We report the F1-Score for each bill topic. Bill topics are selected according to the
official denomination of the U.S. Congress. We report each topic using the convetion TopicName-TopicCode

Congr. Doc2Vec+
RGCN

BERT+
RGCN

LongF+
RGCN Our

112 0.812 0.852 0.854 0.874
113 0.809 0.847 0.861 0.892
114 0.822 0.851 0.849 0.882
115 0.835 0.855 0.867 0.889

Avg 0.820 0.851 0.857 0.884

Table 6: F1-scores for the active/passive cosponsorship
classification task when our textual encoder is substi-
tuted with Doc2Vec, Bert and the LongFormer.

the model trained using Doc2Vec, BERT, and the
LongFormer.

D.2 Error Analysis

We conducted an error analysis analyzing the
model performance w.r.t the different topics of the
bills. Our models provides significantly robust
performances across most topics in fig. 10. Fur-
thermore, we analyze the model performance on
each legislator of the U.S. Congress. We obtain
an average F1-Score per legislator of 0.889 with a
stand deviation of 0.05. Unsurprisingly, our model
performance drops for legislators with less than 8
speeches achieving an average F1-score of 0.758
with a standard deviation of 0.09

D.3 Additional Baselines

We test our model also against a broader set of
baselines. In particula, we test it against a combi-

nation of non-textual, textual and relational model.
We provide the list of the additional baselines we
tested on: (1) BoW+Metadata+Ideology (BMI).
This Baseline combines a Bag-of-Words approach
with the metadata and the DW-nominates scores
of the legislators. In particular, for each legislator
we compute its BoW extracted from its speeches.
We consider exclusively the top 500 words se-
lected using the methodology of Patil et al. (2019)
and combine it with the metadata and the DW-
nominates score of the legislator. As we observe
in table 7, this baseline perform significantly worst
that our proposed model. It also yields lower
performance than the textual Encoder only (see
table 1. (2) BoW+Metadata+Ideology+RGCN
(BMI-RGCN). This baselines uses the BoW repre-
sentations for speeches and bills as an initiliazation
for the bill and speech embeddings of the RGCN.
The Ideology+Metadata are used as iniitialization
for the legislator nodes. This baseline slightly in-
creased the results of the RGCN baseline reported
in table 1. (3) Glove+Metadata+Ideology+RGCN
(Glove-RGCN). In this additional baseline we en-
code bills and speeechs using GloVe. In particular,
we utilize as a representation for each speech the
average of the top 500 words selected accordingly
to Patil et al. (2019). Finally, we use such represnta-
tions to initialize the RGCN. Such a baseline does
not provide signifucantly better results compare to
the BMI-RGCN baseline. We report the results for
these baselines in table 7
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Congr. BMI BMI+
RGCN

GloVe+
RGCN Our

112 0.746 0.787 0.792 0.874
113 0.759 0.804 0.816 0.892
114 0.762 0.808 0.824 0.882
115 0.733 0.825 0.833 0.889

Avg 0.750 0.806 0.817 0.884

Table 7: F1-scores for the additional baselines on the
active/passive cosponsorship classification task.

Congress Lcosp Ltot-Lauth Ltot-Lcit Ltot

112 0.841 0.855 0.858 0.874
113 0.847 0.875 0.871 0.892
114 0.864 0.878 0.869 0.882
115 0.861 0.871 0.871 0.889

Avg 0.853 0.870 0.867 0.884

Table 8: Ablation Study of the loss functions Lcosp
(cosponsorship), Lauth (authorship) and Lcit (citations)
for the 112th-115th congresses.

D.4 Ablation Study

We conduct an ablation study by testing how our
two self-supervised tasks, authorship prediction
and citation prediction, affect our overall predic-
tion performance. The model trained without the
two self-supervised tasks achieves a F1-score of
0.85 (see Table 8). By including authorship pre-
diction only, the F1-score increase to 0.87. By
including citation prediction only, the same accu-
racy is achieved. Including both tasks together, our
model results in the highest F1-score of 0.88.

D.5 Predicting Roll-Call Votes

As discusssed in Section 4, we use the representa-
tions learnt by our model to predict other legislative
decisions. In particular, we focused on the predic-
tion of Roll-Call-Votes , which are votes expressed
by a legislator on a bill ("yea", "nay"). To perform
this task we train a three layer FFNN with ReLu as
activation function and dropout regularization set
to 0.2. The FFNN takes as input the embeddings of
the bill and of the legislator voting on that specific
bill. To avoid leakage of information we predict the
voting decisions on bills that were not cosponsored
by the legislator voting.

E Limitations and Impact

Legislators show political support in multiple ways.
In this work, we operationalised political support
as Active and Passive cosponsorship. Active and

Passive cosponsorship represent a strong signal of
support between legislators that has been widely
accepted in the political science literature (Kessler
and Krehbiel, 1996; Wilson and Young, 1997;
Browne, 1985; Woon, 2008; Sciarini et al., 2021;
Dockendorff, 2021; Fowler, 2006; Kirkland, 2011;
Kirkland and Gross, 2014; Lee et al., 2017). How-
ever, other forms of political support, e.g., endorse-
ment of public posts on social media, could be
considered. Future research might explore the ex-
tent to which these forms of support might reveal
additional insights about the cooperation between
legislators.

Our second limitation relates to the estimation of
legislator’s ideology. Ideology is a latent concept.
This means that it cannot be directly measured and
no ground-truth data exists. Therefore, to validate
that our legislator representations encode ideology,
we need to prove their performance in a variety
of tasks in which the political science literature
suggests ideology is important. In our work, we
studied three tasks: (i) active/passive cosponsor-
ship prediction, (ii) party affiliation recovery, and
(iii) voting prediction. We argue that this is a repre-
sentative set of tasks. However, legislators are in-
volved in additional ideology-driven tasks, e.g., the
release of public statements. Showing that our rep-
resentations are also predictive of these additional
tasks might be considered an even more robust and
convincing validation of our results.

Third, in its current form, our model cannot
compute predictions for newly elected legislators.
This is due to no data being available—newly
elected legislators have not given any speeches, or
(co)sponsored any bills. We argue that by applying
our model as an online predictor, new information
on legislators could be incorporated as soon as it
becomes available. However, a full exploration
of our model’s potential for this application was
outside the scope of this work.

Our final limitation concerns how our model can
be extended to other data. In our work, we stud-
ied four different U.S. Congresses. For these, we
obtained consistent and high performance. There-
fore, we expect this performance to extend to other
Congresses. However, having focused exclusively
on the U.S., we cannot make any statements about
the applicability of our framework to other leg-
islative systems. Addressing this limitation could
contribute to proving the generalizability of our
results.
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Future Work Our work can impact studies on
t latent factors (e.g., ideology) in other domains.
For instance, recent works on radicalization (Russo
et al., 2022b,a) can take a similar approach to study
the relation between ideology and radicalization.
Similarly, studies on international relations can ben-
efit (Stoehr et al., 2023b) from this approach in
order to study latent states between nations such as
“ally”, “neutral”, and “enemy”.
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