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Abstract

Interactive semantic parsing based on natural
language (NL) feedback, where users provide
feedback to correct the parser mistakes, has
emerged as a more practical scenario than the
traditional one-shot semantic parsing. How-
ever, prior work has heavily relied on human-
annotated feedback data to train the interactive
semantic parser, which is prohibitively expen-
sive and not scalable. In this work, we pro-
pose a new task of simulating NL feedback for
interactive semantic parsing. We accompany
the task with a novel feedback evaluator. The
evaluator is specifically designed to assess the
quality of the simulated feedback, based on
which we decide the best feedback simulator
from our proposed variants. On a text-to-SQL
dataset, we show that our feedback simulator
can generate high-quality NL feedback to boost
the error correction ability of a specific parser.
In low-data settings, our feedback simulator
can help achieve comparable error correction
performance as trained using the costly, full set
of human annotations.1

1 Introduction

The state of NLP research has long been domi-
nated by training and evaluating single-turn mod-
els, which, given a task input, produce the out-
put and terminate the task immediately. However,
in the more practical scenario of NLP applica-
tions (e.g., smart-home virtual assistance), users
often anticipate multi-turn interactions, such as be-
ing able to provide feedback to the model output
(De Vries et al., 2020). In doing this, not only
can the model obtain more information and guid-
ance to improve its task performance, but it also
provides human users a mechanism to intervene
in the model decision-making for safety purposes.

∗Yintao Tai was a remote intern at GMU during this
project.

1Our code is publicly available at https://github.com/
hyan5/Learning_to_Simulate_NL_Feedback.
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Figure 1: Illustration of interactive semantic parsing,
where the parser solicits NL feedback for error correc-
tion (example based on text-to-SQL). In this work, we
aim to simulate such NL feedback at scale to facilitate
the error correction model training. To this end, we pro-
posed a feedback evaluator for promoting this task, and
experiment with different feedback simulator variants.

However, training a neural model to understand
human feedback requires a large number of human
annotations, which has hindered the advancement
of this line of research.

In this paper, we investigate this problem under
semantic parsing. Semantic parsing is the task of
translating NL sentences into their formal meaning
representations (i.e., logical forms), which has been
adopted for applications such as question answer-
ing (Reddy et al., 2014; Dong and Lapata, 2016; Yu
et al., 2018; Gu et al., 2021) and dialogue systems
(Gupta et al., 2018; Andreas et al., 2020; Cheng
et al., 2020). The pressing need for further improv-
ing its application performance has motivated the
research of interactive semantic parsing, where a
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semantic parser presents its parsing results to the
user and requests user feedback for error correc-
tion (Gur et al., 2018; Yao et al., 2019b; Li et al.,
2020; Elgohary et al., 2020). In this work, we fol-
low Labutov et al. (2018); Elgohary et al. (2020) to
consider NL feedback, i.e., a sentence describing
which parts of the generated logical form contain
errors and how to correct them. We illustrate this
paradigm in Figure 1.

Despite its promise, prior work has heavily re-
lied on human-annotated feedback data to train the
error correction model. For example, Elgohary
et al. (2020) deployed the Seq2Struct parser (Shin,
2019) and recruited 10 crowd workers to provide
feedback annotations, which has been shown to
be both costly and time-consuming (6 minutes per
annotation as reported). Moreover, since this feed-
back collection procedure is bound to a specific
parser, the collected feedback may not generalize
well to resolving errors made by different parsers.

Motivated by the above observations, in this pa-
per, we propose the task of simulating NL feed-
back for interactive semantic parsing. Specifically,
given the initial user command, a model-generated
incorrect logical form, the ground-truth logical
form for the simulation purpose, as well as other
contextual information, the goal is to generate an
NL feedback sentence encoding the error correc-
tion information in a way that is close to the real-
user feedback. We assume a small set of human-
annotated feedback to bootstrap this task, but aim
for an effective feedback simulator that can further
simulate feedback for different semantic parsers at
scale. While prior work has attempted a similar
task (Yao et al., 2019a; Elgohary et al., 2021; Mo
et al., 2022), none of them carefully defined the
task (e.g., how to evaluate simulated feedback) and
investigated advanced simulation methods.

To facilitate this research, we first propose a
feedback evaluator that can be used to assess dif-
ferent simulators. In particular, our feedback evalu-
ator is designed to evaluate whether the simulated
feedback is logically consistent with the user er-
ror correction intent, a critical attribute that can-
not be achieved by existing text evaluation metrics
(Papineni et al., 2002; Zhang et al., 2019b). In-
stead of comparing the simulated feedback with
the human-annotated one, we propose to compare
it with the template feedback, which is not only
logic-wisely less noisy but also scalable to cases
when human annotations are not available. Human

evaluation shows that our feedback evaluator can
more precisely assess the simulated feedback. We
also propose a set of feedback simulators based on
the pre-trained T5 model (Raffel et al., 2020), and
decide the best using our evaluator.

To demonstrate the advantages of our feedback
simulator, we conduct experiments on SPLASH
(Elgohary et al., 2020), a dataset containing human-
annotated feedback to mistakes of the Seq2Struct
parser (Shin, 2019) in text-to-SQL semantic pars-
ing (Yu et al., 2018). We first show that our feed-
back simulator trained on SPLASH can be used
to simulate NL feedback for a different parser, us-
ing EditSQL (Zhang et al., 2019a) as an exam-
ple. The resulting simulated feedback, when being
used to augment the SPLASH training set, leads
to improved error correction performance for both
Seq2Struct and particularly EditSQL. We further
demonstrate that even in the low-data setting (i.e.,
using a small portion of SPLASH), our feedback
simulator can still produce high-quality NL feed-
back, based on which we can train the error correc-
tion model to a comparable performance level as
its counterpart trained using the full SPLASH. This
implies that our feedback simulator can be very
helpful when there are limited annotation budgets.

2 Simulating Natural Language Feedback
for Interactive Semantic Parsing

2.1 Overview

We illustrate the scenario of interactive semantic
parsing in Figure 1. Given an initial user question
Q, as well as other contextual information (e.g.,
database schema in text-to-SQL semantic parsing,
denoted as S), the semantic parser will first pro-
duce an initial logical form Yinit. The semantic
parser will then present a logical form explanation
E to the user.2 After receiving the explanation, the
user is prompted to give an NL feedback sentence
F , describing which parts of the logical form Yinit
contain errors and how to correct them. This infor-
mation is perceived by the error correction model
of the interactive semantic parser to refresh its logi-
cal form prediction, hoping that the new prediction
Yfix can be the same as the ground truth Y ∗.

2We assume that the user is not professional in under-
standing and writing the logical form (otherwise they would
not need to use the parser). Therefore, each logical form
is presented to the user via an explanation. In practice, we
implement the explanation via NL templates following Elgo-
hary et al. (2020), whereas leaving the exploration of more
advanced explanation methods to the future.
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Training the interactive semantic parser (or more
precisely, its error correction model) to understand
NL feedback requires abundant human-annotated
feedback data. In this work, we propose a new
task of simulating NL feedback for interactive se-
mantic parsing, aiming to reduce the reliance on
human annotations. We assume a set of human-
annotated feedback data Dtrain, consisting of tu-
ples of (Q,S, Yinit, E, F, Y ∗), to bootstrap such a
feedback simulator, but aim for an effective simu-
lator that can generate high-quality NL feedback at
scale. The simulated feedback can then be used to
assist the error correction model training.

To facilitate this task, we first introduce a feed-
back evaluator in Section 2.2, and then present a
set of feedback simulators in Section 2.3.

2.2 Feedback Evaluation

It is critical that the simulated feedback is both
fluent (i.e., as how real users speak) and logically
consistent with the user error correction intent (i.e.,
precisely articulating which parts of the predicted
logical form are wrong and how to correct them).
While the prevalent use of pre-trained language
models has been able to improve generation fluency
dramatically (Radford et al., 2019; Lewis et al.,
2020; Raffel et al., 2020), ensuring that the simu-
lated feedback has a consistent logic with the sim-
ulation intent is still a challenging problem. This
motivates us to accompany the feedback simula-
tion task with an evaluator that can be reused by
future researchers to assess the quality of the simu-
lated feedback from a logical front. To this end, we
design a feedback evaluator as elaborated below.
The evaluator will be trained using the available
feedback annotations Dtrain.

2.2.1 Task Formulation & Architecture
Without the loss of generality, given a reference
feedback sentence T = (t1, t2, ..., tN ) and a can-
didate feedback sentence C = (c1, c2, ..., cM ), the
goal of a feedback evaluator is to produce a score
s(T,C), such that when the candidate C is logi-
cally consistent with the error correction intent (as
reflected in the reference T ), the evaluator predicts
a high score s, and vice versa. In our task, the can-
didate C is the simulated NL feedback. As for the
reference T , instead of using the human-annotated
feedback, we use a template feedback derived from
the same context. A simplified example is shown in
Figure 2, which describes the column replacement
in text-to-SQL parsing using a template “find
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Figure 2: Our feedback evaluator assesses the logical
quality of the simulated feedback by leveraging the
template feedback as reference.

[Colcorrect] in place of [Colwrong]”, where
“[Colcorrect]” and “[Colwrong]” are placeholders
for correct and incorrect columns, respectively.
We include more details of our templates in Ap-
pendix A.1. Using template feedback as reference
offers two advantages. First, it provides a cleaner
standard than the human-annotated one, which we
empirically found to contain inaccurate or incom-
plete error descriptions. Second, since template
feedback can be generated automatically, it can
easily scale to cases when human annotations are
not available.

In order to capture the feedback semantics at the
logical level, we adopt a model architecture similar
to that of Zhang et al. (2019b), which first com-
putes the token-level similarity between the can-
didate and the reference, and then aggregates the
information toward scoring their similarity at the
sentence level (Figure 2). Specifically, the model
takes the candidate C and the reference T as input
and first obtains their token-level contextual repre-
sentations via RoBERTa (Liu et al., 2019), obtain-
ing hT

n ,h
C
m ∈ Rd, where d is the embedding size,

for token tn (n=1 ,..., N ) and cm (m=1 ,..., M ), re-
spectively. We then obtain a token-level similarity
matrix A ∈ RN×M by calculating the cosine simi-
larity between every pair of tokens in the reference

and the candidate, i.e., Anm = hT
n

⊤·hC
m

||hT
n ||·||hC

m|| .
The sentence-level similarity between the refer-

ence and the candidate can then be derived from
their token-level similarities. We notice that not
only should the candidate align with the refer-
ence (precision) but the alignment should also
hold in the opposite direction (recall). There-
fore, our sentence-level similarity first calculates
the precision and the recall between the two sen-
tences, i.e., sprec(T,C) = 1

M

∑M
m=1maxnAnm,

srecall(T,C) = 1
N

∑N
n=1maxmAnm, and then
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calculates their average as the final score, i.e.,
s(T,C) = 1

2(sprec + srecall).
We train the evaluator to contrast positive Cpos

and negative Cneg candidates via a hinge loss:

Lmargin = max(0,m− s(T,Cpos) + s(T,Cneg))

+ λ(|Apos|1 + |Aneg|1)

where m is the margin, |A|1 denotes the L1
norm encouraging sparse alignments, and λ is the
weight factor. In practice, we will use the human-
annotated feedback F as the positive candidate and
the negative one will be introduced shortly.
Supervision on Token-level Alignment. Inspired
by Yin et al. (2021), we additionally introduce
alignment supervision on tokens that can be de-
rived from task-specific information. For exam-
ple, in the task of text-to-SQL semantic parsing,
it is easy to derive schema items appearing in the
template feedback, and their correspondences in
the human-annotated feedback can be extracted us-
ing fuzzy string matching (Lin et al., 2020). This
results in a prior alignment matrix, denoted as
Aprior ∈ RN×M in our work. Specifically, every
element in the matrix is set to 1 if the corresponding
tokens in the reference and the candidate should
be aligned, and 0 otherwise. The supervision is
realized by the loss:

Lprior =
N∑

n=1

M∑

m=1

(Anm −Aprior
nm )2 ×Amask

nm ,

where Amask ∈ RN×M is a mask matrix used to
eliminate the impact of the supervision on tokens
for which we cannot derive their correct alignments.
Specifically, for tokens in the same row or column
as those aligned tokens, we assign Amask

nm to 1 for
them, and 0 otherwise. The final loss function for
training the evaluator is:

L = Lmargin + γLprior,

where γ is the weight of the prior loss.
Negative Candidate Feedback. Motivated by the
observation that most feedback is about correcting
certain values and schema items (e.g., table and
column names in text-to-SQL parsing), we sample
negative feedback from the human-annotated feed-
back by replacing their values and schema items
with random ones. Taking text-to-SQL semantic
parsing as an example, we replace the column name
“location description” in the feedback “use loca-
tion name instead of location description” with

    [question] Q [explanation] E [schema] S

Feedback Simulator 
(T5-based)

Correct+Wrong LF (CWQES): 

Edits (DQES):

Simulated
Feedback

[true] SELECT support_rate FROM candidate ORDER
 BY support_rate DESC LIMIT 3 [pred] SELECT consider_rate FROM candidate  ...

<select> add support rate </select> <select> remove consider rate  ... 
Template Feedback (TQES): in step 1 , find support rate in place of consider rate ...

Figure 3: Our feedback simulator variants with different
ways of error correction intent representations.

a different column in the same database, such as
“document type description”, resulting in a nega-
tive feedback sentence “use location name instead
of document type description”. In this way, our
feedback evaluator will be trained to capture such
subtle differences between good and bad feedback.

Post-processing. To further encourage one-to-one
alignments between the reference and the candi-
date, we follow Li et al. (2020) to perform Bipar-
tite Matching at inference time. Furthermore, we
noticed that spans in the reference (i.e., template)
feedback contribute differently to describing the
error correction intent. For example, when a user
would like to replace a certain schema item with an
alternative one, they will indicate the correct alter-
native, but may or may not mention the incorrect
one. Therefore, we additionally weigh different
spans in the reference feedback while calculating
the similarity score. More details are shown in
Appendix A.2.

2.3 Feedback Simulation
Given the initial user question Q, the initial logi-
cal form prediction Yinit, the gold logical form Y ∗

(for the simulation purpose), as well as other infor-
mation such as the explanation E and the context
S, a feedback simulator aims to produce a feed-
back sentence F that is similar to how humans give
corrective instructions to the semantic parser.

In this section, we present three variants of feed-
back simulator, all based on fine-tuning the pre-
trained T5 model (Raffel et al., 2020). The variants
are only different in the way how they represent the
error correction intent. Figure 3 gives an overview
of them. (1) CWQES: In this variant, we simply
include the Correct and Wrong logical forms as
input and train the model to simulate feedback. (2)
DQES: Inspired by Elgohary et al. (2021), we also
explore feeding the eDits of revising the incorrect
logical form Yinit into the gold one Y ∗ as input.
Compared with feeding the raw logical forms, this
variant will make the simulation task easier, be-
cause, unlike the former, the simulator will have no
need to understand the two logical forms and infer
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their differences. In practice, we follow Elgohary
et al. (2021) and represent the edits in a linearized
form. (3) TQES: Finally, we propose to represent
the edits using their Template description, which
is the same as our template feedback introduced in
Section 2.2. In this way, the task of feedback simu-
lation can be viewed as paraphrasing the template
feedback and making it more similar to how the
real user speaks. The advantage of this variant lies
in that it can better unlock the power of language
models pre-trained on textual data (e.g., T5), when
the program-liked edits are replaced by their textual
descriptions. Same as the feedback evaluator, our
feedback simulator will be trained on the available
human annotations Dtrain.

3 Experiments

3.1 Experimental Setup

We conduct experiments using the SPLASH dataset
(Elgohary et al., 2020), which contains human-
annotated feedback for mistakes made by the
Seq2Struct parser (Shin, 2019) on the Spider text-
to-SQL semantic parsing dataset (Yu et al., 2018).
Specifically, both the SPLASH training (6,829 ex-
amples) and dev (810 examples) set were derived
from the Spider training set, and the SPLASH test
set (870 examples) was from the Spider dev set.3

Experimental Settings. To demonstrate the effec-
tiveness of our feedback simulator and evaluator,
we consider two settings:
(1) Simulating feedback to a specific semantic
parser: We investigate whether our feedback sim-
ulator trained on the SPLASH dataset can simulate
feedback for an unseen semantic parser. In experi-
ments, we follow Elgohary et al. (2020) and experi-
ment with the EditSQL parser (Zhang et al., 2019a).
Specifically, we first follow a similar procedure of
Elgohary et al. (2020) to create mistakes made by
EditSQL on the Spider training set, and then apply
our feedback simulator to simulate NL feedback.
This results in around 2,400 simulated training ex-
amples. This data is then used to augment the
original SPLASH training set for training an error
correction model. We evaluate the error correc-
tion model on both the SPLASH test set and the
EditSQL test set (which similarly contains human-
annotated feedback to EditSQL’s mistakes on the

3In our data preprocessing, we removed examples which
require adding or removing an entire subquery, since human
feedback to these errors is very noisy. We provide details in
Appendix B.2.

Spider dev set and was additionally provided by
Elgohary et al. (2020)).

In this setting, we compare three variants of the
error correction model (to be introduced shortly).
(a) Trained on SPLASH, where the model is
trained using the original SPLASH training set;
(b) Trained on SPLASH + Dsim

editsql, where the
model is trained on both the SPLASH training set
and our simulated feedback based on EditSQL; (c)
Trained on SPLASH + Dtemp

editsql, where, instead of
using our simulated feedback, we use the template
feedback to augment the training, following the
spirit of Yao et al. (2019a); Elgohary et al. (2021).

(2) Simulating feedback in low-data settings:
One important motivation of our research is to re-
duce the need for human annotations. Therefore,
we also experiment with a “low data” setting, where
only K% of the SPLASH training set will be used
to construct our feedback simulator and evaluator.
For the remaining (100−K)% of training exam-
ples, we will instead apply our feedback simulator
to simulate NL feedback. In experiments, we con-
sider K=20, 10, and 5, consuming 1639, 836, and
268 training examples, respectively. Similar to set-
ting (1), we compare our simulated feedback with
the template feedback, and will demonstrate the
effectiveness of our feedback simulator by eval-
uating the error correction model trained on its
simulation.4

For both experiments, we use the TQES feed-
back simulator variant as it presents the best gen-
eration quality, as we will discuss in Section 3.4.
We also note that our proposed feedback evalua-
tor is only used for comparing and selecting better
feedback simulator checkpoints or variants. In the
future, one can further use our evaluator to provide
reward signals when training the feedback simula-
tor (see a discussion in the Limitations section).

Error Correction Model Evaluation. We fol-
low Elgohary et al. (2021) in using four evaluation
metrics to assess an error correction model. Cor-
rection Accuracy measures the exact set match
(Yu et al., 2018)5 between the gold parse (Y ∗) and
the parse after correction (Yfix). Edit-Dec and
Edit-Inc measure the percentage of test examples
for whom the required revision edits are decreased

4Potentially, one can also apply the simulator to EditSQL
for data augmentation, like in setting (1). Here, we focus on
solely the low-data setting for easier model comparison.

5The original exact set match does not consider the literal
values in a SQL query, but we take it into account because
many parsing mistakes involve values.
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Model
SPLASH-Test EditSQL-Test

Corr Acc. Progress Edit-Dec Edit-Inc E2E Corr Acc. Progress Edit-Dec Edit-Inc E2E
(↑) (↑) (↑) (↓) (↑) (↑) (↑) (↑) (↓) (↑)

Trained on SPLASH 31.15 38.26 71.03 12.30 64.72 25.70 23.23 59.86 23.23 75.14
+Dtemp

editsql 31.15 37.68 71.49 14.82 64.63 25.70 15.68 56.69 26.05 75.14
+Dsim

editsql (ours) 33.10 41.60 74.14 11.49 65.45 29.22 23.99 61.97 19.71 76.11

Table 1: Error correction performance (%) on the SPLASH and EditSQL test sets, when the model is trained on
the original SPLASH training set, and optionally augmented by the template feedback (Dtemp

editsql) or our simulated
feedback (Dsim

editsql) based on EditSQL’s mistakes on the Spider training set. (↑: higher, better; ↓: lower, better)

and increased, respectively, after the error correc-
tion. Therefore, a better error correction model
should expect a larger Edit-Dec but a smaller Edit-
Inc. Progress measures the relative edit reduction
from revising the corrected vs. initial logical form
to the ground truth. Finally, we include the end-
to-end (E2E) accuracy of a parser on the Spider
dev set, which measures the parsing accuracy when
the parser is able to interact with users and correct
mistakes via the trained error correction model.

Due to the lack of open-source error correction
models, we have implemented our own based on
T5 (Raffel et al., 2020), with the model details in-
cluded in Appendix A.3. While improving the base
error correction model is outside our scope, we em-
pirically show that our T5-based error correction
model obtains comparable performance to the ex-
isting models. We include the comparison and all
implementation details in Appendix B.

3.2 Can the Feedback Simulator Generate
Useful Feedback for a Specific Parser?

In Table 1, we report results for the experimental
setting (1), comparing the performance of differ-
ent error correction model variants when they are
trained using our simulated feedback on EditSQL’s
mistakes or not. As shown in the table, when in-
cluding our simulated feedback, we are able to
improve the error correction performance for Edit-
SQL by 3.5% absolute correction accuracy. Note
that the correction accuracy is a very strict metric
counting only fully correct logical forms. On other
metrics based on partial corrections, we observe
that including our simulated feedback can improve
them by 5-8%. These improvements imply that
our feedback simulator is able to simulate high-
quality NL feedback for errors present in EditSQL
(but may be infrequent in SPLASH), which allows
the error correction model to better fit EditSQL’s
test-time error patterns. We present an example in
Appendix C.1.

Metrics MRR (dev) Human

BLEU 0.57 0.03
BERTScore 0.55 0.08
Our Evaluator 0.88 0.19

Table 2: Performance of different feedback evaluation
metrics. MRR shows the evaluator performance when
it is used to rank positive feedback on SPLASH-dev
(higher, better). Human denotes their Spearman rank-
ing correlations with human ratings.

We also show that including the simulated feed-
back on EditSQL can improve the error correction
for Seq2Struct (i.e., on the SPLASH test set) as
well; it leads to around 2% gain on correction ac-
curacy and 2.5-3.5% on others. It is plausible that
these gains are not as large as those on the Edit-
SQL test set, given that the additional feedback is
simulated based on EditSQL.

Intriguingly, our results present a negative im-
pact from the template feedback. Training the error
correction model additionally on the template feed-
back on EditSQL causes either no gain in Correc-
tion Accuracy and worse performance on Progress,
especially on the EditSQL test set. Our conjecture
is that adding template feedback that describes er-
rors differently from real users can only hinder the
error correction model from understanding natural
feedback in this full data setting (we will discuss its
different impact in low-data settings in Section 3.5).

Finally, looking at the end task accuracy, we
note that for both Seq2Struct (the base parser of
SPLASH) and EditSQL, being able to correct test-
time mistakes based on user NL feedback offers
them parsing performance comparable with state-
of-the-art parsers on the Spider benchmark. Train-
ing their error correction models on our simulated
feedback leads to 1% further gain.

3.3 Can the Feedback Evaluator Properly
Assess Each Simulator?

As described in Section 3.1, we rely on our feed-
back evaluator to select the best feedback simulator.
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Figure 4: Error correction performance in low-data settings, where only K% of the SPLASH training set is used and
the remaining is simulated using our simulator or the templates. The performance is compared to the upper (lower)
bound that was trained using the full SPLASH train set.

As a result, it is critical that our feedback evaluator
can give us precise comparisons across different
simulators. We conducted two evaluations compar-
ing our evaluator with the existing metrics, BLEU
(Papineni et al., 2002) and BERTScore (Zhang
et al., 2019b). For automatic evaluation, we re-
port the Mean Reciprocal Rank (MRR) of each
evaluation metric when it is used to rank the pos-
itive feedback among the 50 negative ones on the
SPLASH dev set; the higher MRR, the better met-
ric. In addition, we performed a human evaluation
and instructed human participants to rank among
feedback generated by different simulators under
the same context. We then calculate the Spearman
ranking correlation between the rank by each evalu-
ation metric and that by humans. We include more
human evaluation details in Appendix C.2.

We present the results in Table 2. On both met-
rics, our feedback evaluator substantially outper-
forms the other two metrics. It demonstrates that
our evaluator can more precisely assess the logical
consistency of a simulated feedback sentence and
distinguish between feedback with good and bad
quality. In contrast, BERTScore tends to give high
values to all generated feedback as long as they are
relevant, as we showcase in Appendix C.3.

3.4 How Does Each Feedback Simulator
Variant Perform?

We compare the performance of the three feed-
back simulators (Section 2.3) in Table 3. While we
present performance using different evaluation met-
rics, as discussed previously, the results of BLEU
and BERTScore are relatively less reliable. Results
from our evaluator show that TQES can achieve the
best performance. We conjecture that this is owing
to two advantages. First, compared with CWQES,
which requires inferring the desired edits from the
incorrect and the correct logical form, TQES di-

Model BLEU BERTScore Our Evaluator

CWQES 0.132 0.881 0.491
DQES 0.134 0.882 0.518
TQES 0.125 0.884 0.535

Table 3: Performance of different feedback simulators.

rectly includes the edit information as input, which
simplifies the feedback simulation problem. Sec-
ond, while both DQES and TQES include the edit
information in the input, TQES additionally trans-
lates the information into texts, which fits better
with how the T5 model was pre-trained (i.e., on
textual data). Therefore, in all our experiments, we
have been using the TQES-based feedback simula-
tor by default.

3.5 Can the Feedback Simulator Work Well
in the Low-data Setting?

Finally, we investigate the performance of our feed-
back simulator and evaluator in the low-data setting.
Our results are shown in Figure 4. A surprising
finding is that even when trained with only a small
amount of training data, our feedback simulator
can still generate high-quality feedback that makes
the performance of the error correction model com-
parable to that of using the full SPLASH training
set. As we include more human annotations (i.e.,
from 5% to 10% or 20%), the feedback simulator
can generate better feedback, leading to an upward
trend in the error correction performance. Unlike
in the full-data experimental setting (Section 3.2),
when there is only a limited amount of human an-
notations, including template feedback assists the
error correction model training, although the gains
are smaller than that of our simulated feedback. To
further understand the feedback simulator perfor-
mance, in Appendix C.4, we show the performance
of low-data feedback simulators using our feed-
back evaluator. Our results demonstrate that even
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when the simulator is trained with a small amount
of training data, it can still achieve comparable per-
formance to that trained with full SPLASH data.

4 Related Work

Interactive Semantic Parsing. Motivated by the
need to further enhance its performance in prac-
tice, interactive semantic parsing emerged as a
promising solution (Wang et al., 2016; Chaurasia
and Mooney, 2017; Gur et al., 2018; Su et al., 2018;
Labutov et al., 2018; Yao et al., 2019a,b; Staniek
and Riezler, 2021; Yao et al., 2020; Li et al., 2020;
Zeng et al., 2020; Elgohary et al., 2020; Mo et al.,
2022). Among others, Gur et al. (2018) and Yao
et al. (2019b) explained components in the gen-
erated logical form and, if they were wrong, re-
quested users to select the correct ones as feedback.
Li et al. (2020) identified uncertain tokens in the
language command and requested user choices on
their paraphrases for clarification. While the multi-
choice feedback was shown to work well for cor-
recting errors in semantic parsing, it suffers from
the obvious drawbacks of being less user-friendly
and inefficient, as users can only passively respond
to the system-presented choices.

Labutov et al. (2018) and Elgohary et al. (2020)
have driven the research a step forward by intro-
ducing NL feedback. Particularly, Elgohary et al.
(2020) annotated the SPLASH feedback dataset
and showed that an error correction model can
learn to fix parsing mistakes from NL feedback.
In (Elgohary et al., 2021), the authors further in-
vestigated a more advanced error correction model,
which predicts the edits rather than the corrected
logical form based on NL feedback. Our work is
complementary to the existing effort. Instead of
improving the error correction model architecture,
we focus on simulating NL feedback to reduce the
need for human annotations for training the error
correction model. When constructing our feedback
simulator, we also explore the use of “edits” to
improve the model performance.

General NLP Research with Human Feedback.
There is also work outside semantic parsing ex-
ploring human feedback for NLP model develop-
ment (Hancock et al., 2019; Kreutzer and Riezler,
2019; Sreedhar et al., 2020; Madaan et al., 2021;
Li et al., 2022). For example, Hancock et al. (2019)
explored chatbots that can ask for user feedback
when the user shows to be unsatisfied with the con-
versation. In their work, the feedback can often

be viewed as human-labeled responses. Li et al.
(2022) requested human feedback in the form of
ratings and explanations for improving retrieval-
based question answering. More recently, Ouyang
et al. (2022) collected expert rankings of model out-
puts for fine-tuning GPT-3. Unlike the prior work,
we focus on (corrective) NL feedback, a type of
feedback that is still largely under-explored. While
investigating how to improve a semantic parser
from NL feedback is out of our scope, it can be
an important future topic. Finally, concurrent to
our work, we noticed an increasing interest in refin-
ing large language models with NL feedback from
the models themselves (Chen et al., 2023; Madaan
et al., 2023; Kim et al., 2023). We envision that
models’ self-refinement and learning from exter-
nal human feedback can be two complementary
directions and their strengths should be leveraged
simultaneously. We will leave the exploration of
this topic to the future.

User Simulation in Dialogue Systems. User
simulation has also been studied with task-oriented
dialogue systems (Li et al., 2016; Shi et al., 2019;
Mohapatra et al., 2021; Kim et al., 2021). There,
a user simulator typically simulates not only the
user utterances but also their goal (e.g., booking
a movie ticket at 8pm this Saturday) and their
“agenda” (Schatzmann and Young, 2009) toward
accomplishing the task (e.g., what information to
present in the user’s first and second conversation
turns). Compared with the prior research, our work
targets a very different setting, i.e., simulating NL
feedback toward correcting the parsing mistakes.
We focus this work on developing feedback sim-
ulators that can effectively simulate the feedback
(i.e., utterance generation), whereas leaving other
dimensions of user simulation (e.g., the agenda of
error correction) to the future.

Text Evaluation. Finally, our work relates to re-
search on text evaluation. Similar to prior work
(Sulem et al., 2018; Zhang et al., 2019b; Sellam
et al., 2020), in our experiments, we also observe
that metrics based on the surface form of a text,
such as BLEU (Papineni et al., 2002), cannot rec-
ognize semantic modifications in text generation.
Recent research has thus shifted to neural network-
based text evaluation, exemplified by metrics such
as BERTScore (Zhang et al., 2019b), BARTScore
(Yuan et al., 2021), CTC Score (Deng et al., 2021),
etc. However, while these metrics work well for
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general-purpose text evaluation (e.g., checking the
similarity between two translations), empirically
we found them unable to identify the differences
between two texts at the more subtle logical level.
Therefore, we instead train a text evaluation model
for assessing the simulated feedback sentence, fol-
lowing the same spirit of Sellam et al. (2020); Rei
et al. (2020).

5 Conclusions

In this work, we propose the task of simulating
NL feedback for interactive semantic parsing and
present two models for feedback evaluation and
simulation, respectively. Our experimental results
have demonstrated the effectiveness of both models
and show the promise of saving human-annotation
effort with simulated feedback.

Limitations

Both the feedback simulator and the feedback eval-
uator in our work can be further improved. For ex-
ample, while we simply fine-tuned a pre-trained T5
model as the feedback simulator, future work can
design more specialized architectures for it, such as
adding relation-aware attention (Wang et al., 2020;
Elgohary et al., 2021) to augment the schema item
linking among input components (e.g., question
and template feedback in the TQES variant). Alter-
natively, one can also leverage the feedback evalu-
ator to steer the training of the feedback simulator
(e.g., via reinforcement learning). As we briefly
discussed, one could also extend our feedback sim-
ulator to imitate more fine-grained user behaviors,
such as the agenda of how users would engage in
the error correction process. Finally, an intrigu-
ing research direction is whether one can leverage
our feedback simulator for continually improving a
semantic parser from NL feedback, drawing inspi-
rations from Clarke et al. (2010); Iyer et al. (2017);
Yao et al. (2020).

Although our proposed approaches have not
made any assumptions on the type of logical forms
and can thus be applied to any of them, in exper-
iments, we have only evaluated them in the task
of text-to-SQL semantic parsing. Future research
can further assess our proposed models in other
semantic parsing settings such as knowledge base
question answering (Cai and Yates, 2013; Yih et al.,
2016; Gu et al., 2021; Mo et al., 2022).

On the other hand, as our simulator is primar-
ily designed for interactive semantic parsing, it as-

sumes meaning representations of both the ground-
truth prediction and the model prediction. There-
fore, generalizing our methods to other NLP tasks
may need additional effort. For example, if we ap-
ply our methods to a similar interaction scenario for
retrieval-based QA (Li et al., 2022), then we will
additionally need to define logical forms to describe
the ground-truth retrieval process and that of the
QA model. For open-ended tasks such as keyword-
based story generation (Pascual et al., 2021), defin-
ing such logical forms will need non-trivial effort.

Ethics Statement

We presented the task of simulating NL feedback
for interactive semantic parsing. The dataset we
used in this project is publicly available. While it is
possible that our feedback simulator may generate
texts that do not perfectly align with the intended
error correction, it is important to note that these
generated texts are exclusively used for training
the error correction model and are not exposed to
real human users. Hence, we do not anticipate
any ethical issues resulting from our work. On the
other hand, we emphasize the positive impact of
our work when it aims to facilitate feedback-driven
human-AI interaction. As shown in this and prior
work, human feedback allows for correcting model
mistakes before their negative impact takes place,
which can play a key role toward enabling safe and
trustworthy AI/NLP applications.
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A Additional Model Details

A.1 Template Feedback

The template feedback is used to describe the edits
in a more natural way. We use template feedback
in both our feedback simulator and evaluator and
it brings several advantages as we stated in sec-
tion 2. A SQL query can be divided into different
clauses and errors vary in a specific clause. We
mainly focus on three kinds of operations that can
be used to correct the error parse: replace, add, and
remove. In Table 4, we present examples of our
template feedback. For ease of presentation, we
use col_name as the placeholder of a real column
name in the database. Similarly for other kinds of
schema items (e.g., table names, operators, etc.).
Besides, we use subscript correct and wrong to in-
dicate the wrong and correct schema item in the
replace operation, use subscript new and old to indi-
cate the newly added schema item in add operation,
and use numbers as subscript to indicate multiple
schema items in one template.

A.2 Post-processing of Feedback Evaluation

We observe that the positive candidate typically has
one-to-one alignments with the reference. Inspired
by Li et al. (2020), at test time we additionally

perform a Bipartite Matching to encourage one-to-
one alignments in the matrix A, before calculating
the similarity score.

Furthermore, we noticed that spans in the ref-
erence (i.e., template) feedback contribute differ-
ently to describing the error correction intent. For
example, when a user would like to replace a cer-
tain schema item with an alternative one, they will
indicate the correct alternative, but may or may
not mention the incorrect one (i.e., a user may say
“show only the student name” instead of “show the
student name and remove student IDs”). Therefore,
when we calculate the similarity score in practice,
we additionally weigh the more important spans
with a higher weight and the less important ones
with fewer. In the template feedback, we split to-
kens into primary_span and secondary_span, and
assign them weights wprm, wsec ∈ R, such that
wprm +wsec = 1. For the ease of presentation, we
unify these two weights as wspan. Use Ab to in-
dicate the alignment matrix with one-to-one align-
ments after Bipartite matching. The final similarity
score is calculated:

sprec(T,C) =
1

M · ZM

M∑

m=1

max
n

Ab
nm × wspan,

srec(T,C) =
1

N · ZN

N∑

n=1

max
m

Ab
nm × wspan,

s(T,C) =
1

2
(sprec + srec).

Here, ZM , ZN denote the normalization term due
to the span weighing:

ZM = wprm · CntMprm + wsec · CntMsec,

ZN = wprm · CntNprm + wsec · CntNsec,

where CntMprm and CntMsec denote the number of
tokens that are primary and secondary spans in
the reference feedback, respectively, and CntNprm
and CntNsec denote the number of tokens in the
candidate feedback whose aligned tokens in the
reference side are primary and secondary spans,
respectively.

In Table 4, we present the primary and second
spans in the template feedback examples.

A.3 Error Correction Model

The error correction model targets correcting the
initial logical form Yinit into the gold one Y ∗ based
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SELECT Correction
replace column(s) col (optionally with aggregators agg) primary{ find [aggcorrect] colcorrect } secondary{ in place of [aggcorrect|wrong] colwrong . }
add column(s) col (optionally with aggregators agg) primary{ additionally find [aggcorrecy] colcorrect }
remove column(s) col (optionally with aggregators agg) primary{ do not return [aggwrong] col_namewrong .}
add DISTINCT keyword primary{ make sure no repetition in the results. }
remove DISTINCT keyword primary{ permit repetitions in the results. }

FROM Correction
replace table(s) tab primary{ use tabcorrect table } secondary{ in place of the tabwrong table.}
add table(s) tab primary{ additionally use the information from the tabnew table } secondary{ besides the tabold table.}

WHERE Correction
replace condition(s) cond primary{ consider the condcorrect condition } secondary{ in place of the condwrong condition. }
change the connector AND|OR between conditions primary{ you should consider (both | either) of the conditions rather than (either | both) of them. }

ORDER BY ... ASC/DESC LIMIT ... Correction
add a clause or change both column(s) (col) and the
order direction order_dir

primary{ order the results order_dircorrect by colcorrect } secondary{ in place of ordering order_dirwrong by colcorrect .}

GROUP BY column HAVING condition Correction
replace condition operand cond_opd primary{ find the cond_opdcorrect } secondary{ in place of cond_opd.}

Table 4: Examples of template feedback.

on the feedback F as well as other relevant in-
formation. Prior work has explored approaches
such as re-purposing the multi-turn EditSQL se-
mantic parser (Zhang et al., 2019a) by feeding the
feedback as the second-turn user question (Elgo-
hary et al., 2020), or constructing a transformer-
based sequence-to-sequence model (Elgohary et al.,
2021). However, none of the models are publicly
available. In this work, we create our own error
correction model by fine-tuning a pre-trained T5
model (Raffel et al., 2020). The model takes as
input a sequence of feedback F , explanation E,
the initial question Q, as well as the contextual
information S, and is then trained to generate the
ground-truth logical form Y ∗. Investigating more
advanced model architectures for error correction
is out of our scope, and we leave it as future work.

B Additional Implementation Details

B.1 Implementation Details
For feedback evaluation, we sampled 50 negative
feedback examples for every positive one during
training and evaluation. For tuning the hyper-
parameters, we experiment with learning rates in
{1e-5, 1e-6, 1e-7, 1e-8}, m in {0.1, 0.3, 0.6}, and λ
and γ in {1e-1, 1e-3,1e-5}. The best configuration
is: learning rate 1e-8, batch size 64, m = 0.1, and
λ = γ =1e-3 in the loss function. We trained
the evaluator for at most 200 epochs. In post-
processing, the primary span weight is set to 0.9.
We select the model parameters that achieve the
highest MRR on SPLASH dev set. The same set
of hyper-parameters is used for both experimental
settings. The feedback simulator is based on T5-
large, trained with a learning rate 1e-4. We selected
the learning rate of our simulator in the range of
{1e-3, 1e-4, 1e-5} based on its performance on the
SPLASH dev set evaluated via our feedback eval-
uator. We use a batch size of 5 and a maximum

Model Corr
Acc.
(↑)

Progress
(↑)

Edit-
Dec (↑)

Edit-
Inc (↓)

EditSQL+Feedback
(Elgohary et al., 2020)

25.16 - - -

NL-Edit (Elgohary
et al., 2021)

41.17 36.99 72.41 16.93

Ours 31.15 38.26 71.03 12.30

Table 5: The performance (%) of our error correction
model compared with existing ones.

of training steps 10,500. Training the evaluator
and the simulator requires roughly 48 hours and 10
hours using one NVIDIA A100 80GB GPU, respec-
tively. Our model implementation is based on the
Hugging Face transformers library6 and PyTorch
version 1.10.2.7 We have only run experiments
using one random seed.

B.2 Dataset and Prepossessing

Our use of the SPLASH dataset is consistent with
their intended use, i.e., for scientific research. The
dataset is distributed under the CC BY-SA 4.0 li-
cense. The dataset is in English. Its feedback came
from anonymized crowd workers at Amazon Me-
chanical Turk. We refer readers to Elgohary et al.
(2020) for more details.

We found that human-annotated feedback is typi-
cally noisy and inaccurate if the base parser misses
or incorrectly predicts the entire subquery in its
prediction. Motivated by it, we defined errors that
missed the entire subquery or contained the entire
wrong subquery in the initial parse as structural
errors and showed several examples in Table 6. We
believe that training our feedback simulator and
evaluator with those structural error examples does
not bring any benefit. Therefore, we filtered them
out of our experiments. We found a total of 652,

6https://huggingface.co/docs/transformers/index
7https://pytorch.org/
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Error
Type:

missing entire subquery to UNION clause

Question: What are the names of all cities and states?
Correct
Parse:

SELECT town_city FROM addresses UNION SELECT state_province_county FROM addresses

Wrong
Parse:

SELECT town_city , state_province_county FROM addresses

Explanation: find the town_city, state_province_county of addresses table
Feedback: The above sentence is incomplete, so could not paraphrase it.

Error
Type:

missing entire subquery to EXCEPT clause

Question: Show the studios that have not produced films with director "Walter Hill".
Correct
Parse:

SELECT studio FROM film EXCEPT SELECT studio FROM film WHERE director = "Walter Hill"

Wrong
Parse:

SELECT studio FROM film WHERE director ! = "Walter Hill"

Explanation: find the studio of film table for which director not equals Walter Hill
Feedback: don’t repeat

Error
Type:

having entirely redundant subquery from WHERE clause

Question: Return the hosts of competitions for which the theme is not Aliens?
Correct
Parse:

SELECT hosts FROM farm_competition WHERE theme != "Aliens"

Wrong
Parse:

SELECT theme FROM farm_competition WHERE competition_id NOT IN ( SELECT theme FROM farm_competition )

Explanation: Step 1: find the theme of farm_competition table,
Step 2: find the theme of farm_competition table whose competition_id not one of the results of step 1

Feedback: Add "theme equals to Aliens" in step 1 , Use hosts in place of theme in step 2.

Error
Type:

having entirely redundant subquery from INTERSECT clause

Question: What is the first name of the students who are in age 20 to 25 and living in PHL city?
Correct
Parse:

SELECT fname FROM student WHERE city_code = "PHL" AND age BETWEEN 20 AND 25

Wrong
Parse:

SELECT fname FROM student WHERE city_code = "PHL" INTERSECT SELECT fname FROM student WHERE age < 20

Explanation: Step 1: find the fname of student table for which city_code equals PHL,
Step 2: find the fname of Student table for which age less than 20,
Step 3: show the rows that are in both the results of step 1 and the results of step 2

Feedback: In step 2 , age must be 20 to 25.

Table 6: The structural errors in SPLASH. Feedback is noisy and inaccurate if there is a need to add or remove the
entire subquery.

61, and 92 structural errors in the SPLASH train,
dev, and test set separately.

B.3 Error Correction Model Implementation

Given that existing error correction models are not
open-sourced, we implemented our own model
based on T5-base, as detailed in Appendix A.3.
We compare our error correction model with ex-
isting ones (when all are trained on SPLASH) in
Table 5. Note that EditSQL+Feedback (Elgohary
et al., 2020) is a model repurposed from EditSQL
(Zhang et al., 2019a), but it is different and in-
dependent from the EditSQL in our main experi-
ments. NL-Edit (Elgohary et al., 2021) is the cur-
rent state-of-the-art model on SPLASH. Both Edit-
SQL+Feedback and NL-Edit are not publicly avail-
able, and reproducing them requires non-trivial ef-
fort. Therefore, we only include results reported by

the authors.

We observe a 10% gap between our model and
NL-Edit, although their performances are very com-
parable in all other metrics. This can be due to that
Correct Accuracy is a very strict metric; it requires
full correction to be counted as “correct”. How-
ever, in practice, we observe that a large portion of
human-annotated feedback sentences on SPLASH
are noisy (e.g., containing inaccurate information
or being incomplete). In such cases, our model can
only correct parts of the model mistakes, which
leads to worse Correction Accuracy but compara-
ble Progress and Edit percentages (which count
partial corrections).
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Error Pattern: missing DISTINCT in SELECT, missing table in FROM, two errors in WHERE

Error case in EditSQL-test
Question: What are the different models created by either the car maker General Motors or weighed more than 3500?
Correct
Parse:

SELECT DISTINCT t2.model FROM car_names AS t1 JOIN model_list AS t2 ON t1.model = t2.model JOIN car_makers AS t3

ON t2.maker = t3.id JOIN cars_data AS t4 ON t1.makeid = t4.id WHERE t3.fullname = "General Motors" OR t4.weight > 3500
Wrong
Parse:

SELECT t3.model FROM car_makers AS t1 JOIN model_list AS t2 ON t1.id = t2.maker JOIN car_names AS t3 ON

t2.model = t3.model WHERE t1.maker = "General Motors" or t1.maker = 3500
Explanation: Step 1: for each row in car makers table , find the corresponding rows in model list table and in car names table,

Step 2: find the car names ’s model of the results of step 1 whose car makers ’s maker equals General Motors or car makers ’s maker
equals 3500

Human Feed-
back:

Step 1 , Swap car names with cars data Step 2 , Swap second car makers ’s maker with cars data ’s weight , Ensure Uniqueness.

Error case in EditSQL-train with the same error pattern
Question: find the number of actors from Iran who played in "Jim Jarmusch" movies
Correct
Parse:

SELECT COUNT ( DISTINCT t1.name ) FROM cast AS t4 JOIN actor AS t1 ON t4.aid = t1.aid JOIN movie AS t5 ON t5.mid =
t4.msid JOIN directed_by AS t2 ON t5.mid = t2.msid
JOIN director AS t3 ON t3.did = t2.did WHERE t1.nationality = "Iran" AND t3.name = "Jim Jarmusch"

Wrong
Parse:

SELECT COUNT (*) FROM actor WHERE nationality = "val1" AND nationality = "val1"

Explanation: find the number of rows in actor table whose nationality equals dummy value and nationality equals dummy value
Simulated
Feedback:

Make sure that actor is from Iran and also use director’s name and corresponding movie’s name instead of nationality and val1
respectively.

Table 7: An example of an uncommon error pattern in SPLASH. The same error exists in the EditSQL train and test
sets. By including EditSQL in the training set of the error correction model, the model is able to fix the parse with
this error pattern. EditSQL itself does not predict literal values. We plug values into the wrong parse of EditSQL
by randomly picking one from the database content if possible, however, if the initial parse contains the wrong
table/column information, we will use dummy values in place of it such as "val1" in above example.

C Additional Experimental Results

C.1 Example of Feedback Simulation

To better compare the errors in EditSQL and
SPLASH, we first define what is error pattern in
SPLASH and EditSQL. Error pattern is used to de-
scribe the errors for each clause in the initial wrong
parse. If there is a need to add new schema item
to a clause without removing other schema items,
we say this is a missing schema item, otherwise,
it is an erroneous schema item. A common error
pattern refers to a pattern that appears many times
(>10) in SPLASH, and an uncommon error pattern
refers to a pattern that appears less than 10 times
in SPLASH. In Table 7, we show feedback simu-
lated by our model when the error is uncommon in
SPLASH but present in the EditSQL (simulated)
training and test set. By using both SPLASH and
EditSQL train sets, the correction model is able
to fix uncommon errors in the EditSQL test that
cannot be fixed by using SPLASH alone. Even
though the simulated feedback is not perfect, we
can still see that our feedback simulator generates
high-quality feedback for this uncommon error pat-
tern. In Table 8, we also show simulation examples
on the SPLASH dataset.

C.2 Human Evaluation

We conducted a human evaluation to compare dif-
ferent feedback evaluation metrics. Specifically, we
randomly sampled 50 examples from the SPLASH
dev set, presenting the generated feedback from the
three feedback simulators (Section 2.3) but hiding
the simulator information, and then asking human
participants to score their quality in terms of their
logical consistency with the error correction intent.
Along with the generated feedback, we also show
to participants the question, the correct parse, the
wrong parse, the explanation of the wrong parse,
and the database schema. We recruited in-house
volunteers who are graduate students in computer
science.

The human evaluator is working on a 5-level
Likert Scale and we include the evaluation criterion
showing to human evaluator in Table 9. For each
of the evaluation metrics (i.e., BLEU, BERTScore,
and our evaluator), we then calculate the Spearman
ranking correlation between the metric values and
the human ratings. The reason for using a ranking
correlation is that we target an evaluation metric
that can help us to distinguish between good and
bad feedback simulation under the same context.
Intuitively, if a metric can precisely assess different
feedback sentences, it should be able to rank these
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Easy Example from SPLASH-dev

Question: How many dogs went through any treatments?
Correct Parse: SELECT count(DISTINCT dog_id) FROM treatments
Wrong Parse: SELECT count ( * ) FROM breeds
Explanation: find the number of rows in breeds table
Template Feedback: use treatments table in place of breeds table . find number of different dog id in place of number of rows .
Human Feedback: Change breeds table with treatments table .

Simulated Feedback & Evaluation Results

CWQES you need to use treatments table in place of breeds table .
BLEU: 0.308, BERTScore: 0.876, Ours: 0.468

DQES you need to use treatments table and search for the number of distinct dog id .
BLEU: 0.063, BERTScore: 0.879, Ours: 0.528

TQES you need to use treatments table and also find the number of distinct dog id .
BLEU: 0.065, BERTScore: 0.889, Ours: 0.529

Complex Example from SPLASH-dev

Question: What is the maximum mpg of the cars that had 8 cylinders or that were produced before 1980?
Correct Parse: SELECT mpg FROM cars_data WHERE cylinders = 8 OR year < 1980 ORDER BY mpg DESC LIMIT 1
Wrong Parse: SELECT Max ( T3.horsepower ) FROM model_list AS T1 JOIN car_names AS T2 ON T1.model = T2.model

JOIN cars_data AS T3 ON T2.makeid = T3.id WHERE T1.model = "amc" OR T3.year < 1
Explanation: Step 1: for each row in model list table , find the corresponding rows in car names table and in cars data table

Step 2: find the maximum horsepower of the results of step 1 whose model list ’s model equals amc or year less than 1
Template Feedback: in step 1 , do not use the car names table and model list table . in step 2 , consider the year less than 1980 or

cylinders equals 8 conditions in place of the year less than 1 or model list ’s model equals amc conditions .
find mpg in place of maximum horsepower . find the result with the largest mpg .

Human Feedback: Change horsepower with mpg , model list’s model with cylinders equals 8 and ensure year less than 1980.

Simulated Feedback & Evaluation Results

CWQES replace model list ’s model with cars data ’s cylinders , replace 1 with 8 , find mpg instead of horsepower , remove or year less than 1 .
BLEU: 0.062, BERTScore: 0.860, Ours: 0.379

DQES you should use mpg and cylinders in place of horsepower and model list ’s model respectively . also , year should be less than 1980 .
BLEU: 0.049, BERTScore: 0.869, Ours: 0.410

TQES find mpg instead of horsepower and ensure that cylinders equals 8 or year less than 1980 .
BLEU: 0.016, BERTScore: 0.846, Ours: 0.495

Table 8: Two examples show how our evaluator performs compared to BLEU and BERTScore. In both examples,
our evaluator correctly ranks all three simulated feedback.

Rank Description

1 Strongly
Disagree

The simulated feedback is totally incor-
rect. (e.g. contains only wrong opera-
tions or irrelevant to the edits)

2 Disagree The simulated feedback is partially in-
correct. (e.g. contains both wrong and
correct operations)

3 Neutral The simulated feedback contains all cor-
rect operations, but it is incomplete (par-
tially correct) or contains a lot of (greater
and equals 2) unnecessary operations or
duplicate operations.

4 Agree The simulated feedback contains correct
and complete operations, but it also con-
tains fewer (1) unnecessary operations
or duplicate operations.

5 Strongly
Agree

All operations contained in the simu-
lated feedback are correct, complete,
and can be easily followed and under-
stood. There are no additional duplicate
operations.

Table 9: The human evaluation criterion in a 5-level
Likert Scale.

sentences in an order that is similar to the humans’.

C.3 Case Study of Evaluation Metrics

In this section, we showcase how our evaluator out-
performs BLEU and BERTScore. In Table 8, we
included two examples from our feedback simula-

Model (TQES) Our Evaluator

Trained on SPLASH 0.535
Trained on 20% SPLASH 0.516
Trained on 10% SPLASH 0.491
Trained on 5% SPLASH 0.497

Table 10: Performance of the low-data feedback simula-
tors trained using different amounts of SPLASH. The
evaluation is based on our evaluator.

tor and evaluator. In the easy example, our evalu-
ator suggests equally good for DQES and TQES
simulated feedback, but BERTScore gives a greater
margin between this two simulated feedback and
BLEU score incorrectly gives the CWQES the high-
est score. For the complex example, our evalua-
tor successfully detects the logical inconsistency
in CWQES and TQES settings and gives a rel-
atively lower score than TQES, but both BLEU
and BERTScore failed to estimate the simulated
feedback correctly. Moreover, for both examples,
our feedback simulator generates high-quality feed-
back in the TQES setting. In Figure 5 and 6, we
show the token-level similarity matrix generated
by BERTScore and our evaluator. Our evaluator
generates a sparser and more accurate matrix than
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BERTScore.

C.4 Feedback Simulation in Low-data
Settings

In Table 10, we evaluate feedback simulators
trained in different low-data settings. We evalu-
ate them using our evaluator trained on the full
SPLASH; however, we note that in low-data exper-
iments, the feedback evaluator used to select the
best simulator was trained consistently using the
same small amount of SPLASH data. It is observed
that even when we used only 20% of the SPLASH
training data, the learned feedback simulator can
still present comparable generation quality, which
explains the small gap between error correction
models trained using the full SPLASH and with
our simulated feedback (Figure 4).
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Figure 5: The similarity matrix for easy example shown in Table 8 from BERTScore. The candidate simulated
feedback comes from the TQES setting.
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Figure 6: The similarity matrix for easy example shown in Table 8 from our evaluator. The candidate simulated
feedback comes from the TQES setting.
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�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
3. Experiments, B.2.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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C �3 Did you run computational experiments?
3. Experiments

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
B.1

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
B.1

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
B.1

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
B.1

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
3. Experiments

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
C.2

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
C.2

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.
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