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Abstract
We investigate response generation for multi-
turn dialogue in generative chatbots. Exist-
ing generative models based on RNNs (Recur-
rent Neural Networks) usually employ the last
hidden state to summarize the history, which
makes models unable to capture the subtle vari-
ability observed in different dialogues and can-
not distinguish the differences between dia-
logues that are similar in composition. In this
paper, we propose Pseudo-Variational Gated
Recurrent Unit (PVGRU). The key novelty
of PVGRU is a recurrent summarizing vari-
able that aggregates the accumulated distri-
bution variations of subsequences. We train
PVGRU without relying on posterior knowl-
edge, thus avoiding the training-inference in-
consistency problem. PVGRU can perceive
subtle semantic variability through summariz-
ing variables that are optimized by two ob-
jectives we employ for training: distribution
consistency and reconstruction. In addition,
we build a Pseudo-Variational Hierarchical
Dialogue (PVHD) model based on PVGRU.
Experimental results demonstrate that PVGRU
can broadly improve the diversity and relevance
of responses on two benchmark datasets.

1 Introduction

The structure of natural language discourse is com-
plex and highly variable (Gormley and Tong, 2015;
Chung et al., 2015; Nie et al., 2022); this is es-
pecially true for dialogue. As shown in Figure 1,
examples (a) and (b) have the same dialogue history
but they end with different responses: utterances
ua6 vs. ub6. On the other hand, two dialogues with
semantically similar utterances may express quite
different context meanings. Because of this vari-
ability, there is no simple one-to-one mapping be-
tween dialogue context and response. The mapping
can be one-to-many – as in Figure 1, i.e., different
responses to the same dialogue context – as well
as many-to-one, i.e., different context histories re-
quiring the same response. We observe that the

distribution of a dialogue context (e.g., N a
6 and N b

6

in the figure) is composed of the distribution of its
utterances and the distribution of each utterance is
composed of the distribution of its words. A good
model of word level and utterance level variation
is a key requirement for improving the quality of
responses in dialogue.

One line of research (Henderson et al., 2014;
Shang et al., 2015; Serban et al., 2016; Luo et al.,
2018) employs recurrent neural networks (RNNs)
to model dialogue context. However, standard
RNNs are not well suited for dialogue context vari-
ability (Chung et al., 2015). This is because the in-
ternal transition structure of RNNs is deterministic.
Thus, RNNs cannot effectively model randomness
and variability in dialogue context (Chung et al.,
2015).

Variational mechanism has been shown to be
well suited for modeling variability – from both
theoretical and practical perspectives (Kingma and
Welling, 2014). Methods based on variational
mechanism (Serban et al., 2016; Gu et al., 2019;
Khan et al., 2020; Sun et al., 2021) introduce latent
variables into RNNs to model one-to-many and
many-to-one phenomena in dialogue. Although
these approaches achieve promising results, they
still have defects. First, these methods face the
dilemma that latent variables may vanish because
of the posterior collapse issue (Zhao et al., 2017,
2018; Shi et al., 2020). Variational mechanism can
work only when latent variables with intractable
posterior distributions exist (Kingma and Welling,
2014). Second, the sampled latent variables may
not correctly reflect the relationship between di-
alogue context and response due to the one-to-
many and many-to-one phenomena observed in
dialogue (Sun et al., 2021). Third, posterior knowl-
edge is employed in training while prior knowledge
is used in inference; this causes an inconsistency
problem between training and inference (Shang
et al., 2015; Zhao et al., 2017; Shi et al., 2020).
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VS

a man is making a sandwich while sitting at a dresser 
he gets up and brings the sandwich to … 
can you see the guy ? 
yes, i see one man
what is he doing ?
sitting in chair with sandwich at first.

𝑢𝑢1:
𝑢𝑢2:
𝑢𝑢3:
𝑢𝑢4:
𝑢𝑢5:
𝑢𝑢6:

…

𝑢𝑢1𝑎𝑎 𝑢𝑢𝑖𝑖𝑎𝑎 𝑢𝑢5𝑎𝑎 𝑢𝑢6𝑎𝑎

…𝑢𝑢1𝑏𝑏 𝑢𝑢2𝑏𝑏 𝑢𝑢3𝑏𝑏 𝑢𝑢4𝑏𝑏
…𝑤𝑤1𝑖𝑖 𝑤𝑤2𝑖𝑖 𝑤𝑤𝑛𝑛𝑖𝑖

(a) dialogue a (b) dialogue b

𝒩𝒩5
𝑎𝑎

a man is making a sandwich while sitting at a dresser  
he gets up and brings the sandwich to … 
can you see the guy ? 
yes, i see one man
what is he doing ?
he was sitting on a chair and applying jam on a bread.

𝑢𝑢1:
𝑢𝑢2:
𝑢𝑢3:
𝑢𝑢4:
𝑢𝑢5:
𝑢𝑢6:

…

𝒩𝒩6
𝑎𝑎

∇6𝑎𝑎

…

𝑢𝑢1𝑏𝑏 𝑢𝑢𝑖𝑖𝑏𝑏 𝑢𝑢5𝑏𝑏 𝑢𝑢6𝑏𝑏

𝒩𝒩5
𝑏𝑏
𝒩𝒩6

𝑏𝑏

∇6𝑏𝑏

Figure 1: Overview of dialogue variability. (a) and (b) represent two dialogues a and b from DSTC7-AVSD. The last
utterance is response. N a

t represents the distribution of dialogue a at time step t on utterance level, and N b
t likewise.

▽a
6 denotes the distribution variations caused by ua

6 and ▽b
6 denotes the distribution variations caused by token ub

6.

To tackle these problems, we propose a Pseudo-
Variational Gated Recurrent Unit (PVGRU) com-
ponent based on pseudo-variational mechanism.
PVGRU introduces a recurrent summarizing vari-
able into the GRU. This summarizing variable
can aggregate the accumulated distribution vari-
ations of subsequences. The methods based on
PVGRU can model the subtle semantic differ-
ences between different sequences. First, pseudo-
variational mechanism adopts the idea of latent vari-
ables but does not adopt posterior mechanism (Ser-
ban et al., 2017; Zhao et al., 2017; Park et al., 2018;
Sun et al., 2021). Therefore, PVGRU does not suf-
fer from the posterior collapse issue (Zhao et al.,
2017, 2018; Shi et al., 2020). Second, we design
consistency and reconstruction objectives to op-
timize the recurrent summarizing variable in PV-
GRU; this ensures that the recurrent variable can re-
flect the semantics of dialogue context on both the
word level and the utterance level. The consistency
objective makes the distribution of the incremen-
tal information consistent with the corresponding
input at each time step. Third, we guarantee the
consistency between training and inference since
we do not employ posterior knowledge when opti-
mizing the summarizing variable.

Our proposed method avoids the problems
caused by variational optimization and can model
the diversity problem in dialogue. For instance
in Figure 1, examples (a) and (b) have the same
dialogue history but different responses. N a

6 and
N b

6 can learn the distribution differences caused
by ua6 and ub6. Simultaneously, semantic recon-
struction can enhance the model’s perception of
semantic changes, which in turn can strengthen

the distribution differences caused by semantic
changes. Although the example only shows di-
versity at the utterance level, similar diversity is-
sues exist at the word level. Therefore, we build a
Pseudo-Variational Hierarchical Dialogue model
(PVHD) based on PVGRU to model both word
level and utterance level variation.

To summarize, we make the following contribu-
tions:
• We analyze the reasons for one-to-many and

many-to-one issues from high variability of dia-
logue corpus and propose PVGRU with a recur-
rent summarizing variable to model the variabil-
ity of dialogue sequences.

• We propose to optimize the recurrent summariz-
ing variable using consistency and reconstruc-
tion objectives, which guarantees that the sum-
marizing variable can reflect the semantics of the
dialogue context and maintain the consistency
between training and inference processes.

• We propose the PVHD model based on PVGRU.
PVHD significantly outperforms strong baselines
with RNN and Transformer architectures on two
benchmark datasets. The code including base-
lines for comparison is available on Github1.

2 RELATED WORK

2.1 Dialogue Generation

As an important task in Natural Language Process-
ing, dialogue generation systems aim to generate
fluent and informative responses based on the di-
alogue context (Ke et al., 2018). Early dialogue
generation models (Henderson et al., 2014; Shang

1https://github.com/misonsky/PVHD
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et al., 2015; Luo et al., 2018) usually adopt the
simple seq2seq (Sutskever et al., 2014) framework
to model the relationship between dialogue context
and response in the manner of machine translation.
However, the vanilla seq2seq structure tends to gen-
erate dull and generic responses. To generate infor-
mative responses, hierarchical structures (Serban
et al., 2016; Song et al., 2021; Liu et al., 2022) and
pre-training techniques (Radford et al., 2019; Lewis
et al., 2020; Zhang et al., 2020) are employed to
capture the hierarchical dependencies of dialogue
context. The results of these methods do not meet
expectations (Wei et al., 2019).

The main reason is that there are one-to-many
and many-to-one relationships between dialogue
context and responses. Modeling the multi-
mapping relationship is crucial for improving the
quality of the dialog generation. In this paper, we
propose a PVGRU component by introducing re-
current summarizing variables into GRU, which
can model the varieties of dialogue context.

2.2 Variational Mechanism

Variational mechanisms enable efficient working
in directed probabilistic models when latent vari-
ables with intractable posterior distributions exist-
ing (Kingma and Welling, 2014). Variational mech-
anisms can learn the latent relationship between
dialogue context and responses by introducing la-
tent variables. Most existing methods (Serban et al.,
2017; Zhao et al., 2017; Bao et al., 2020) based on
variational mechanisms employ prior to approxi-
mate true posterior probability. These methods not
only encounter the problem of posterior collapse is-
sue but also the problem of inconsistency between
training and inference (Zhao et al., 2018; Shi et al.,
2020). In this paper, we employ consistency and
reconstruction objectives to optimize the summariz-
ing variable different from variational mechanism,
which can model the multi-mapping phenomena in
dialogues.

3 Preliminary

In this paper, we employ GRU (Gated Recurrent
Unit) (Cho et al., 2014) as the implementation of
recurrent neural network (RNN). The reset gate rt
is computed by:

rt = σ(Wrxt +Urht−1) (1)

where σ is the logistic sigmoid function. xt rep-
resents the input at time step t and ht−1 denotes

the hidden state at time step t-1. Wr and Ur are
parameter matrices which are learned. Similarly,
the updated gate zt is defined as:

zt = σ(Wzxt +Uzht−1) (2)

The hidden state ht at the time step t is then com-
puted by:

ht = ztht−1 + (1− zt)h̃t (3)

h̃t = ϕ(Wxt +U(rt ⊙ ht−1)) (4)

where ϕ(·) is the tanh function, W and U are
weight matrices which are learned. GRU is consid-
ered as a classic implementation of RNN, which is
widely employed in generative tasks.

4 Methodology

4.1 Pseudo-variational Gated Recurrent Unit
As shown in Figure 1, it is difficult to distinguish
the semantics of similar dialogue contexts only re-
lying on the last hidden state representations. The
internal transition structure of RNNs is determin-
istic, which can not model variability observed in
dialogues and tends to generate dull and generic re-
sponses. Drawing the inspiration from variational
recurrent neural network (VRNN) (Chung et al.,
2015), our proposed PVGRU explicitly models the
variability through introducing a recurrent summa-
rizing variable, which can capture the variations
of dialogue context. VRNN based on variational
mechanism employs latent variables paying atten-
tion to the variety between different words. Differ-
ent from VRNN, PVGRU maintains a summarizing
variable unit that can summarize the accumulated
variations of the sequence.

As shown in Figure 2 (a), PVGRU introduces a
recurrent summarizing variable v based on GRU.
The recurrent summarizing variable v is obtained
based on the incremental information of hidden
state h and the previous state of summarizing vari-
able. Specially, the summarizing variable v0 is
initialized with standard Gaussian distribution (i.e.,
Figure 3 (a)). We assume the input is xt at the time
step t, the reset gate rt is rewrited as:

rt = σ(Wrxt +Urht−1 + Vrvt−1) (5)

where Wr, Ur and Vr are parameter matrices, and
vt−1 is the previous summarizing variable state.
Similarly, the update gate zt is computed by:

zt = σ(Wzxt +Uzht−1 + Vzvt−1) (6)
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Figure 2: Overview of PVHD based on PVGRU. (a) is the overview of PVGRU, where RE stands for refactoring
process and the "sam" represents sampling process. (b) is graphical representation of the PVHD.
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Figure 3: Schematic diagram of each operation of PV-
GRU autoregression.

We introduce a gate gt for summarizing variable
factor, which is defined as follows:

gt = σ(Wgxt +Ught−1 + Vgvt−1) (7)

The updated gate of summarizing factor controls
how much information from the previous variable
will carry over to the current summarizing variable
state. Under the effect of gt, the h̃t follows the
equation:

h̃t = ϕ(Wxt +U(rt ⊙ ht−1) + V (gt ⊙ vt−1)) (8)

Then the PVGRU updates its hidden state ht using
the same recurrence equation as GRU. The sum-
marizing variable vt at the time step t is defined
as:

ṽt ∼ N (µt, σt), [µt, σt] = φ(ht − ht−1) (9)

where φ(·) represents a nonlinear neural network
approximator and ṽt denotes the variations be-
tween time t and time t− 1. The variations across
subsequent up to time t is defined as:

vt = gt ⊙ ṽt + (1− gt)⊙ vt−1 (10)

Figure 3 (b) demonstrates the schematic diagram of
the recurrent process of PVGRU described above.
We can observe that PVGRU does not adopt pos-
terior knowledge, which can guarantee the consis-
tency between training and inference.

4.2 Optimization Summarizing Variable

Based on but different from traditional variational
mechanism, we design the consistency and recon-
struction objectives to optimize the summarizing
variable. The consistency objective ensures that the
distribution of the information increment of hidden
state at each time step is consistent with the input.
For example, we will keep the distribution of in-
formation increment ht − ht−1 at time t consistent
with xt. The consistency objective function at time
step t is denoted as:

ℓtc = KL(p(xt)||p(ht − ht−1))

= KL(p(xt)||ṽt)
(11)

where KL(·) represents Kullback-Leibler diver-
gence (Barz et al., 2018) and p(·) represents the
distribution of the vector. We employ "sam" to
represent this process of distribution sampling in
Figure 2 (a).

The reconstruction optimization objective en-
sures that the summarizing variable can correctly
reflect the semantic of the dialogue context from
the whole perspective, which requires PVGRU re-
constructs the sequence information from the accu-
mulated distribution variable. The reconstruction
loss at time step t is described as:

ℓtr(vt,ht) =

{
1
2
|f(vt)− ht|, |vt − ht| ≤ δ

δ|f(vt)− ht| − 1
2
δ2, |vt − ht| > δ

(12)

where f(·) stands for decoder using MLP, δ is a hy-
perparameter and | · | represents the absolute value.
We employ "RE" to represent the reconstruction
process in Figure 2 (a). Figure 3 (c) demonstrates
the schematic diagram of optimizing summariz-
ing variable. Reconstruction and consistency ob-
jectives ensure that summarizing variable can cor-
rectly reflect the semantics of the dialogue context.
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Figure 4: Kullback-Leibler loss variation trend graph
on DailyDialog (up) and DSTC7-AVSD (down). The
abscissa represents the number of training iterations.
KL represents the Kullback-Leibler loss term.

4.3 Hierarchical Pseudo-variational Model
As shown in Figure 1, the dialogues contain
word-level and sentence-level variability. We fol-
low previous studies (Serban et al., 2016, 2017;
Huang et al., 2021) using hierarchical structure
to model dialogue context. Figure 2 (b) shows
the structure of PVHD we proposed. PVHD
mainly consists of three modules: (i) Encoder
PVGRU; (ii) Context PVGRU; (iii) Decoder PV-
GRU. The encoder PVGRU is responsible for
capturing the word-level variabilities and map-
ping utterances{u1,u2, ...,um} to utterance vec-
tors {hu

1 ,h
u
2 , ...,h

u
m}. At the same time, vt records

the accumulated distribution variations of the sub-
sequence at time step t. The context PVGRU takes
charge of capturing the utterance-level variabili-
ties. The last hidden state of the context PVGRU
represents a summary of the dialogue. The last
summarizing variable state of the context PVGRU
stands for the distribution of dialogue. The decoder
PVGRU takes the last states of context PVGRU
and produces a probability distribution over the
tokens in the response {y1, y2, ..., yn}. The gen-
eration process of training and inference can be
formally described as:

p(y≤T ,v≤n) =
n∏

t=1

p(yt|y<t,v<t) (13)

The log-likelihood loss of predicting reponse is
formalized as:

ℓtll = logp(yt|y<t,v<t) (14)

The total loss can be written as:

ℓtotal = E
T∑

t=1

(ℓtll + ℓtr + ℓtc) (15)

5 Experiments

For descriptions of the datasets, please refer to
the Appendix A.1. Please refer to Appendix A.2

for implementation details. In Appendix A.5 we
show the ablation results of two objective func-
tions, showing the effectiveness of the objective
functions. In order to evaluate the effectiveness of
experimental results, we performed a significance
test in Appendix A.6. We can observe that the p-
values of PVHD are less than 0.05 compared with
other models. In addition, we present case studies
in Appendix A.7 and discuss model limitations in
Appendix 7, respectively.

5.1 Baselines

The automatic evaluation metrics is employed to
verify the generality of PVGRU, we select the fol-
lowing RNN-based dialogue generation models as
baselines: seq2seq: sequence-to-sequence model
GRU-based with attention mechanisms (Bahdanau
et al., 2015). HRED: hierarchical recurrent
encoder-decoder on recurrent neural network (Ser-
ban et al., 2016) for dialogue generation. HRAN:
hierarchical recurrent neural network dialogue gen-
eration model based on attentiom mechanism (Xing
et al., 2018). CSG: hierarchical recurrent neural
network model using static attention for context-
sensitive generation of dialogue responses (Zhang
et al., 2018).

To evaluate the performance of the PVHD, we
choose dialogue generation model based on varia-
tional mechanism as baselines: HVRNN: VRNN
(Variational Recurrent Neural Network) (Chung
et al., 2015) is a recurrent version of the VAE.
We combine VRNN (Chung et al., 2015) and
HRED (Serban et al., 2016) to construct the
HVRNN. CVAE: hierarchical dialogue generation
model based on conditional variational autoen-
coders (Zhao et al., 2017). We implement CVAE
with bag-of-word loss and KL annealing technique.
VAD: hierarchical dialogue generation model intro-
ducing a series of latent variables (Du et al., 2018).
VHCR: hierarchical dialogue generation model us-
ing global and local latent variables (Park et al.,
2018). SepaCVAE: self-separated conditional vari-
ational autoencoder introducing group information
to regularize the latent variables (Sun et al., 2021).
SVT: sequential variational transformer augment-
ing deocder with a sequence of fine-grained la-
tent variables (Lin et al., 2020). GVT: global
variational transformer modeling the discourse-
level diversity with a global latent variable (Lin
et al., 2020). PLATO: dialogue generation based
on transformer with discrete latent variable (Bao
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Models Datasets Types PPL BLEU-1/2 Rouge-L Dist-1 Dist-2 Embed A/E/G

seq2seq
Daily GRU 132.55 27.78/22.59 35.36 12.18 47.69 79.40/80.02/63.53

PVGRU 130.80 28.33/22.48 36.55 14.41 48.22 80.77/81.26/63.96

DSTC7 GRU 112.89 25.52/15.29 26.34 4.34 22.31 79.31/84.40/60.25
PVGRU 111.27 26.66/17.18 27.72 5.77 24.68 80.56/85.65/60.48

HRED
Daily GRU 127.66 28.90/23.52 34.63 13.00 45.55 79.53/81.77/63.31

PVGRU 111.31 32.19/25.42 35.28 15.33 49.93 81.77/83.89/63.84

DSTC7 GRU 115.72 27.30/17.86 29.51 5.12 24.63 79.18/84.78/61.71
PVGRU 110.25 29.87/20.03 31.87 6.54 31.77 81.87/86.68/61.91

HRAN
Daily GRU 121.63 30.36/20.01 35.68 12.66 43.77 80.42/84.56/63.44

PVGRU 120.77 30.97/23.76 36.52 13.76 44.86 81.05/85.58/63.35

DSTC7 GRU 111.66 27.74/17.88 30.68 4.64 17.68 80.31/82.33/62.70
PVGRU 110.75 29.58/19.68 32.34 5.33 19.62 81.86/85.34/63.34

CSG
Daily GRU 122.75 28.89/24.55 36.74 11.11 40.39 79.65/83.36/63.29

PVGRU 122.12 30.04/26.67 38.39 13.21 42.44 80.83/84.55/65.95

DSTC7 GRU 111.27 27.62/18.24 28.32 3.07 12.13 79.55/82.19/62.27
PVGRU 110.82 29.74/20.55 31.02 5.13 15.44 80.53/84.91/63.18

Table 1: Performance comparison of models based on GRU and PVGRU on on test set of DailyDialog (Daily) and
DSTC7-AVSD (DSTC7). All values are multiplied by 100.

et al., 2020). Different from original implemen-
tation, we do not use knowledge on the DSTC7-
AVSD. DialogVED: a pre-trained latent variable
encoder-decoder model for dialog response gener-
ation (Chen et al., 2022). We initialize the model
with the large version of DialogVED.

5.2 Automatic & Human Evaluation

Please refer to Appendix A.3 and Appendix A.4
for details of automatic evaluation metrics. Some
differences from previous works are emphasized
here. We employ improved versions of BLEU and
ROUGE-L, which can better correlate n-gram over-
lap with human judgment by weighting the relevant
n-gram compared with original BLEU (Chen and
Cherry, 2014). Although using the improved ver-
sions of BLEU and ROUGE-L will result in lower
literal values on the corresponding metrics, this
does not affect the fairness of the comparison. We
adopt the implementation of distinct-1/2 metrics
following previous study (Bahuleyan et al., 2018).
The source code for the evaluation method can be
found on the anonymous GitHub.

5.3 Generality of PVGRU

Table 1 reports the automatic evaluation perfor-
mance comparison of the models using GRU and
PVGRU. We can observe that the performance
of the models based on PVGRU is higher than
that based on GRU. Specifically, on DailyDialog
dataset, the average performance of models based
on PVGRU is 0.63% to 16.35% higher on PPL,
1.40% to 1.92% higher on BLEU-1, 1.08% to

（a） （b）

（c） （d）

Figure 5: t-SNE visualization of the summarizing vari-
able on word-level ((a) and (c)) and utterance-level (b)
and (d) on DailyDialog (up) and DSTC7-AVSD (down).

2.02% higher on Rouge-L, 1.10% to 2.33% higher
on Dist-1 and 1.36% to 1.62% higher on aver-
age embedding compared with models based on
GRU. On DSTC7-AVSD dataset, the performance
of models based on PVGRU is 0.45% to 5.47%
higher on PPL, 1.14% to 2.57% higher on BLEU-1,
1.38% to 2.7% higher on Rouge-L, 0.69% to 2.06%
higher on Dist-1 and 0.69% to 2.69% higher on av-
erage embedding compared with models based on
GRU. The results demonstrate that PVGRU can be
widely used to sequence generation models based
on RNN. The internal transition structure of GRU
is entirely deterministic. Compared with GRU, PV-
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Datasets Backbone Models PPL BLEU-1/2 Rouge-L Dist-1 Dist-2 Embed A/E/G

Daily

Transformer

SVT 114.54 27.89/21.26 28.87 11.94 44.03 77.67/83.39/60.14
GVT 115.05 25.54/18.46 26.87 12.43 45.43 75.90/83.16/56.42

PLATO 110.68 30.77/24.46 33.95 13.41 47.67 79.15/84.15/60.09
DialogVED 112.87 31.22/24.96 33.16 12.94 45.44 78.36/83.73/60.25

RNN

HVRNN 124.94 31.03/23.99 34.83 14.32 49.47 79.55/83.75/62.03
CVAE 126.38 26.34/20.43 35.83 13.55 49.18 79.70/83.45/63.26
VAD 134.06 30.32/24.34 36.63 13.85 46.20 80.97/84.09/63.87

VHCR 115.83 29.80/24.35 34.45 13.66 49.50 79.01/81.27/62.35
SepaCVAE 111.33 25.31/22.41 33.21 12.08 36.56 80.26/81.81/63.51

PVHD 111.31 32.19/25.42 35.28 15.33 49.93 81.77/83.89/63.84

DSTC7

Transformer

SVT 116.58 25.34/14.28 25.47 3.67 15.75 78.88/82.87/56.87
GVT 115.33 27.62/15.76 26.71 3.14 17.49 77.56/84.07/57.46

PLATO 108.88 30.16/18.58 30.69 6.22 29.39 80.05/85.71/58.22
DialogVED 112.09 28.89/13.69 29.22 6.39 26.78 79.36/85.73/60.25

RNN

HVRNN 111.55 26.71/18.12 29.44 5.52 21.23 79.76/86.51/60.11
CVAE 112.40 26.47/16.37 28.85 5.35 26.01 80.96/86.88/60.68
VAD 122.37 26.87/20.26 27.07 6.00 30.46 79.24/86.41/58.37

VHCR 123.81 26.63/15.81 28.21 5.64 29.83 79.71/86.65/57.56
SepaCVAE 128.47 26.59/18.94 26.04 5.53 28.50 78.85/86.31/59.06

PVHD 110.25 29.87/20.03 31.87 6.54 31.77 81.07/86.68/61.91

Table 2: Performance comparison of PVHD and other models based on variational mechanism. Bold indicates
the best result, and underline indicates the second best result. The first and second groups of models belong to the
Transformer-based models and RNN-based models, respectively.

Models
Datasets

DailyDialog DSTC7-AVSD
D R F D R F

SVT 0.920 0.795 1.752 0.973 1.115 1.271
GVT 0.950 0.769 1.780 0.950 1.046 1.361
PLATO 1.110 0.847 1.783 1.087 1.437 1.742
DialogVED 1.090 0.856 1.830 1.010 1.372 1.540
HVRNN 1.000 0.780 1.850 1.041 1.415 1.785
CVAE 1.080 0.765 1.450 1.025 1.085 1.100
VAD 1.015 0.854 1.235 0.990 1.215 1.400
VHCR 0.895 0.835 1.570 0.975 1.250 1.600
SepaCVAE 1.020 0.695 1.230 1.040 0.715 0.810
PVHD 1.114 0.855 1.840 1.145 1.445 1.520

Table 3: Human evaluation results on test set. D, R, F
represent diversity, relevance and fluency, respectively.

GRU introduces a recurrent summarizing variable,
which records the accumulated distribution vari-
ations of sequences. The recurrent summarizing
variable brings randomness to the internal transi-
tion structure of PVGRU, which makes model per-
ceive the subtle semantic variability.

5.4 Automatic Evaluation Results & Analysis

Table 2 reports the results of automatic evalua-
tion of PVHD and other baselines on DailyDialog
and DSTC7-AVSD datasets. Compared to RNN-
based baselines based on variational mechanism,
PVHD enjoys an advantage in performance. On
DailyDialog datasets, the performance of PVHD is
1.16% higher on BLEU-1, 0.45% higher on Rouge-
L, 1.01% higher on Dist-1 and 2.22% higher on

average embedding compared to HVRNN. As com-
pared to the classic variational mechanism mod-
els CVAE, VAD and VHCR, PVHD has a advan-
tage of 0.02% to 22.75% on PPL, 1.87% to 6.88%
higher on BLEU-1, 1.48% to 3.25% higher on Dist-
1, 0.43% to 13.37% higher on Dist-2 and 0.80%
to 2.76% higher on average embedding. We can
observe similar results on DSTC7-AVSD. PVHD
enjoys the advantage of 1.3% to 18.22% on PPL,
3.00% to 3.40% higher on BLEU-1, 0.54% to
1.19% higher on Dist-1, 1.31% to 5.76% higher
on Dist-2 and 0.11% to 2.22% higher on average
embedding compared with these classic variational
mechanism models.

The main reason for the unimpressive perfor-
mance of RNN-based baselines is that these models
suffer from latent variables vanishing observed in
experiments. As shown in Figure 4, the Kullback-
Leibler term of these models losses close to zero
means that variational posterior distribution closely
matches the prior for a subset of latent variables,
indicating that failure of the variational mecha-
nism (Lucas et al., 2019). The performance of
SepaCVAE is unimpressive. In fact, the perfor-
mance of SepaCVAE depends on the quality of
context grouping (referring to dialogue augmen-
tation in original paper (Sun et al., 2021)). Sepa-
CVAE will degenerate to CVAE model if context
grouping fails to work well, and even which will
introduce wrong grouping noise information result-
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ing in degrade performance. As shown in Figure 4,
the Kullback-Leibler term of SepaCVAE losses is
at a high level, which demonstrates that the prior
for a subset of latent variables cannot approximate
variational posterior distribution.

Compared with Transformer-based baselines,
PVHD still enjoys an advantage on most metrics,
especially the distinct metric. GVT introduces la-
tent variables between the whole dialogue history
and response, which faces the problem of latent
variables vanishing. SVT introduces a sequence
of latent variables into the decoder to model the
diversity of responses. But it is debatable whether
latent variables will destroy the fragile sequence
perception ability of the transformer, which will
greatly reduce the quality of the responses. Train-
ing the transformer from scratch instead of using
a pretrained model is another reason for the in-
ferior performance of SVT and GVT. Compared
to DialogVED and PLATO, PVHD achieves the
best performance on most metrics. The main rea-
son is that pseudo-variational approaches do not
depend on posteriors distribution avoiding opti-
mization problems and the recurrent summariz-
ing variable can model the diversity of sequences.
Overall, PVHD has the most obvious advantages
in diversity, which demonstrates the effectiveness
of the recurrent summarizing variable. Another
reason is that Transformer-based baselines includ-
ing SVT, GVT, PLATO and DialogVED connect
all the dialogue history utterances into a consecu-
tive sequence. They can only model the diversity
between entire dialogue histories and responses.
Coarse-grained modeling is the reason for poor
model performance.

Although transformers are popular for genera-
tion task, our research is still meritorious. First,
transformer models usually require pre-training on
large-scale corpus while RNN-based models usu-
ally do not have such limitations. It is debatable
whether transformer models training from scratch
under conditions where pre-training language mod-
els are unavaliable can achieve the desired perfor-
mance if downstream task does not have enough
corpus. Second, the parameter amount of the RNN-
based model is usually smaller than that of the
transformer-based model. The parameter sizes of
PVHD on the DailyDialog and DSTC7-AVSD are
29M and 21M, respectively. The number of pa-
rameters for PLATO and DialogVED is 132M and
1143M on two datasets, respectively. Compared

to PLATO and DialogVED, the average number of
parameters of PVHD is 5.28x and 45.72x smaller,
respectively.

5.5 Human Evaluation Results & Analysis
We conduct human evaluation to further confirm
the effectiveness of the PVHD. To evaluate the
consistency of the results assessed by annotators,
we employ Pearson’s correlation coefficient (Sedg-
wick, 2012). This coefficient is 0.35 on diversity,
0.65 on relevance, and 0.75 on fluency, with p<
0.0001 and below 0.001, which demonstrates high
correlation and agreement. The results of the hu-
man evaluation are shown in Table 3. Compared
to RNN-based baselines, PVHD has a significant
advantage in relevance and diversity. Specifically,
PVHD enjoys the advantage of 11.40% on diversity
and 16.00% on relevance compared to SepaCVAE
on DailyDialog. On DSTC7-AVSD, PVHD has
a advantage of 10.50% on diversity and 73.00%
on relevance compared to SepaCVAE. Compared
to transformer-based baselines, although PVHD
is sub-optimal in some metrics, it enjoys the ad-
vantage in most metrics, especially diversity. In
terms of fluency, PVHD is only 1.00% lower than
HVRNN and is much better that other baselines
on DailyDialog. However, the fluency of PVHD is
26.50% lower compared with HVRNN and 8.00%
lower compared with VHCR on DSTC7-AVSD.
We argue that introducing a recurrent summary
variable in the decoder increases the randomness
of word generation, which will promote the diver-
sity of the responses with a side effect of fluency
reduction.

5.6 Effectiveness of Summarizing Variables
We further analyze the effectiveness of PVHD on
summarizing variables. Figure 5 demonstrates the
visualization of word-level and utterance-level sum-
marizing variables on test set of DailyDialog and
DSTC7-AVSD datasets. We can observe that both
datasets exhibit high variability characteristic on
word-level and utterance-level. Specifically, the
summarizing variables on word-level show obvious
categorical features, which indicates that a subse-
quence may have multiple suitable candidate words.
Moreover, the summarizing variables on utterance-
level also exhibit impressive categorical features,
which confirms that there is a one-to-many issue in
the dialogue. These phenomena make dialogue gen-
eration different from machine translation where
unique semantic mapping exists between source
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and target language.

6 Conclusion

We analyze the reasons for one-to-many and many-
to-one issues from high variability of dialogue. We
build PVHD based on proposed PVGRU compo-
nent to model the word-level and utterance-level
variation in dialogue for generating relevant and
diverse responses. The results demonstrate that
PVHD even outperforms pre-trained language mod-
els on diversity metrics.

7 Limitations

Although our work can effectively model the vari-
ability issue in dialogue, we acknowledge some
limitations of our study. Firstly, our study can work
well on the approaches based on RNN, but cannot
be employed to sequence models based on Trans-
former, which limits the generality of our approach.
The reasons we analyze are as follows.

Transformer is not a good architecture for fine-
grained diversity. The diversity of dialogue in-
cludes three granularities of discourse level, ut-
terance level and word level. To model diversity,
models will be required to utilize the representation
at time t and the relationship between the represen-
tation at time t and time t+1 to determine the repre-
sentation at time t+1. Relationships are computed
step by step. If we only consider discourse-level
diversity, our approach and variational mechanisms
are easily transferable to Transformer architectures.
Because we can use the Transformer model to en-
code the entire historical dialogue sequence. La-
tent variables or summarizing variables only exist
between the entire historical sequence and the re-
sponses. This will not destroy the parallel structure
of the Transformer. if we employ a Transformer
to model diversity at the utterance and word granu-
larity, this will seriously damage the parallelism of
the Transformer.

There are great limitations in the variational
transformer models. The transformer and varia-
tional thinking is not a good match, which leads to
less relevant research. The Transformer baselines
we compared in the manuscript (i.e. SVT, GVT,
PLATO and DialogVED) cover most of the cur-
rent transformer models that combine variations.
Although SVT, GVT, PLATO and DialogVED in-
corporate variational ideas, these models connect

all the dialogue history utterances into a consecu-
tive sequence. It is inadvisable to model the fine-
grained diversity relationship in a parallel structure.

Secondly, although our methods can improve the
diversity and relevence of responses, there are still
gaps in fluency compared with other baselines.
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Models PPL BLEU-1 BLEU-2 Rouge-L Dist-1 Dist-2 Embed A Embed E Embed G

PVHD 111.31 32.19 25.42 35.28 15.33 49.93 81.77 83.89 63.84
-RE 127.73 29.81 23.01 29.88 15.67 49.87 80.72 83.89 61.33
-CO 126.91 31.19 24.49 33.27 12.44 48.34 81.05 83.56 61.52

PVHD 110.25 29.87 20.03 31.87 6.54 31.77 81.87 86.68 61.91
-RE 115.78 24.01 13.34 24.33 7.42 30.96 79.06 85.23 58.03
-CO 119.23 28.28 18.68 30.78 5.89 27.47 80.36 86.88 61.06

Table 4: Ablation experiments of the loss module on test set of DailyDialog (up) and DSTC7-AVSD (down).

Context: Jenny, what’s wrong with you? Why do you keep weeping like that? Mary told me that she had seen you
with John last night. I got to know the fact that you are playing the field.

Gold: honey, cross my heart, i’v never looked at another woman since the first day i set
my eyes on you! believe me, that’s the truth.

SVT: Honey, cross my heart, I’v never looked at another woman since the truth.
GVT: I’v never looked at another woman since the first day UNK.
SepaCVAE: i know how you really well.
DialogVED: i’m sorry, but i can’t let you do that.
PVHD: actually, i’v not looked at another woman at all because the first day i set my eyes on you! believe me.

Context: he turns his cellphone light on to help him see to screw the knob back into the dresser drawer.
does he end up fixing it correctly? yes, he screws the knob back on correctly. does he take
anything our of the drawer? no he does not open the drawer, only fixes it.

Gold: he interacts with the computers after fixing the knob he simply stands up and begins to leave the room.
SVT: he appears to be carrying something.
GVT: no, he does not go to the computer.
SepaCVAE: no, he does not move from his computer.
DialogVED: no, he does not touch the computer.
PVHD: no, he does not interact with the computer at all.

Table 5: Examples of responses generated by the baselines. Gold represents the standard response provided by the
dataset. UNK stands for unknown token.

Item SepaCVAE SVT GVT PLATO DialogVED

p-value 0.0319 0.0107 0.0093 0.0032 0.0246

p-value 0.0064 0.0475 0.0465 0.0080 0.0447

Table 6: Results of significance test of PVHD compared to other baselines on DailyDialog (up) and DSTC7-AVSD
(down).

A Appendix

A.1 Datasets

To evaluate the performance of our proposed
method, comprehensive experiments have been car-
ried out on two publicly available datasets. Daily-
Dialog (Li et al., 2017b) is a high-quality multi-turn
dialogue dataset about daily life, which consists of
11,118 context-response pairs for training, 1,000
pairs for validation, and 1,000 pairs for testing. In
the experiment we abbreviate it as Daily. DSTC7-
AVSD (Alamri et al., 2019), short for Audio Visual
Scene-aware Dialog of the DSTC7 challenge, is
a multi-turn dialogue dataset from social media,
which consists of 76,590 context-response pairs
for training, 17,870 pairs for validation, and 1,710

pairs for testing. DSTC7-AVSD provides two avail-
able options of knowledge utilization: (i) textual
knowledge including video’s caption and summary.
(ii) multi-modal knowledge including text, audio
and visual features. In this paper, we employ tex-
tual knowledge. In the experiment we abbreviate it
as DSTC7.

A.2 Implementation Details

We implement our model and baselines using Ten-
sorflow 2 and train baselines on a server with RTX
8000 GPU (48G). The dimension of word embed-
dings is set 512. We consider at most 10 turns of
dialogue context and 50 words for each utterance.
The encoder adopts bidirectional structure and the
decoder uses unidirectional structure. The hidden
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size of bidirectional encoder and bidirectional en-
coder is 1024 for VHCR, and other models are
set 512. The size of latent variables for HVRNN,
CVAE, VHCR, VAD, and SepaCVAE is 512. The
size of summarizing variables for PVHD is 512.
We set the number of encoder layers to 2 and the
decoder layers to 1 for HVRNN, CVAE, VHCR,
VAD, SepaCVAE and PVHD. The number of en-
coders and decoders are 4 for SVT and GVT. The
head number of attention for SVT and GVT is 4.
The batch size of VHCR is 32, and other models
are 128. The init learning rate of HVRNN, CVAE,
VAD, SepaCVAE, SVT, GVT and PVHD is set to
0.001. The learning rate of VHCR is set to 5e-4
and set to 3e-4 for DialogVED. We set the dropout
rate of DialogVED to 0.1 and other baselines do
not employ dropout trick. Adam (Kingma and Ba,
2015) is utilized for optimization. The adam pa-
rameters beta1 and beta2 are set to 0.9 and 0.999,
respectively. The maximum epoch is set to 100.
Beam search is used to generate responses for eval-
uation. The beam size is set 5. The values of hyper-
parameters described above are all fixed using the
validation set.

A.3 Automatic Evaluation Metrics
We employ both automatic and human evalua-
tions to assess the performance of compared meth-
ods. The automatic evaluation mainly includes
the following metrics: BLEU (Yang et al., 2018)
evaluates the n-gram co-occurrence between gen-
erated response and target response. ROUGE-
L (Yang et al., 2018) evaluates the overlap of the
longest common subsequences between generated
response and the target response. Distinct-1/2 (Li
et al., 2016) measures the generated response di-
versity, which is defined as the number of distinct
uni-grams / bi-grams divided by the total amount
of generated words. PPL (Perplexity) evaluates the
confidence of the generated response. The lower
PPL score, the higher confidence for generating
responses. Embedding-based metrics (Average,
Exterma and Greedy) measure the semantic rel-
evance between generated response and target re-
sponse (Liu et al., 2016; Sedoc et al., 2019; Xu
et al., 2018b).

A.4 Human Evaluation
Following the work of (Sun et al., 2021; Li et al.,
2017a; Xu et al., 2018a), we divide six crowd-
sourced graduate students into two groups to eval-
uate the quality of generated responses for 100

randomly sampled input contexts, respectively. We
request annotators to rank the generated responses
with respect to three aspects: fluency, diversity, and
relevance. Fluency measures whether the gener-
ated responses are smooth or grammatically cor-
rect. Diversity evaluates whether the generated re-
sponses are informative, rather than generic and re-
peated information. Relevance evaluates whether
the generated responses are relevant to the dialogue
context. The average scores of the two groups is
taken as the final score.

A.5 Ablation Study

We conduct ablation experiments on the proposed
loss modules. Table 4 reports the results of the
ablation experiments of PVHD on DailyDialog and
DSTC7-AVSD. -RE removes the reconstruction
loss. -CO removes the consistency loss. The re-
sults demonstrate that our optimization objectives
are effective. We can observe that the reconstruc-
tion loss can improve the BLEU-1/2 and Rouge-L.
The consistency loss can improve Dist-1/2 met-
rics at the the expense of BLEU-1/2 and Rouge-L
metrics. We believe that the consistency loss can
ensure the consistency between the incremental in-
formation and the input at each time step. There
may be multiple candidate tokens following the
same distribution, which increases the diversity of
generated responses. The reconstruction loss can
make the summarizing variable recording the ac-
cumulated distribution of subsequence reflect the
semantic information of dialogue context correctly,
which will reduce the randomness of the generation
process by limiting candidates that do not conform
to sequence semantics.

A.6 Significance Testing

To evaluate the reliability of the PVHD results, we
performe multiple significance tests. Table 6 (in
Appendix A) reports the results of the significance
test for automatic evaluation. We can observe that
the p-values of PVHD are less than 0.05 compared
with other models. Although the results of PVHD
is not optimal in some metrics, the significance test
demonstrates that results of PVHD are statistically
significantly different from other models. In other
words, the performance advantage of PVHD is sta-
tistically reliable and not an accident caused by
random factors.
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A.7 Case Study
To further dissect the quality of PVHD, several
examples of generated responses are provided in
Table 5. Although DialogVED, SVT, GVT can
generate relevant responses, PVHD can produce
higher quality responses in comparison. Specifi-
cally, for the first example, the responses generated
by other models are contextual except for Sepa-
CVAE. The response generated by DialogVED is
more diffuse than gold response, but response gen-
erated by PVHD is more informative and possesses
a different sentence pattern and different wording
than gold response to some extent. We can observe
the similar case for the second example. We believe
that this is mainly due to the capture of variability
of corpus by summarizing variable, which enables
the model to identify similar sentence patterns and
words, and generate diverse responses.
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