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Abstract

This work explores the feasibility of eliciting
knowledge from language models (LMs) to de-
code symbolism, recognizing something (e.g.,
roses) as a stand-in for another (e.g., love). We
present our evaluative framework, Symbolism
Analysis (SymbA), which compares LMs (e.g.,
RoBERTa, GPT-J) on different types of symbol-
ism and analyzes the outcomes along multiple
metrics. Our findings suggest that conventional
symbols are more reliably elicited from LMs
while situated symbols are more challenging.
Results also reveal the negative impact of the
bias in pre-trained corpora. We further demon-
strate that a simple re-ranking strategy can mit-
igate the bias and significantly improve model
performances to be on par with human perfor-
mances in some cases.

1 Introduction

Symbolism is an important literary device that
helps to persuade ideas concisely (Symons, 2014).
A system that can decode symbolism should rec-
ognize that one item (e.g., a baby) is a stand-in for
something else (e.g., innocence). It has applica-
tions in understanding persuasive texts as well as
the visual media (Liu et al., 2022; Guo et al., 2021;
Akula et al., 2023). For example, a social media
moderator needs to know that certain seemingly be-
nign phrase or object may signal some banned be-
havior; an intelligent writing tutor should recognize
(in)appropriate usages of symbolism in student es-
says; a persuasive text/image generator may convey
its message more effectively by appropriate uses
of symbolism. With these potential applications
in mind, this work explores whether state-of-the-
art LMs encapsulate enough implicit and abstract
knowledge to infer symbolic relationships. Specifi-
cally, we ask: given some observed physical object
or content (referred to as the signifier), can LMs
predict an appropriate corresponding conceptual

symbolic reference (referred to as the signified)1?
Decoding symbolism is a challenging task (even

for humans). First, symbols serve many different
purposes, from representing figures of speech and
modes of thought to denoting various signs, pass-
words, and customs (Jones, 1918). Thus, some
types of signifier-signified relationships may be
more difficult to decode than others. Prior work
suggests that LMs encapsulate some commonsense
knowledge (Speer et al., 2017); therefore, we an-
ticipate LMs may capture the more semantically
related symbolic relationships (e.g., a fork as a sym-
bol of food because it is UsedFor eating), but what
about those involving a longer chain of reasoning?
How do additional factors such as the complexity
of the LM and the choice of the prompt impact
the performances of different LMs? Second, sym-
bols may be situational: the same signifier may be
a stand-in for different references under different
scenarios. For example, while a baby often repre-
sents innocence, when depicted as being held by a
harried parent, that baby comes to symbolize bur-
den and responsibility. It is crucial to examine the
extent to which LMs can identify the appropriate
signified concept based on the situational context.
Finally, while symbolism is often used to empha-
size common human concepts (e.g., love), it is also
an apt device to represent rare, difficult concepts.
This dichotomy poses a challenge for LMs, which
are susceptible to biases from their pre-training cor-
pora (Shwartz and Choi, 2020; Guo et al., 2020;
Holtzman et al., 2021) because the bias leads to
a strong preference for the more commonly signi-
fied concepts (e.g., love) while penalizing symbolic
links with rarer words.

To assess their capacity to decode symbolism,
we have developed an evaluative framework called
SymbA (Symbolism Analysis) to empirically com-

1Our terminologies are derived from media studies
(Williamson, 1978) rather than any specific linguistic theory
for broader NLP applications.
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pare three classes of LMs: word embedding
(Word2Vec), which serves as a baseline, masked
(BERT and RoBERTa), and autoregressive (GPT-2
and GPT-J). The evaluative task is: given a prompt
containing a signifier, return a ranked list of poten-
tial signified concepts. Models are also evaluated
on a multiple-choice task against a human upper-
bound.

Two sets of evaluative data2 are curated to high-
light different aspects of the symbolic relationships.
One set consists of conventional symbol pairs that
we compiled from commonly used symbols in En-
glish literature, which tend to be context invariant.
The other is a subset that we sampled from a vi-
sual advertisement corpus (Hussain et al., 2017)
that contains situated symbolic pairs; the local con-
text immediately surrounding the signifier and the
intended signified are annotated by humans. By
modifying the prompt to exclude/include the local
description, we observe the impact of the situated
context. Additional fine-grained categorizations of
the evaluative data help to reveal the characteris-
tics of symbolic relationships that pose the greatest
challenge to the LMs. Moreover, we propose ways
for quantifying and tempering the bias in LMs fa-
voring commonly signified concepts.

Overall, we find that LMs can capture aspects of
symbolic knowledge, with the newer, larger mod-
els significantly outperform their previous itera-
tions. Surprisingly, advanced LMs performed bet-
ter on conventional symbolism (more idiomatic)
than symbolism in ads (more semantically re-
lated), where they fared significantly worse than
Word2Vec. This reveals the negative impact of
the hypothesized bias in pre-training corpora. We
demonstrate that the proposed debiasing method
improves performance; the increase is the most
dramatic for situated ads symbols (e.g., RoBERTa
improved by 260%). After reranking, GPT-J and
RoBERTa achieve performances comparable to hu-
man on the multiple choice task. Further analyses
suggest LMs perform better on explicit relation-
ships such as UsedFor than implicit ones, and the
debiased models are sufficiently robust with respect
to the probing prompts.3

2Both datasets are predominantly expressed in English so
that our studies focus on the interpretation of symbolism from
a Western cultural perspective (Jones, 1918); this English-
dominant scope matches the pre-training corpora of LMs.

3Our code and data is publicly available at : https://
github.com/MeiqiGuo/ACL2023-SymbA

2 Background

Decoding Symbolism The use of symbolism is
an important literary device that helps authors to
write more persuasively and convey more ideas
in fewer words. To gain a deeper understanding
of what is communicated, NLP systems need to
be able to decode symbolic usages in text. To
our knowledge, this is an under-explored prob-
lem in NLP, though there has been related work
on recognizing metaphoric and idiomatic usages
(Chakrabarty et al., 2022; Neidlein et al., 2020; Kur-
falı and Östling, 2020; Shutova et al., 2016; Li et al.,
2013). Like symbols, metaphors and idioms also
replace some intended target concept with differ-
ent words; however, a metaphor emphasizes some
common property it shares with the target concept.
An idiom is an expression that conveys a fixed tar-
get meaning that is not composed from the literal
meaning of its individual words. In contrast, a sym-
bol serves as a stand-in for a more complex and
abstract concept under certain context; it may not
share any obvious property with the abstract con-
cept, and it may not be associated with solely one
concept (Langacker, 1996).

Beyond metaphor recognition, our objectives are
also aligned with metaphor interpretation, which
aims to connect the surface and target concepts
(Rosen, 2018; Shutova, 2010; Veale and Hao, 2008;
Kintsch, 2000). Some prior approaches explored
connecting them through shared features or logi-
cal sequences, but such a path may not exist for
symbolism. Instead of searching for a path through
a discrete space, we elicit the signified associated
with the given signifier from the implicit represen-
tation of a trained language model.

A somewhat related idea was recently inves-
tigated by Chakrabarty et al. (2021) in which a
metaphoric verb is masked so that the language
model could predict a more literal verb given the
surrounding context. Different from our objec-
tives, however, their work does not require the lan-
guage model to capture the relationship between
the metaphoric verb and the literal verb; in contrast,
our work explicitly investigates whether a language
model will predict the appropriate signified when
probed with a signifier.

Language Models Since language models serve
as the basis of our symbol decoder, we discuss two
common approaches. Their training regimes lead to
different token representation that may impact the
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ability of each to associate an appropriate signified
with the given signifier.

Autoregressive Language Models are trained to
predict the ground-truth next token given previous
ones. Pretrained autoregressive language models
such as GPT (Radford et al., 2018, 2019; Brown
et al., 2020) are able to generate fluent and coher-
ent human-sounding sentences; however, they can
only generate text along one direction and have no
access to the context on the other side.

Masked Language Models are trained to pre-
dict the ground-truth masked token given the right
and left context. BERT and its variations fall in
this group (Devlin et al., 2019; Liu et al., 2019).
Bidirectional attention helps the model learn more
complete representations of tokens than the unidi-
rectional models. Consequently, masked language
models usually achieve better performance after
fine-tuning on downstream NLP tasks than the au-
toregressive models. However, they underperform
on text generation because of the masking scheme
and the independence assumption between masked
tokens (Wang and Cho, 2019).

Scoring by PMI PMI has been used for scoring
candidates in many NLP applications, including
zero-shot question answering (Brown et al., 2020),
surface form competition (Holtzman et al., 2021),
dialogue generation (Zhou et al., 2019; Yao et al.,
2017) as well as knowledge elicitation from lan-
guage models (Davison et al., 2019). In the context
of this work, it serves as a means to re-rank the
strength of association between signfier-signified
pairs and a method of analysis to identify situations
for which re-ranking improves performance.

3 SymbA Probe

We introduce the SymbA (Symbolism Analysis)
framework for evaluating language model’s ability
to decode symbols. SymbA includes 1066 sym-
bolic pairs from two data sources, a debiasing
method and two analytical tools.

3.1 Symbolism Data Sources
Conventional Literary Symbolism Based on
the sheer volume of its pretraining text, a language
model should have encountered many conventional,
widely-used symbols. Such symbolic relationships
are often taught in high-school English classes as
well as other writing courses.

To curate a collection of conventional sym-
bolism, we consulted multiple sources, includ-

Signifier Type Count Example (signifier: signified)
Color 12 pink: femininity, flesh, ...
Nature 17 dawn: hope, illumination
Plants 18 rose: beauty, love, ...
Weather 9 mist: confusion, mystery, ...
Animal 19 lion: pride, power, ...
Setting 14 forest: evil, mystery, ...
Object 22 trophy: victory
Action 3 kiss: intimacy, fellowship, ...
Number 7 seven: creation, abundance, ...
Christianity 7 angel: messenger, purity, ...
Directions 4 west: descending, old

Table 1: Our conventional symbolism dataset groups
the signifiers into 11 types.

Figure 1: A situated symbolism sample. Each sample
contains a signifier-signified pair and a localized de-
scription. Here the signifier is sandal; the signified is
freedom; the localized description is sandals that look
like a butterfly.

ing Brown (1997), Hancock (1972), ConceptNet
(Speer et al., 2017) and an educational website4.
Our dataset consists of 132 signifiers that are com-
monly used in literature. It covers a diverse set of
signifiers that can be categorized into eleven groups
of semantically related items, as shown in Tab. 1.
Of the eleven types, Object, Animal, Plants and
Nature are the most frequent types; while Action,
Directions, Number and Christianity have limited
instances. There are 536 signifier-signified pairs
since each signifier may have several signifieds.
The vocabulary size of the signified is 333.

Situated Symbolism Symbols that arose from
specific circumstances, which we refer to as situ-
ated symbolism, are not idiomatic or set by conven-
tions. There is a great deal of variation in terms of
the challenge of the task. At an extreme, one might
consider a literary author taking chapters to develop
and evolve a symbol, such as the meaning of Hester
Prynne’s “A” in “The Scarlet Letter”; such a grand
scale is out of the scope of this work. Here, we

4https://www.dvusd.org/cms/lib/
AZ01901092/Centricity/Domain/2891/
Gawain%20Symbols.pdf
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focus on a more manageable context range, limited
to the message conveyed in a static visual advertise-
ment (Hussain et al., 2017). We chose this domain
because the ad offers a self-contained narrative for
the context; any symbolic reference has to either
be resolved through information directly presented
in the ad or relies on commonly shared knowledge
by the viewers.

The advertisement dataset provides a bounding
box around the signifier in each ad image and its
corresponding signified symbol reference (e.g. dan-
ger, happiness, etc.). The vocabulary size of the
signified is 53. However, aside from the bounding
box, there is no textual annotation that describes the
signifier. Thus, we supplemented their dataset with
additional annotations.5 We opted to create a bal-
anced dataset for evaluation by randomly sampling
10 ads from each signified group for a total of 530
instances.6 We then asked 11 annotators (3 authors
and 8 non-authors) to describe the visual signifier
in the bounding box with a short natural language
phrase or sentence, noted as localized description.7

Because each description is typically a short phrase
or a sentence, we then manually annotated the head
noun of the description as the signifier (referred as
a task without context); the localized description is
considered as the context for the signifier (cf. Fig 1,
sandal is selected as the signifier, while that look
like a butterfly is a context stimulus).

Human Evaluation The language model selects
the signified from a large fixed set (333 for literary
symbols and 53 for ad symbols); the same task may
be challenging for a human. An alternative is to
conduct a simpler experiment: we asked humans
to select the correct answer from 4 candidates (neg-
ative candidates were randomly chosen from the
fixed vocabulary). We compute the Krippendorff’s
alpha score (Krippendorff, 2011) for measuring the
adjusted inter-rater agreement. The score is 0.64
for the conventional symbols; and 0.60 or 0.57 for
the ad symbols, respectively with or without the sit-

5We considered a captioning generation model (Anderson
et al., 2018) on the COCO datasets; however, the domain gap
between symbolic and general non-ad image was too large for
the resulting captions to prompt language models.

6We manually checked each instance and made sure there
is no offensive content.

7The coding manual is in Appendices. We qualitatively
checked the inter-rater agreement between 3 annotators for
20 samples. While they do not always use the exact same
wording, their descriptions agree 90% of the time.

uated context.8 These scores suggest moderate or
substantial inter-rater agreement (Landis and Koch,
1977; Hartling et al., 2012), which demonstrates
the quality of our data. We also report the human
performance on completing these tasks in Sec 4.3.

3.2 Debiasing Method

Our hypothesis is that a model’s prediction can-
didates that appear more frequently in the pre-
training corpus tend to be ranked higher than its
appropriate position; similarly, rarer signifieds may
be unfairly penalized. For example, the language
model may consider “freedom” as a more probably
predicted candidate than “serenity” since the latter
word has been rarely seen during the pre-training.
In order to reduce the bias effect brought by the
pre-training frequency, we propose a new approach
for ranking the predictions by considering the prior
probability of each candidate.

Assuming that x represents the signifier, y rep-
resents the signified, t represents the prompt (e.g.
“is a symbol of”) and θ represents the parameters
of the language model, the conditional probabil-
ity of y is represented as p(y|x, t, θ). Commonly,
the top candidate ypred is selected by having the
highest probability: ypred = argmaxy p(y|x, t, θ)
(Petroni et al., 2019; Jiang et al., 2020). In our
approach, we re-rank the previously-selected top k
candidates after normalizing the conditional proba-
bility by the prior probability of each candidate:

ypred(k) = argmaxy∈Yk
log

p(y|x, t, θ)
p(y|t, θ)

where Yk is the set of previously-selected top k
candidates. The intuition is that a high p(y|x, t, θ)
might not mean a good collocation between x and
y if p(y|t, θ) is also high. For example, a certain
signified (e.g. love) might have a high probability
when following the prompt (e.g. “is a symbol of”),
no matter which signifier is given. Our re-ranking
approach aims to reduce this bias effect.

3.3 Analytical Tools

Semantic Relatedness For quantitatively mea-
suring the semantic relatedness between the sym-
bolic pair, we develop a heuristic metric based on
the pointwise mutual information (PMI). This met-
ric measures how frequently a signifier-signified

8The raw agreement scores (Artstein and Poesio, 2008)
between two annotators are: 72.7% for conventional symbols,
70% for ad symbols with situated context, and 67.9% without.
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Relationship Type Count Example (signifier - signified) Example (situated signifier - signified)
UsedFor 52 makeup - beauty cartoon candy running on a treadmill - health
HasProperty 46 child - youth workers sitting closely in a sofa - comfort
RelatedTo 47 mountain - adventure cigarette smoke in the shape of mushroom cloud - danger
Others 94 chocolate - love foot stepping on tombstone - death
Indirect 116 giraffe - love shoes made out of red bull cans - strong

Table 2: Relationship types of signifier-signified in the set of advertising symbolism.

pair co-occur within the same sentences in a tex-
tual corpus. We assume that if the pair co-occur
frequently, then the symbolic relationship leans to-
wards a factoid thus is considered as “easy” knowl-
edge; on the other hand, if the pair rarely co-occur
in the same sentence, then it leans towards implicit
commonsense reasoning thus considered as “hard”
knowledge. We use this metric for measuring the
knowledge difficulty.

For a given signifier x and signified y, the PMI
score is computed by

pmi(x, y) = log
p(x, y)

p(x)p(y)
= log

N(x,y)
N

N(x)
N

N(y)
N

where N(x, y) is the number of sentences contain-
ing both x and y; N(x) or N(y) is respectively the
number of sentences containing x or y; N is the
total number of sentences in the corpus. A higher
PMI score indicates easier knowledge.

Symbolic Relationship Types For investigating
the fine-grained types of each symbolic relation-
ship, we further annotate each signifier-signified
pair according to a pre-defined taxonomy of com-
monsense relationships (Speer et al., 2017). The
symbolic associations used in ads are creative and
diverse, while the conventional set mostly con-
tains the narrowly-defined symbolic relationship
(i.e. SymbolOf in Speer et al. (2017)). Therefore
we conduct this analysis on the advertisement set
only. As shown in Tab. 2, we specifically study the
three most frequent types (i.e., UserFor, HasProp-
erty, and RelatedTo) that appear in the ad set. We
combine minor types, such as Synonym, Antonym,
IsA, Causes, SymbolOf, etc., into one type named
Others. We classify symbolism knowledge whose
type can’t be clearly determined as Indirect.

4 Experiments

We first evaluate the performance of different lan-
guage models for decoding the symbolism, with
or without the situated context. We then conduct
experiments for verifying the biased-prior hypoth-
esis as well as measuring the effectiveness of the

debiasing method. We further investigate the fine-
grained performance with respect to the knowledge
difficulty and the relationship types.

4.1 Setup

We compare five language models that represent
different pre-training strategies, architectures and
sizes: Word2Vec (Mikolov et al., 2013), BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
GPT-2 (Radford et al., 2019) and GPT-J-6B (Wang
and Komatsuzaki, 2021). As for baseline models,
we consider random guessing and co-occurrence
ratio.

Random Baseline: rank signified candidates by
a random order (average over 10 random runs).

Co-occurrence Baseline: rank signified candi-
dates by its co-occurrence ratio with the signifier
according to BookCorpus (Zhu et al., 2015). The
ratio is computed by N(x,y)

N(y) with the same notations
as defined in Sec 3.3.

Word2Vec: rank signified candidates by the co-
sine similarity between the signifier word vector
and each signified candidate vector. For situated
symbolism, the signifier word vector is replaced by
the context vector that is the summation of each
token vector in the localized description.9

BERT (336M parameters): rank signified can-
didates by the probability of the masked token by
querying the language model with a cloze prompt
(i.e. “[signifier] is a symbol of [MASK].”)10. For
decoding general symbolism, “[signifier]” is re-
placed by the signifier token; for decoding situated
symbolism, “[signifier]” is replaced by the local-
ized description of the signifier.11 Notice that the
majority of signifieds are tokenized as single word
pieces, with only around 20% requiring multiple
word pieces. For these cases, we use the stemmed
piece to transform them into a single word piece.

RoBERTa (355M parameters): same as

9‘word2vec-google-news-300’ in gensim 4.1.2
10Since prompt selection is not a focus of this work, we

simply picked a prompt that echoes the surface text for the
“SymbolOf” relation presented in Speer et al. (2017).

11‘bert-large-uncased’ in transformers 4.8.2
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Conventional Symbolism Advertising Symbolism
w/o context w/ context

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10
Random 1.29 5.15 10.45 2.48 11.43 23.83 2.12 9.77 20.30
Co-occur 7.58 18.94 35.61 16.10 42.86 57.89 13.96 34.53 46.42
Word2Vec 5.30 25.76 46.21 18.42 43.23 57.89 14.53 32.64 47.17
BERT 10.61 27.27 40.15 10.15 25.56 39.85 11.51 27.17 39.81
RoBERTa 19.70 33.33 42.42 13.16 33.08 45.86 10.00 27.55 45.47
GPT-2 6.06 16.67 26.52 4.51 17.67 30.08 7.36 19.43 37.74
GPT-J 27.27 46.97 56.06 10.90 28.20 42.48 13.96 33.77 50.00
GPT-J (open vocab) 15.15 39.39 48.48 2.63 11.28 16.92 4.91 13.02 18.68

Table 3: Model performance (P@n) for decoding symbolism.

Color Nature Plants Weat. Anim. Setting Object Action Num. Christ. Direct.
RoBERTa 50.00 35.29 11.11 11.11 10.53 7.14 31.82 0.00 0.00 14.29 0.00

GPT-J 41.67 35.29 33.33 33.33 36.84 7.14 27.27 33.33 0.00 14.29 0.00

Table 4: Model performance (P@1) on each signifier group of conventional literary symbolism.

BERT.12

GPT-2 (124M parameters): rank signified candi-
dates by the probability of the next token by query-
ing the language model with the first part of the
sentence (i.e. “[signifier] is a symbol of”).13

GPT-J (6B parameters): same as GPT-2.14

We evaluate each model based on how highly it
ranks the ground-truth signified against others in a
fixed vocabulary. We also evaluate GPT-J’s perfor-
mance under an open-vocabulary setting. We use
the precision at n (P@n) as the evaluative metric.
To account for multiple valid signifieds for a given
signifier, this value is 1 if at least one of the valid
signifieds is ranked among the top n predictions,
and 0 otherwise. Experiments are conducted on the
GPU model of NVIDIA Quadro RTX 5000, 16G
memory, driver version 460.84 and CUDA version
11.2.

4.2 Model Performance on Decoding
Symbolism

We find the three classes of LMs excel under dif-
ferent conditions.

Newer LMs outperform their previous iter-
ations. Tab 3 shows the overall performance for
decoding symbolism through our SymbA probe.
For decoding conventional symbols, GPT-J out-
performs all other models by a substantial margin
overall; even under the more challenging open-
vocabulary setting, GPT-J still has a comparable
performance with the fixed-vocabulary setting of
BERT or RoBERTa. We observe a significant im-

12‘roberta-large’ in transformers 4.24.0
13‘gpt2’ in transformers 4.8.2
14‘EleutherAI/gpt-j-6B’ in transformers 4.24.0

provement when the same type of language model
is scaled up: GPT-J performs 21 points better than
GPT-2; RoBERTa performs 9 points better than
BERT in P@1. Surprisingly, Word2Vec and GPT-
2 perform worse than the Co-occur baseline and
only around 5 points better than a random guess.
By looking to P@n with varying n, BERT and
RoBERTa are more accurate at top 1 or 5 predic-
tions than Word2Vec, while Word2Vec has a better
convergence when n is equal to 10.

Variations in signifiers’ types impact decod-
ing. Tab 4 compares RoBERTa and GPT-J’s perfor-
mances by signifier types. Both excel at decoding
Colors, but they falter on Numbers and Directions.
GPT-J outperforms RoBERTa on average, but it
has slightly lower accuracy for Colors and Objects.
We conjecture that the Web data used to pre-train
GPT-J may be more multi-modal such that color
attributes may be shown visually.

Bias is more severe when decoding ad sym-
bols. For the advertising symbolism without con-
text, Word2Vec has the best result, and GPT-2 has
the worst. It is surprising that powerful language
models such as RoBERTa perform worse than the
simple Word2Vec or the Co-occur baseline on this
task. We have similar observations for decoding sit-
uated ad symbolism. The main reason is that these
advanced language models encounter the prior-bias
problem thus their performance for decoding sym-
bolism decreases. We provide more experimental
results in the following section.

4.3 Effectiveness of Debiasing

The hypothesized bias exists, and re-ranking sig-
nificantly reduces it. We first compute the corre-
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Model Pearson score before Pearson score after
BERT 0.375 -0.107

RoBERTa 0.355 -0.123
GPT-2 0.483 -0.192
GPT-J 0.363 -0.244

Table 5: Pearson correlation scores between candidates’
frequency and prediction probability before or after nor-
malized by the prior probability.

Conventional Advertising
w/o context w/ context

BERT→R 10.61 → 12.88 10.15 → 17.29 11.51 → 22.08
RoBERTa→R 19.70 → 20.45 13.16 → 25.19 10.00 → 26.04

GPT-2→R 6.06 → 7.58 4.51 → 9.77 7.36 → 19.43
GPT-J→R 27.27 → 28.03 10.90 → 22.18 13.96 → 22.82

Table 6: Measuring the effectiveness (P@1) of the re-
ranking approach for decoding symbolism (original →
re-ranked).

lation between each signified’s (yi) frequency and
its predicted probability, p(yi|x, t, θ) for verifying
the biased-prior hypothesis introduced in Sec 3.2.
We use BookCorpus as the source for estimating
yi’s frequency and use the advertising symbolism
as testing samples. The Pearson correlation scores
are reported in Tab 5. The original Pearson scores
before normalizing the prior probability are always
above 0.3. These results reveal that the correlation
level between these two factors is positively moder-
ate (Cohen, 2013). Our hypothesis is thus verified.
Then we demonstrate that our proposed re-ranking
approach mitigates this bias. By considering the
prior probability of yi, we compute the Pearson cor-
relation score between yi’s frequency and p(yi|x,t,θ)

p(yi|t,θ) .
The scores all decrease to a low level, from -0.107
to -0.244, which can be interpreted as no or slight
correlation (Cohen, 2013). However, even though
the absolute correlation score decreases, there ex-
ists a shift from a positive to a negative correlation
level, which implies that this bias has been over-
corrected.

Debiased LMs rival human performances in
some cases. As shown in Tab 6, language mod-
els after re-ranking have better performance on
decoding symbolism than the original ones. In par-
ticular, the improvement for larger models such as
RoBERTa is more than 200% on decoding ad sym-
bolism. The re-ranking approach boosts RoBERTa
to a relatively high accuracy, 25.19 (or 26.04) for
decoding ad symbolism without (or with) the sit-
uated context. We further compare models’ per-
formance with humans under a simplified 4-choice
task. As shown in Tab 7, we find that GPT-J af-
ter re-ranking can impressively understand conven-

Conventional Advertising
w/o context w/ context

Human 77.27 71.43 68.00
RoBERTa→R 68.18 → 77.27 35.71 → 67.86 42.00 → 64.00

GPT-J→R 72.73 → 90.91 53.57 → 64.29 50.00 → 62.00

Table 7: Accuracy on the multi-choice task: human
versus LMs (original → re-ranked).

tional symbolism even better than humans.15 For
ad symbols, RoBERTa after re-ranking achieves
performance close to humans, with only 4 points
behind.

Debiased RoBERTa and GPT-J have differ-
ent strengths. Tab 6 and Tab 7 show that GPT-
J is better at decoding conventional symbols and
RoBERTa is better at decoding advertising sym-
bols. We conduct further analysis to explain the
observations in the next section (Sec 4.4).

4.4 Fine-grained Performance with Analytical
Tools

Further experiments using the two analytical tools
in SymbA probe help us better understand situa-
tions in which LMs fail and how re-ranking helps.

Analysis by Knowledge Difficulties: 1)
RoBERTa is better at semantically-related sym-
bols while GPT-J is better at distantly-related
ones. We first measure the difficulty distribution of
both symbolism sets. The knowledge difficulty for
each symbolic pair is measured by the PMI score
introduced in Sec 3.3. The mean of PMI scores
for the ad set and the literary set are respectively
-0.997 (with ±1.56 variance) and -3.872 (with
±5.96 variance). It reveals that the symbolism
samples in the ad set are much easier than in the
literary one, which suggests our headline finding.
In order to provide more insights, we further split
the pairwise samples into several difficulty groups
and report the model performance on each of them
in Tab 8. The literary set contains mostly hard
cases (only 5% of them have PMI > -2). The
knowledge difficulty of ads symbolism is more
diverse, covering both easy and hard ones. By
comparing RoBERTa and GPT-J in each PMI
group, we conclude consistent findings that GPT-J
is generally better at harder cases and worse at
easier ones. In particular, GPT-JR performs better
when PMI is extremely low, which suggests that

15The human annotators are from a variety of cultural back-
grounds; they have not received task specific training. Thus,
the reported scores represent the ability of a typical person
rather than the upper-bound performance of literary experts.
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PMI score -inf (75) <-6 (76) -6 to -5 (37) -5 to -4 (136) -4 to -3 (129) -3 to -2 (56) >-2 (27)
(Example blue - conservatism gold - dominion ladder - connection night - death apple - sin dove - purity three - tripartite )
RoBERTa →R 1.33 → 1.33 5.26 → 5.26 5.41 → 0.00 5.88 → 0.74 6.20 → 8.53 3.57 → 8.93 3.70 → 18.52
GPT-J →R 1.33 → 4.00 7.89 → 2.63 5.41 → 2.70 7.35 → 4.41 6.98 → 6.98 5.36 → 16.07 18.52 → 22.22
PMI score -inf (20) <-2 (79) -2 to -1 (108) -1 to 0 (87) 0 to 1 (45) >1 (16)
(Example igloo - refreshing gun - death bird - freedom dragon - adventure beach - vacation ornaments - christmas )
RoBERTa →R 5.00 → 5.00 6.33 → 5.06 12.04 → 10.19 10.34 → 18.39 13.33 → 48.89 6.25 → 68.75
GPT-J →R 5.00 → 10.00 6.33 → 1.27 10.19 → 7.41 8.05 → 17.24 8.89 → 51.11 6.25 → 50.00

Table 8: Model performance (P@1) on the conventional literary symbolism (upper) and the advertising symbolism
(lower), on different PMI scores (measure of difficulty, from high to low). Comparing RoBERTa with GPT-J,
the higher P@1 is bolded. Comparing the effectiveness of the re-ranking approach (original → re-ranked), the
improvement is marked in green and the drop is marked in red. We also provide an example in each PMI group for
gaining more insights.

Relationship type UsedFor HasProperty RelatedTo Others Indirect
default specific default specific default specific default default

RoBERTa 5.77 23.08 10.87 4.35 8.51 4.26 20.21 3.45
RoBERTaR 21.15 21.15 15.22 17.39 19.15 14.89 37.23 4.31
GPT-J 9.62 19.23 10.87 19.57 4.26 2.13 14.89 2.59
GPT-JR 21.15 23.08 17.39 26.09 17.02 10.64 28.72 3.45

Table 9: Model performance (P@1) on relationship types when using the default prompt (“is a symbol of”) or a
type-specific prompt (respectively “is used for”, “has the property of” or “relates to” for the relationship type of
“UsedFor”, “HasProperty” or “RelatedTo”).

Relationship Type PMI mean ± variance
UsedFor -0.39 ± 2.35
HasProperty -1.02 ± 1.31
RelatedTo -0.86 ± 0.75
Others -0.51 ± 1.33
Indirect -1.71 ± 0.93

Table 10: The PMI score for each relationship type.

GPT-J can better interpret very rare symbols.

2) Debiasing improves semantically-related
symbolic pairs without hurting distantly-related
ones. By comparing the model performance be-
fore or after re-ranking in Tab 8, we find that the
re-ranking approach can make great improvement
for both RoBERTa and GPT-J on decoding easy
cases (up to 62% increase on P@1 for PMI > 1),
with little decrease on hard cases. The intuition
is that the prior probability of the signified, as a
denominator term for computing the PMI score,
tends to be small when PMI is large (easy cases).
So normalizing by this small prior probability in-
creases the ranking of the correct signified for easy
cases. Similarly, the performance on hard cases
after re-ranking is expected to decrease. It is in-
teresting to find that the impact of the re-ranking
approach is significantly positive for easy cases
and only slightly negative on hard cases, which
brings an overall improvement. By looking into
their performance in different difficulty groups, the
accuracy of GPT-JR and RoBERTaR generally in-
creases when the knowledge difficulty decreases;

unexpectedly, original models have a quite stable
performance, even a little worse on the easiest cases
(PMI > 1).

Analysis by Relationship Types: 1) Break-
down by relationship types is consistent with
analysis by knowledge difficulties. We first mea-
sure the difficulty level of each relationship type
introduced in Tab 2. We show the result in Tab 10.
Indirect is the most difficult (because the logical
reasoning between these symbolic pairs is hard to
identify); and UserFor is the easiest. Model perfor-
mance on each relationship type is shown in Tab 9.
Consistent with what we have observed before, re-
ranking improves more for the type of UsedFor,
Others and RelatedTo, which are easier (PMI >
-1) than other types; and RoBERTa performs better
than GPT-J when decoding these types of symbols.

2) Debiasing improves LMs’ robustness with-
out prompt engineering. We experiment with a
type-specific prompt for each relationship type, e.g.,
we replace the default “is a symbol of” by “is used
for” when probing a symbol in the type of UsedFor.
We find that the type-specific prompt can some-
times greatly facilitate the original models on de-
coding knowledge: RoBERTa increases 17 points
for UsedFor; GPT-J increases around 9 points for
UsedFor or HasProperty. At first glance, this sug-
gests that these LMs do have knowledge about
the semantic relationships between the signifier
and signified, but the general prompt cannot elicit
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the desired response. However, we also observe
that type-specific prompts have little impact for the
re-ranked models, e.g., RoBERTa performs same
when prompted by the default or the type-specific
template. While language models are sensitive to
the prompt template, the re-ranking approach helps
to stabilize their performance. We believe that im-
proving debiasing methods, more so than prompt
engineering, holds the key to developing robust
models.

5 Conclusion

In this work, we have assessed the feasibility of
eliciting symbolic knowledge from different types
of language models. By evaluating LMs through
the SymbA probe, we find that advanced large
language models (e.g. GPT-J and RoBERTa) can
achieve human-level performance on a simplified
4-choice task of identifying the intended signified
concept from a given signifier. However, there is
still ample room for improvement when the model
is prompted to select from a large set of candidates.
We have also validated that these models are biased
in favor of commonly occurring signified concepts.
The debiasing method based on re-ranking can sig-
nificantly improve the performance and increase
the robustness with respect to the probing template.
Our work shows the potential of incorporating lan-
guage models as a source of knowledge about sym-
bolic relationships for real-world applications that
involve understanding and interpreting non-literal
expressions.

6 Limitations

Because decoding symbolism is a challenging new
problem, our approach and experimental results
have some limitations. First, our work builds on
available resources, which may have a bias toward
an English/Euro-centric perspective. Second, the
evaluative datasets that we curated have a limited
coverage of possible symbols even within the En-
glish literary tradition. Third, as mentioned in Sec-
tion 3.1, our study on situated symbolism is limited
to symbolic pairs that can be found in static vi-
sual advertisements rather than longer form text or
videos. Finally, while we have proposed one debi-
asing method based on re-ranking with PMI, which
worked well for our experimental setting, there
may be other methods and metrics more suited to
different settings. We believe that despite these lim-
itations, our proposed evaluative framework and

methodology offers a good starting point for further
exploration.
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A Instructions for Annotators

*Please describe the object which is in the red box.
*The description should be 1) in a short noun

phrase, i.e. maximum 8 words (e.g. tooth under an
umbrella); 2) capable to tell its symbolic meaning
that is already given (e.g. blood signifies danger;
lemon signifies refreshing; tooth under an umbrella
signifies protection and heath).

*Instruction for corner cases:
1) If there are multiple objects in the red box,

please first identify several objects which relate to
the given symbolic meaning, then describe them
and their relationship in a short phrase, e.g. tooth
under an umbrella.

2) If some attributes of the target object is es-
sential for telling its symbolic meaning, please de-
scribe the attribute (e.g. color, shape, status, action)
with the class name together, e.g. bleeding arm

*In summary, the goal is to infer the given sym-
bolic meaning from your written description. If
you meet some cases which are not covered by the
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instruction, please write a description which helps
most for inferring the given symbolic meaning.

*Some examples of expected annotations are
shown on the first page of this form: [link]
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