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Abstract

Aspect-based sentiment analysis (ABSA) is
a fine-grained sentiment classification task.
Many recent works have used dependency trees
to extract the relation between aspects and con-
texts and have achieved significant improve-
ments. However, further improvement is lim-
ited due to the potential mismatch between
the dependency tree as a syntactic structure
and the sentiment classification as a seman-
tic task. To alleviate this gap, we replace
the syntactic dependency tree with the seman-
tic structure named Abstract Meaning Repre-
sentation (AMR) and propose a model called
AMR-based Path Aggregation Relational Net-
work (APARN) to take full advantage of se-
mantic structures. In particular, we design the
path aggregator and the relation-enhanced self-
attention mechanism that complement each
other. The path aggregator extracts seman-
tic features from AMRs under the guidance
of sentence information, while the relation-
enhanced self-attention mechanism in turn im-
proves sentence features with refined seman-
tic information. Experimental results on four
public datasets demonstrate 1.13% average F1
improvement of APARN in ABSA when com-
pared with state-of-the-art baselines.1

1 Introduction

Recent years have witnessed growing popularity
of the sentiment analysis tasks in natural language
processing (Li and Hovy, 2017; Birjali et al., 2021).
Aspect-based sentiment analysis (ABSA) is a fine-
grained sentiment analysis task to recognize the
sentiment polarities of specific aspect terms in a
given sentence (Jiang et al., 2011; Li et al., 2018;
Seoh et al., 2021; Zhang et al., 2022a). For exam-
ple, here is a restaurant review “All the money went
into the interior decoration, none of it went to the
chefs” and the sentiment polarity of two aspects

1The code will be available at https://github.com/THU-
BPM/APARN.
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Figure 1: Comparison of the dependency tree and the
AMR. The aspect is red and the opinion term is blue.

“interior decoration” and “chefs” are positive and
negative, respectively. Thus, ABSA can precisely
recognize the corresponding sentiment polarity for
any aspect, different from allocating a general sen-
timent polarity to a sentence in sentence-level sen-
timent analysis.

The key challenge for ABSA is to capture the
relation between an aspect and its context, espe-
cially opinion terms. In addition, sentences with
multiple aspects and several opinion terms make
the problem more complex. To this end, some pre-
vious studies (Wang et al., 2016; Chen et al., 2017;
Gu et al., 2018; Du et al., 2019; Liang et al., 2019;
Xing et al., 2019) have devoted the main efforts to
attention mechanisms. Despite their achievements
in aspect-targeted representations and appealing re-
sults, these methods always suffers noise from the
mismatching opinion terms or irrelevant contexts.

On the other hand, more recent studies (Zhang
et al., 2019a; Tang et al., 2020; Li et al., 2021;
Xiao et al., 2021) propose models explicitly ex-
ploit dependency trees, the syntactic structure of a
sentence, to help attention mechanisms more accu-
rately identify the interaction between the aspect
and the opinion expressions. These models usually
employ graph neural networks over the syntactic
dependencies and display significant effectiveness.
However, existing ABSA models still indicate two
potential limitations. First, there appears to be a
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gap between the syntactic dependency structure
and the semantic sentiment analysis task. Consid-
ering the sentence in Figure 1, “small” semantically
modifies “dish” and expresses negative sentiment,
but both “small” and “dish” are syntactically de-
pendent on “was”. The determinant of sentiment
should be the meaning of the sentence rather than
the way it is expressed. Second, the output of natu-
ral language parsers including dependency parsers
always contains inaccuracies (Wang et al., 2020).
Without further adjustment, raw results of parsers
can cause errors and be unsuitable for ABSA task.

To solve aforementioned challenges, we propose
a novel architecture called AMR-based Path Aggre-
gation Relational Network (APARN). For the first
challenge, we introduce Abstract Meaning Repre-
sentations (AMRs), a powerful semantic structure.
For the AMR example in Figure 1, "small" and
"dish" are directly connected, while function words
such as "were" and "at" disappear, which makes it
easier to establish the aspect-opinion connection
and shows the advantage of AMRs in ABSA. For
the second challenge, we construct the path ag-
gregator and the relation-enhanced self-attention
mechanism. The path aggregator integrates the in-
formation from AMRs and sentences to obtain opti-
mized relational features. This procedure not only
encourages consistency between semantic struc-
tures and basic sentences, but also achieves the
global feature by broadcasting local information
along the path in the graph. Relation-enhanced
self-attention mechanism then adds these relational
feature back into attention weights of word fea-
tures. Thanks to these modules, APARN acquires
to utilize sentences and AMRs jointly and achieves
higher accuracy on sentiment classification.

To summarize, our main contributions are high-
lighted as follows:

• We introduce Abstract Meaning Representa-
tions into the ABSA task. As a semantic struc-
ture, the AMR is more suitable for sentiment
analysis task.

• We propose a new model APARN that in-
tegrates information from original sentences
and AMRs via the path aggregator and the
relation-enhanced self-attention mechanism
to fully exploit semantic structure information
and relieve parser unreliability.

• We experiment on four public datasets and our
APARN outperforms state-of-the-art base-
lines, demonstrating its effectiveness. More

Structures AOD↓ ACD↑ rAOD↓
Original Sentence 3.318 6.145 0.540
Dependency Tree 1.540 2.547 0.605
AMR (connected words) 1.447 2.199 0.658
AMR (all words) 1.787 8.846 0.202

Table 1: Aspect-opinion, aspect-context and relative
aspect-opinion distances of different structures.
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Figure 2: Label distribution of edges in aspect-opinion
paths and all edges, in dependency trees and AMRs.
Labels are ordered by its density in aspect-opinion paths.

analytical experiments further verify the sig-
nificance of our model and the AMR.

2 Parsed Structures

We perform some experiments and discussions for
the characteristics of AMR compared to parsing
structures already used for the ABSA task and how
these characteristics affect our APARN.

Human-defined Structures Dependency trees
and AMRs are parsed based on human-defined syn-
tactic and semantic rules, respectively. Each word
in a sentence becomes a node of the dependency
tree, but in the AMR, relational words like function
words and auxiliary words are represented as edges,
while concept words like nouns and verbs are re-
fined into nodes in the graph. With AMR aligning,
we can map concept words in sentences to nodes
in the graph and establish relations between them,
while relation words are isolated.

To estimate the impact of dependency trees and
AMRs in the ABSA task, we calculate the aver-
age distance between aspect words and opinion
words in different parsed structures on the Restau-
rant dataset, called aspect-opinion distance (AOD).
We also calculate the average distance between
aspect words and all context words called aspect-
context distance (ACD), and divide AOD by ACD
as relative aspect-opinion distance (rAOD). The
distance between aspect words and isolated words
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is treated as sentence length. According to the re-
sult shown in Table 1, both dependency trees and
AMRs have similar AOD smaller than original sen-
tences, which indicates their benefits to capture
relations about aspects. Due to the elimination of
isolated words, the rAOD of AMRs is much less
than dependency trees, which means smaller scope
and easier focus. About 2.13% of opinion words
are wrongly isolated, making the AOD of AMR (all
words) a little bigger. But this is acceptable con-
sidering the improvement of rAOD and partially
repairable by information from original sentences.

The above analysis is for graph skeletons, and
we also explore the impact of edge labels of two
structures in the ABSA task. Figure 2 compares the
distribution of edge labels in aspect-opinion paths
with the distribution of all edge labels. These dis-
tributions are clearly different, both in dependency
trees and AMRs, which implies that edge labels
can also help the ABSA task, especially in AMRs.

Based on these characteristics, we design the
outer product sum module for APARN to mix sen-
tence information into the graph, and design the
path aggregator to collect graph skeleton and edge
label information in AMRs.

Data-driven Structures Some existing studies
use structures produced by data-driven models in
the ABSA task (Chen et al., 2020; Dai et al., 2021;
Chen et al., 2022) and exhibit different effects from
human-defined structures. Therefore, we design
a relation-enhanced self-attention mechanism for
APARN to integrate the graph information ob-
tained by the path aggregator with the information
from the pre-trained model.

3 Proposed Model

The overall architecture of our proposed model
APARN is illustrated in Figure 3. It consists of
3 parts: AMR preprocessing, path aggregator and
relation-enhanced self-attention mechanism. In the
ABSA task, a sentence s = {w1, w2, ..., wn} and a
specific aspect term a = {a1, a2, ..., am} are given
to determine the corresponding sentiment polarity
class ca, where a is a sub-sequence of s and ca ∈
{Positive,Neutral,Negative}.

Many existing works use syntactic dependency
trees to establish explicit or implicit connections
between aspects and contexts. However, we believe
that the sentiment analysis task is essentially about
the meanings of sentences, so semantic structures
like AMRs are more favorable for this task.

In addition, AMRs are more concise than depen-
dency trees, making it easier to extract valuable
information in training but more difficult to prepro-
cess before training. We have to conduct a series of
steps including: AMR parsing, AMR aligning and
AMR embedding. Preprocessed AMRs still have
errors and unsuitable parts for the task, so we de-
sign the path aggregator and the relation-enhanced
self-attention mechanism to perform joint represen-
tation refinement and flexible feature fusion on the
AMR graph and the original sentence.

Next, we elaborate on the details of our pro-
posed APARN, including AMR preprocessing and
embedding, the path aggregator and the relation-
enhanced self-attention mechanism.

3.1 AMR Preprocessing and Embedding
Parsing As we determine to employ the seman-
tic structure AMR as an alternative of the syntac-
tic structure dependency tree to better perform the
semantic task ABSA, the first step is parsing the
AMR from the input sentence. We choose the off-
the-shelf parser SPRING (Bevilacqua et al., 2021)
for high quality AMR outputs.

Aligning Next, we align the AMR by the aligner
LEAMR (Blodgett and Schneider, 2021). Based
on the alignments, we manage to rebuild AMR
relations between words in the sentence and get the
transformed AMR with words as nodes.

Embedding After aligning, we now have trans-
formed AMRs, which can also be called sentences
with AMR relations. Then we need to obtain their
embeddings for later representation learning by the
model. For words in the sentence, also as the nodes
in the AMR, we utilize BERT as an encoder to get
contextual embeddings H = {h1, h2, ..., hn} like
lots of previous works. For the edges in the AMR,
we represent the relations between nodes as an adja-
cency matrix R = {rij | 1 ≤ i, j ≤ n}, where rij
is the embedding of the edge label between word
wi and word wj . If there is no edge between wi and
wj in the AMR, we assign a “none” embedding to
rij . Edge label embeddings are also obtained from
the pre-trained model.

3.2 Path Aggregator
Path aggregator receives the mix of AMR embed-
dings R ∈ Rdr×n×n and sentence embeddings
H ∈ Rdw×n, where dr and dw denote the dimen-
sions of relation and word embeddings, respec-
tively. Path aggregator outputs the relational fea-
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Figure 3: The overall architecture of APARN.

ture matrix RAGG={rAGG
ij ∈Rdr | 1 ≤ i, j ≤ n}.

This process integrates and condenses information
from two different sources, AMRs and sentences,
making semantic knowledge more apparent but
parsing errors less influential.

Outer Product Sum We first add the outer prod-
uct of two independent linear transformation of
sentence embeddings H to the original AMR em-
beddings R to obtain sequence-enhanced relation
embeddings RS ∈ Rdr×n×n. On the one hand,
as the outer product of H is the representation of
word relations from the sentence perspective, its
combination with the AMR embeddings R could
enlarge the information base of the model to im-
prove the generalization, also cross validate impor-
tant features to improve the reliability. On the other
hand, AMR embeddings R is usually quite sparse.
The outer product sum operation ensures the ba-
sic density of the feature matrix and facilitates the
subsequent representation learning by avoiding the
fuzziness and dilution of numerous background
“none” relations to the precious effective relations.

Path Aggregation Next, we perform the path
aggregation on RS = {rSij | 1 ≤ i, j ≤ n} to
calculate RAGG = {rAGG

ij | 1 ≤ i, j ≤ n} as:

r′Sij = LayerNorm(rSij), (1)

ginij , g
out
ij = sigmoid(Linear(r′Sij)), (2)

aij , bij = ginij ⊙ Linear(r′Sij), (3)

routij = Linear(LayerNorm(
∑

k

aik ⊙ bkj)), (4)

rAGG
ij = goutij ⊙ routij . (5)

The path aggregation has distinctive effect on
both local and global dissemination of features.
From the local view, the path aggregation covers all
the 2-hop paths, so that it is very sensitive to neigh-
borhood features, including the features around
the aspect term which are really important for the
ABSA task. From the global view, information in
any long path can be summarized into the repre-
sentation between the start and the end by several
two-in-one operations in enough times of path ag-
gregations. In other words, path aggregations make
the features in matrix more inclusive and finally at-
tain global features. In practice, because the ABSA
task focuses more on the neighboring information
and the BERT encoder with attention mechanisms
has made the feature comprehensive enough, a sin-
gle path aggregation can achieve quite good results.

Additionally, we also introduce a gating mech-
anism in the path aggregation to alleviate the dis-
turbance of noise from insignificant relations. Fi-
nally, the output of path aggregation RAGG is trans-
formed into the relational attention weight matrix
AAGG = {aAGG

ij | 1 ≤ i, j ≤ n} by a linear
transformation for subsequent calculation.

3.3 Relation-Enhanced Self-Attention
The classic self-attention (Vaswani et al., 2017)
computes the attention weight by this formula:

A = softmax

(
QWQ × (KWK)T√

d

)
, (6)

where Q and K are input vectors with d dimen-
sions, while WQ and WK are learnable weights
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Model
Restaurant Laptop Twitter MAMS

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

BERT (Devlin et al., 2019) 85.62 78.28 77.58 72.38 75.28 74.11 80.11 80.34
DGEDT (Tang et al., 2020) 86.30 80.00 79.80 75.60 77.90 75.40 - -
R-GAT (Wang et al., 2020) 86.60 81.35 78.21 74.07 76.15 74.88 - -
T-GCN (Tian et al., 2021) 86.16 79.95 80.88 77.03 76.45 75.25 83.38 82.77
DualGCN (Li et al., 2021) 87.13 81.16 81.80 78.10 77.40 76.02 - -
dotGCN (Chen et al., 2022) 86.16 80.49 81.03 78.10 78.11 77.00 84.95 84.44
SSEGCN (Zhang et al., 2022b) 87.31 81.09 81.01 77.96 77.40 76.02 - -
APARN (Ours) 87.76 82.44 81.96 79.10 79.76 78.79 85.59 85.06

Table 2: Results on four public datasets. Best performed baselines are underlined. All models are based on BERT.

with the same size of Rd×d.
In our relation-enhanced self-attention, we added

AAGG, the relational attention weight matrix from
AMR into the original attention weight, which can
be formulated as:

AR=softmax

(
HWQ×(HWK)

T

√
dw

+AAGG

)
, (7)

where input vectors W and Q are both replaced
by the BERT embeddings H with dw dimensions.
With AAGG, attention outputs are further guided by
the semantic information from AMRs, which im-
proves the efficient attention to semantic keywords.

In addition, similar to path aggregator, we also
introduced the gating mechanism into the relation-
enhanced self-attention as follows:

G = sigmoid(HWG), (8)

HR = (HWV )A
R ⊙G, (9)

where WG and WV are trainable parameters and
G is the gating matrix. Considering the small pro-
portion of effective words in the whole sentence,
the gating mechanism is conducive to eliminating
background noise, making it easier for the model
to focus on the more critical words.

Finally, with all these above calculations in-
cluding relation-enhanced self-attention and gating
mechanism, we obtain the relation-enhanced as-
pect representation HR

a = {hRa1 , hRa2 , ..., hRam} for
subsequent classification.

3.4 Model Training
The final classification features are concate-
nated by the original BERT aspect representation
Ha = mean{ha1 , ha2 , ..., ham} and the relation-
enhanced aspect representation HR

a .

Hfinal
a = [Ha, H

R
a ]. (10)

It is passed through a fully connected softmax layer
and mapped to probabilities over three sentiment
polarities.

p(a) = softmax(WpH
final
a + bp). (11)

We use cross-entropy loss as our objective function:

LCE = −
∑

(s,a)∈D

∑

c∈C
yca log p

c(a), (12)

where y is the ground truth sentiment polarity, D
contains all sentence-aspect pairs and C contains
all sentiment polarities.

4 Experiments

In this section, we first introduce the relevant set-
tings of the experiments, including the datasets
used, implementation details and baseline methods
for comparison. Then, we report the experimental
results under basic and advanced settings. Finally,
we select several representative examples for model
analysis and discussion.

4.1 Datasets and Setup
Our experiments are conducted on four commonly
used public standard datasets. The Twitter dataset
is a collection of tweets built by Dong et al. (2014),
while the Restaurant and Laptop dataset come
from the SemEval 2014 Task (Pontiki et al., 2014).
MAMS is a large-scale multi-aspect dataset pro-
vided by Jiang et al. (2019). Data statistics are
shown in Appendix A.1.

In data preprocessing, we use SPRING (Bevilac-
qua et al., 2021) as the parser and LEAMR (Blod-
gett and Schneider, 2021) as the aligner. APARN
uses the BERT of bert-base-uncased version with
max length as 100 and the relation-enhanced self-
attention mechanism uses 8 attention heads. We
reported accuracy and Macro-F1 as results which
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are the average of three runs with different random
seeds. See Appendix A.2 for more details.

4.2 Baseline Methods
We compare APARN with a series of baselines
and state-of-the-art alternatives, including:
1) BERT (Devlin et al., 2019) is composed of a gen-
eral pre-trained BERT model and a classification
layer adapted to the ABSA task.
2) DGEDT (Tang et al., 2020) proposes a dual
transformer structure based on dependency graph
augmentation, which can simultaneously fuse rep-
resentations of sequences and graphs.
3) R-GAT (Wang et al., 2020) proposes a depen-
dency structure adjusted for aspects and uses a re-
lational GAT to encode this structure.
4) T-GCN (Tian et al., 2021) proposes an approach
to explicitly utilize dependency types for ABSA
with type-aware GCNs.
5) DualGCN (Li et al., 2021) proposes a dual GCN
structure and regularization methods to merge fea-
tures from sentences and dependency trees.
6) dotGCN (Chen et al., 2022) proposes an aspect-
specific and language-agnostic discrete latent tree
as an alternative structure to dependency trees.
7) SSEGCN (Zhang et al., 2022b) proposes an
aspect-aware attention mechanism to enhance the
node representations with GCN.

4.3 Main Results
Table 2 shows the experimental results of our model
and the baseline models on four datasets under
the same conventional settings as Li et al. (2021),
where the best results are in bold and the second
best results are underlined. Our APARN exhibits
excellent results and achieves the best results on
all 8 indicators of 4 datasets with an average mar-
gin more than one percent, which fully proves the
effectiveness of this model.

Comparing the results of different datasets, we
can find that the improvement of APARN on the
Twitter dataset is particularly obvious. Compared
to the best baselines, the accuracy rate has in-
creased by 1.65% and the Macro-F1 has increased
by 1.79%. The main reason is the similarity of the
Twitter dataset to the AMR 3.0 dataset, the training
dataset for the AMR parser we used. More than
half of the corpus of the AMR 3.0 dataset comes
from internet forums and blogs, which are similar
to the Twitter dataset as they are both social media.
As a result, the AMR parser has better output on the
Twitter dataset, which in turn enables the model to
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Figure 4: Accuracy of APARN and T-GCN on Twitter
dataset with different parsed structures and edge labels.

extract more valuable features from it and leads to a
considerable improvement. This difference among
datasets also reflects the effectiveness of semantic
information from AMR for the ABSA task.

4.4 Comparative Experiments

We conduct comparative experiments to analyse the
impact of models (APARN and T-GCN), parsed
structures (AMR and dependency tree), and edge
labels (with and without). T-GCN is selected in-
stead of more recent models because they lack the
ability to exploit edge labels and cannot receive
AMRs as input. AMRs are the same as the basic
experiments and dependency trees are parsed by
Stanford CoreNLP Toolkits (Manning et al., 2014).
“Without edge labels” means all labels are the same
placeholder. The results are shown in Figure 4.

From the perspective of models, APARN consis-
tently outperforms T-GCN in any parsed structure
and edge label settings, demonstrating the effec-
tiveness of our APARN. From the perspective of
parsed structures, AMRs outperform dependency
trees in most model and edge label settings, except
for the case of T-GCN without edge labels. The
reason may be that the AMR without edge labels
is sparse and semantically ambiguous, which does
not match the design of the model.

From the perspective of edge labels, a graph with
edge labels is always better than a graph without
edge labels, whether it is an AMR or a dependency
tree, whichever the model is. We can also notice
that APARN has a greater improvement with the
addition of edge labels, indicating that it can uti-
lize edge labels more effectively. Besides, with the
addition of edge labels, experiments using AMR
have improved more than experiments using depen-
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Model
Restaurant Laptop Twitter MAMS

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

APARN 87.76 82.44 81.96 79.10 79.76 78.79 85.59 85.06
−Outer Product Sum 86.15 80.13 79.45 76.34 76.22 74.75 82.93 82.30
−Path Aggregator 87.04 81.61 79.20 75.67 76.66 74.90 83.16 82.61
−Relation in Self-Attention 87.49 81.82 80.36 77.87 76.81 75.49 83.73 83.08
−Gate in Self-Attention 85.61 78.49 79.81 77.42 77.55 76.06 83.96 83.15

Table 3: Ablation experimental results of our APARN.

dency trees, indicating that edge labels of the AMR
contain richer semantic information and are more
valuable for sentiment analysis, which is consistent
with previous experiments in Figure 2.

4.5 Further Analysis
Ablation Study To analyze the role of each mod-
ule, we separately remove four key components of
APARN. Results on four datasets are represented
in Table 3.

According to the results, each of the four compo-
nents contributes significantly to the performance
of APARN. Removing Outer Product Sum results
in a significant drop in performance, illustrating
the importance of promoting consistency of infor-
mation from sentences and AMRs. Removing Path
Aggregator is worse than removing Relation in Self-
Attention, indicating that unprocessed AMR infor-
mation can only interfere with the model instead of
being exploited by the model.

Comparing the results in different datasets, we
can find that the model depends on information
from sentences and AMRs differently on different
datasets. On the Restaurant dataset, removing the
Relation in Self-Attention component has less im-
pact, while on the Twitter dataset, removing this
component has a greater impact. This means the
model utilizes sentence information more on the
Restaurant dataset and AMR information more on
the Twitter dataset. This is also consistent with the
analysis of the main results: the AMR of Twitter
dataset has higher quality due to the domain relat-
edness with the training dataset of the AMR parser,
which in turn makes the model pay more attention
to the information from the AMR on this dataset.

AMR Parser Analysis We conduct experiments
using AMRs from different parsers on Twitter
dataset, as displayed in Figure 5. In addition to
the SPRING parser mentioned before, we try two
other parsers from Zhang et al. (2019b) and Cai
and Lam (2020). These parsers achieve 76.3, 80.2

75 77 79 81 83 85
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(2019b) Cai and Lam
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Figure 5: Accuracy of APARN on Twitter dataset with
AMR from different parsers.

Sentence Length <15 15-24 25-34 >35

w/o Path Aggregator 88.25 85.43 83.92 83.96
w. Path Aggregator 89.40 87.15 86.64 86.71
Relative Improvement +1.30% +2.01% +3.24% +3.28%

Table 4: Accuracy of APARN with and without path ag-
gregator for sentences of different lengths in the Restau-
rant dataset.

and 84.3 Smatch score for AMR parsing task on
AMR 2.0 dataset, which can be regarded as the
quality of their output. From the figure, it is clear
that the accuracy of ABSA task shows positive cor-
relation with the Smatch score, which proves the
positive effect of AMRs in the ABSA task and the
importance of the high quality AMR.

Sentence Length Study Table 4 compares the
accuracy of APARN with and without path ag-
gregator for sentences of different lengths in the
Restaurant dataset. According to the table, we can
see that the model achieves higher accuracy on
short sentences, while the long sentences are more
challenging. In addition, the model with the path
aggregator has a larger relative improvement on
long sentences than short sentences, indicating that
the path aggregator can effectively help the model
capture long-distance relations with AMR.
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the atmosphere was crowded but it was a great bistro-type vibe
BERT

+AMR

so if you want a nice ， enjoyable meal at montparnasse ， go early for the pre-theater prix-fixe
BERT

+AMR

i ordered the smoked salmon and roe appetizer and it was off flavor
BERT

+AMR

Figure 6: Visualization of aspect terms’ attention to the context in three cases. Aspect terms are highlighted in blue.

4.6 Case Study

As shown in Figure 6, we selected three typical
cases to visualize the aspect terms’ attention to the
context before and after adding information from
the AMR, respectively.

From the first two examples, we can notice that
the model focuses on the copula verb next to the
opinion term without the AMR. While with the
information from the AMR, the model can capture
opinion terms through the attention mechanism
more accurately. In the third example, without the
AMR, the model pays more attention to words that
are closer to the aspect term. With the semantic
information from AMR, the model can discover
opinion terms farther away from aspect terms.

These cases illustrate that the semantic struc-
ture information of AMR plays an important role
in making the model focus on the correct opin-
ion words. It also shows that the structure of our
APARN can effectively utilize the semantic struc-
ture information in AMR to improve the perfor-
mance in the ABSA task.

5 Related Work

Aspect-based Sentiment Analysis Traditional
sentiment analysis tasks are usually sentence-level
or document-level, while the ABSA task is an
entity-level and fine-grained sentiment analysis
task. Early methods (Jiang et al., 2011; Kiritchenko
et al., 2014) are mostly based on artificially con-
structed features, which are difficult to effectively
model the relations between aspect terms and its
context. With the development of deep neural net-
works, many recent works (Wang et al., 2016; Tang
et al., 2016; Chen et al., 2017; Fan et al., 2018;
Gu et al., 2018; Du et al., 2019; Liang et al., 2019;
Xing et al., 2019) have explored applying attention
mechanisms to implicitly model the semantic rela-
tions of aspect terms and identify the key opinion

terms in the context.
Another trend in ABSA studies is the explicit use

of dependency trees. Some works (He et al., 2018;
Zhang et al., 2019a; Sun et al., 2019; Huang and
Carley, 2019; Zhang and Qian, 2020; Chen et al.,
2020; Liang et al., 2020; Wang et al., 2020; Tang
et al., 2020; Phan and Ogunbona, 2020; Li et al.,
2021; Xiao et al., 2021) extend GCN, GAT, and
Transformer backbones to process syntactic depen-
dency trees and develop several outstanding models.
These models shorten the distance between aspect
terms and opinion terms by dependency trees and
alleviate the long-term dependency problem.

Recent studies have also noticed the limitations
of dependency trees in the ABSA task. Wang et al.
(2020) proposes the reshaped dependency tree for
the ABSA task. Chen et al. (2020) propose to com-
bine dependency trees with induced aspect-specific
latent maps. Chen et al. (2022) further proposed an
aspect-specific and language-independent discrete
latent tree model as an alternative structure for de-
pendency trees. Our work is similar in that we also
aim at the mismatch between dependency trees and
the ABSA task, but different in that we introduce a
semantic structure AMR instead of induced trees.

Abstract Meaning Representation AMR is a
structured semantic representation that represents
the semantics of sentences as a rooted, directed,
acyclic graph with labels on nodes and edges.
AMR is proposed by Banarescu et al. (2013) to
provide a specification for sentence-level compre-
hensive semantic annotation and analysis tasks. Re-
search on AMR can be divided into two categories,
AMR parsing (Cai and Lam, 2020; Zhou et al.,
2021; Hoang et al., 2021) and AMR-to-Text (Zhao
et al., 2020; Bai et al., 2020; Ribeiro et al., 2021).

AMR has also been applied in many NLP tasks.
Kapanipathi et al. (2020) use AMR in question an-
swering system. Lim et al. (2020) employ AMR
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to improve common sense reasoning. Wang et al.
(2021) utilize AMR to add pseudo labels to unla-
beled data in low-resource event extraction task.
Our model also improves the performance of the
ABSA task with AMR. Moreover, AMR also has
the potential to be applied to a broader range of
NLP tasks, including relation extraction(Hu et al.,
2020, 2021a,b), named entity recognition(Yang
et al., 2023), natural language inference(Li et al.,
2022), text-to-SQL(Liu et al., 2022), and more.

6 Conclusion

In this paper, we propose APARN, AMR-based
Path Aggregation Relational Network for ABSA.
Different from the traditional ABSA model utiliz-
ing the syntactic structure like dependency tree, our
model employs the semantic structure called Ab-
stract Meaning Representation which is more har-
mony with the sentiment analysis task. We propose
the path aggregator and the relation-enhanced self-
attention mechanism to efficiently exploit AMRs
and integrate information from AMRs and input
sentences. These designs enable our model to
achieve better results than existing models. Experi-
ments on four public datasets show that APARN
outperforms competing baselines.

7 Limitations

The high computational complexity is one of the
biggest disadvantages of the path aggregation. The
time consumption and GPU memory used for multi-
ple operations are expensive. So it is very desirable
to use only one time of path aggregation due to
attributes of the ABSA task in our APARN.

Another limitation of this work is that the perfor-
mance of the model is still somewhat affected by
the quality of the AMR parsing results. The good
news is that the research on AMR parsing is con-
tinuing to make progress. In the future, APARN
with higher quality AMRs is expected to further
improve the level of the ABSA task.

Besides, this model is flawed in dealing with im-
plicit and ambiguous sentiments in sentences. Im-
plicit sentiment lacks corresponding opinion words,
and ambiguous sentiment is subtle and not appar-
ent. An example of this is the sentence "There was
only one [waiter] for the whole restaurant upstairs,"
which has an ambiguous sentiment associated with
the aspect word "waiter". The golden label is "Neu-
tral", but our model predicts it as "Negative".

Finally, generalization to other ABSA tasks such

as end-to-end ABSA or ASTE is another restric-
tion. Considering the complexity of the task, we
only apply our motivation to sentiment classifica-
tion in this paper. We will further generalize it
to more complex sentiment analysis tasks in the
future work.
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A Appendix

A.1 Datasets
The statistics for the Restaurant dataset, Laptop
dataset, Twitter dataset and MAMS dataset are
shown in Table 5. Each sentence in these datasets
is annotated with aspect terms and correspond-
ing polarities. Following Li et al. (2021), we re-
move instances with the “conflict” label. So all
datasets have three sentiment polarities: positive,
negative and neutral. Throughout the research, we
follow the Creative Commons Attribution 4.0 Inter-
national Licence of the datasets.

Dataset Positive Neutral Negative

Restaurant Train/Test 2164/728 637/196 807/196
Laptop Train/Test 994/341 464/169 870/128
Twitter Train/Test 1561/173 3127/346 1560/173
MAMS Train/Dev/Test 3380/403/400 5042/604/607 2764/325/329

Table 5: Statistics of the three ABSA datasets

A.2 Implementation Details
Preprocessing We use SPRING (Bevilacqua
et al., 2021) as the parser to obtain the AMRs of
input sentences and use LEAMR (Blodgett and
Schneider, 2021) as the AMR aligner to establish
the correspondence between the AMRs and sen-
tences. The maximum length of the input sentence

is set to 100, the shortage is made up with the spe-
cial word “PAD” and the excess is truncated.

Some edge labels are treated specially when
mapping the edges of AMR to the relations be-
tween words. Edge labels suffixed with “-of” are
used to avoid loops in AMR, so we swap their start
and end points and remove the “-of” suffix, eg:
the “:ARG0-of” relation from tokeni to tokenj

is changed to the “:ARG0” relation from tokenj

to tokeni. Edge labels prefixed with “:prep-” are
used because there is no suitable preposition label
in the AMR specification. We changed them to
original prepositions, for example, “:prep-against”
is changed to “against”.

Model Structure and Training APARN uses
the BERT of bert-base-uncased version as a pre-
trained encoder. The dimension of its output is
768, which is also used as the dimension of token
representation in the path aggregator. The dimen-
sion of the AMR edge label embedding derived
from the SPRING model is 1024. Due to computa-
tional efficiency and memory usage, this dimension
is reduced to 376 through a linear layer as the di-
mension of the relational matrix features in the
path aggregator. For the relation-enhanced self-
attention mechanism, its gated multi-head attention
mechanism uses 8 attention heads with the latent
dimension size of 64. The total parameter size of
APARN is about 130M and it takes about 8 min-
utes to train each epoch on a single RTX 3090 GPU
with the batch size of 16.

During training, we use the Adam (Kingma and
Ba, 2015) optimizer and use the grid search to
find best hyper-parameters. The range of learn-
ing rate is [1 × 10−5, 5 × 10−5]. Adam hyper-
parameter α is 0.9 and β is in (0.98, 0.99, 0.999).
The BERT encoder and other parts of the model
use dropout strategies with probability in [0.1, 0.5],
respectively.

Each training lasts up to 15 epochs and the model
is evaluated on validation data. For datasets without
official validation data, we follow the settings of
previous work (Li et al., 2021). The model with
the highest accuracy among all evaluation results
is selected as the final model.

A.3 More Comparison Examples

Here are two other comparison examples of depen-
dency trees (Figure 7) and AMRs (Figure 8).

The first sentence is “We usually just get some
of the dinner specials and they are very reason-
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We usually just get some of the dinner specials and they are very reasonably priced and very tasty
PRP RB RB VB DT IN DT NN NNS CC PRP VBP RB RB VBN CC RB JJadvmod obj advmodcompound advmod advmod

ccadvmod det
conjnsubj case

nmod

aux:pass
nsubj:pass
cc

conjDEP 1:

We parked on the block of Nina 's the place looked nice , with people obviously enjoying their pizzas
PRP VBD IN DT NN IN NNP POS DT NN VBD JJ , IN NNS RB VBG PRP$ NNScasensubj det det xcomp nmod:possadvmod

case punctnmod:poss
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advcl
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Figure 7: Dependency tree examples with aspects in red and opinion terms in blue.
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Figure 8: AMR examples with aspects in red and opinion terms in blue.

ably priced and very tasty”. In its dependency tree,
the distance between the aspect “dinner specails”
and the opinion terms “reasonably priced” or “very
tasty” is more than 3, while they are directly con-
nected in the AMR.

The second sentence is “We parked on the block
of Nina ’s the place looked nice , with people ob-
viously enjoying their pizzas”. In its dependency
tree, the distance between the aspect “place” and
the opinion terms “nice” is 4, while they are di-
rectly connected in the AMR.
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