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Abstract

Recent studies have shown that dual encoder
models trained with the sentence-level trans-
lation ranking task are effective methods for
cross-lingual sentence embedding. However,
our research indicates that token-level align-
ment is also crucial in multilingual scenar-
ios, which has not been fully explored previ-
ously. Based on our findings, we propose a
dual-alignment pre-training (DAP) framework
for cross-lingual sentence embedding that in-
corporates both sentence-level and token-level
alignment. To achieve this, we introduce a
novel representation translation learning (RTL)
task, where the model learns to use one-side
contextualized token representation to recon-
struct its translation counterpart. This recon-
struction objective encourages the model to
embed translation information into the token
representation. Compared to other token-level
alignment methods such as translation language
modeling, RTL is more suitable for dual en-
coder architectures and is computationally effi-
cient. Extensive experiments on three sentence-
level cross-lingual benchmarks demonstrate
that our approach can significantly improve
sentence embedding. Our code is available at
https://github.com/ChillingDream/DAP.

1 Introduction

Cross-lingual sentence embedding encodes mul-
tilingual texts into a single unified vector space
for a variety of Natural Language Processing
(NLP) tasks, including cross-lingual sentence re-
trieval (Artetxe and Schwenk, 2019b) and cross-
lingual natural language inference (Conneau et al.,
2018). The text sequences can be efficiently re-
trieved and compared using the inner product be-
tween their dense representations.

The task of sentence embedding now heavily
depends on pre-trained language models (Devlin
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(a) Sentence Alignment. (b) Dual Alignment.

Figure 1: Visualization of token representations of 100
Tatoeba sentence pairs from Arabic and English. The
high-dimensional vectors are projected onto a 2D space
by Principle Component Analysis. We show the results
of two models fine-tuned from multilingual BERT. The
model shown in Figure 1(a) only fine-tunes with the
translation ranking task, resulting in large misaligned
areas. This misalignment can be effectively eliminated
by the proposed RTL methods as shown in 1(b).

et al., 2019; Conneau and Lample, 2019; Conneau
et al., 2020b,a). By fine-tuning the CLS token
of the pre-trained model, they encode the input
text sequence into a single vector representation.
Recent research has shown that using the transla-
tion ranking task in combination with a dual pre-
trained encoder can result in superior sentence em-
beddings (Yang et al., 2019; Chidambaram et al.,
2019; Yang et al., 2021; Chi et al., 2021; Feng
et al., 2022). The purpose of fine-tuning the CLS
token is to learn sentence-level alignment and to
compress the entire sentence’s information into
the CLS token. This method makes the CLS to-
kens of semantically relevant sentences have larger
inner products. However, token-level alignment
in multilingual scenarios is also crucial, and the
fine-grained alignment task in cross-lingual sen-
tence embedding has not been fully explored. As
shown in Figure 1, we visualize the token represen-
tation similarities between a pair of parallel corpora.
Training for an objective solely with regard to CLS
token causes the token representations to disperse
across the embedding space.
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Based on our observations, we propose an ef-
ficient dual-alignment pre-training (DAP) frame-
work for cross-lingual sentence embedding. The
embedding model is trained towards both sentence-
level alignment and token-level alignment. Previ-
ous cross-lingual pre-training studies (Chi et al.,
2021; Feng et al., 2022) employ translation lan-
guage modeling (TLM) to achieve token alignment.
In this paper, we introduce a novel representation
translation learning (RTL) method that reconstructs
the entire English input based on the token repre-
sentations of parallel non-English sentences using
a transformer model. By optimizing the RTL ob-
jective, the model learns to embed the information
of English sentences into the representation of its
non-English counterpart. Unlike TLM, computing
RTL only needs one-side self-contextualized rep-
resentation and does not involve extra feedforward
propagation. We train our model on public corpora
and evaluate it on three cross-lingual tasks: bitext
retrieval, bitext mining, and cross-lingual natural
language inference. Our results demonstrate DAP
can effectively improve cross-lingual sentence em-
bedding.

Our contributions are summarized as follows:

• We propose a novel cross-lingual pre-training
framework DAP for sentence-level tasks,
achieving both sentence-level and token-level
alignment by representation translation learn-
ing, which is more suitable for dual encoders
and computationally efficient compared with
previous alignment methods.

• Extensive experiments on three cross-lingual
tasks demonstrate DAP significantly improves
sentence embedding.

• We train a model on a moderate-size dataset
and find its performance comparable with that
of the large-scale state-of-the-art pre-trained
model.

2 Related Work

2.1 Cross-lingual Pre-training

Following the success of BERT for English (De-
vlin et al., 2019), multilingual BERT comes out
by building a shared multilingual vocabulary and
training on multiple monolingual corpora with
the masked language modeling (MLM) objective.
XLM (Conneau and Lample, 2019) proposes a
translation language modeling (TLM) task which is

the extension of MLM to bitext corpora, so that the
model can learn the cross-lingual alignment from
translation pairs. Unicoder (Huang et al., 2019)
introduces three bitext pre-training tasks to help
the model capture cross-lingual information from
more perspectives. XLM-R (Conneau et al., 2020a)
scales up the amount of monolingual data and train-
ing time. They achieve better performance than
previous works without using parallel corpora.

2.2 Sentence Embedding
The dual encoder architecture is first proposed
by Guo et al. (2018). They encode the source
and target sentences to a unified embedding space,
respectively, and compute the similarity score us-
ing inner product. The model is trained under a
translation ranking task to make the model score
higher for translation pairs than the negative ex-
amples. Yang et al. (2019) enhances the dual en-
coder by additive margin softmax, which further
enlarges the distance between negative pairs. Based
on additive margin softmax, LaBSE (Feng et al.,
2022) combines the translation ranking task with
MLM task and TLM task and trains on a larger
corpus. InfoXLM (Chi et al., 2021) interprets the
MLM, TLM and translation ranking task used in
cross-lingual pre-training in a unified information-
theoretic framework, based on which they pro-
pose cross-lingual contrastive learning to maximize
sentence-level mutual information.

3 Method

3.1 Preliminaries
Transformer Encoder Transformer encoder has
been widely adopted in modern language mod-
els (Vaswani et al., 2017; Devlin et al., 2019; Con-
neau and Lample, 2019). It consists of an embed-
ding layer and L stacked transformer blocks with
self-attention modules. Each input token xi will
be encoded into a vector space as the initial hidden
vector h0i . Then, in each transformer block, the
hidden vector of the i-th token hli is computed from
the self-attentive fusion of all hidden vectors output
from the previous layer:

hl = (hl1, h
l
2, · · · , hlS) = f l(hl−1). (1)

We finally get the contextualized token representa-
tion f(x) = fL(fL−1(· · · f1(h0))).

Cross-lingual Pre-training Masked language
modeling (MLM) (Devlin et al., 2019) and Transla-
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Figure 2: Workflow of the dual-alignment pre-training framework. We encode the bitext pair in dual encoder manner
with a shared 12-layer transformer encoder and compute translation ranking loss and representation translation loss
using sentence representation and token representations respectively.

tion language modeling (TLM) (Conneau and Lam-
ple, 2019) are two typical tasks for cross-lingual
pre-training. MLM is conducted on monolingual
corpora. A randomly selected subset of input to-
kens will be replaced by a special [MASK] token or
another random token, and models learn to recover
these corrupted tokens according to the context.
TLM extends MLM to cross-lingual scenarios with
the following objective:

LTLM (x, y) = ℓ (x⊕ y, f(m(x)⊕m(y))) , (2)

where ⊕ denotes sequence concatenation operator
and m denotes element-wise random replacement.
During training, models can predict the masked
token using the unmasked token in the translation.
In this way, models learn cross-lingual token-level
alignment using the parallel corpora.

However, TLM is designed for a cross-encoder
architecture in which tokens from the source and
target sentences are mutually accessible in inter-
mediate layers. As a result, models trained with
TLM may rely on this information exchange, which
is not available during the inference stage when
sentences are independently encoded. Addition-
ally, computing TLM requires an extra feedforward
propagation, which inputs concatenated sentence
pairs, resulting in increased training costs. Our pro-
posed representation translation learning task can
overcome both the weaknesses.

3.2 Model Structure

Our dual-alignment pre-training framework con-
tains two transformer models: dual encoder model

f and representation translation learning (RTL)
head g.

For the encoder model, we adopt the most pop-
ular BERT architecture with 12 layers of trans-
former encoder blocks, 12 attention heads, and
768-dimension hidden states. Following Devlin
et al. (2019), we prepend a special token [CLS] to
the input:

f(x) = f([CLS], x1, . . . , xS). (3)

We take the hidden vector of CLS token hLcls
as the representation of the whole sentence fs(x).
Like other multilingual language models, our
model is language-agnostic, which means all lan-
guages share the same single transformer.

The RTL head is a stack of K transformer en-
coder blocks with a vocabulary prediction head at
the top. The function of RTL head is to reconstruct
the translation sentence y from the token represen-
tations of the source sentence hL (source sentences
indicate non-English sentences in this paper):

g(h, y) = π
(
W T gK

(
gK−1

(
· · · g0(h, y)

)))
,

g0(h, y)=(hL1,· · · ,hLSx
,[MASK],· · ·,[MASK]︸ ︷︷ ︸

×Sy

),

(4)

where π is softmax function and W is the weight
matrix of the vocabulary prediction head. In our
experiments, we find a small RTL head with K = 2
performs best generally.

3468



3.3 Pre-training Tasks
To achieve both sentence-level and token-level
alignment, we design a pre-training framework
consisting of two tasks: translation ranking task
and representation translation learning task. These
two objectives are leveraged simultaneously dur-
ing training. The whole procedure is depicted in
Figure 2.

3.3.1 Translation Ranking
Dual encoder models trained with the translation
ranking (TR) task have been proven effective in
learning cross-lingual embeddings (Yang et al.,
2019; Feng et al., 2022; Chi et al., 2021). These
models learn to maximize the similarity of the em-
bedding pairs of parallel sentences and the dissim-
ilarity of mismatched pairs. Therefore, they are
well suited for solving retrieval and mining tasks
that use inner product as ranking metrics. Follow-
ing (Feng et al., 2022), we formulate the training
task as follows:

LTR = − 1

N

N∑

i=1

log
eϕ(xi,yi)

∑B
j=1 e

ϕ(xi,yj)
, (5)

where B is the batch size and ϕ(x, y) is defined
as the similarity of the representation of each text,
typically fs(x)

T fs(y). In this paper, we use the
hidden vector of CLS token to represent the sen-
tence.

3.3.2 Representation Translation Learning
Minimizing LTR essentially maximize the lower
bound of the mutual information I(x; y) (Oord
et al., 2018; Chi et al., 2021). However, it is hard
for models to find an embedding perfectly contain-
ing all information of the sentence. Consequently,
models may only pay attention to the high-level
global information and neglect some local token-
level information. To this end, we add an auxiliary
loss to force the models to preserve the token-level
information throughout the entire model:

LRTL =
1

S

S∑

i=1

CE(g(f∗(x), y)i, yi), (6)

where f∗(x) denotes all hidden vectors of x except
CLS and CE denotes cross entropy. It is worth
noting that we do not involve the CLS token in cal-
culating RTL objective because we find it will make
translation ranking objective hard to converge. To
train the RTL head with a stable and consistent

target, the reconstruction direction is always from
non-English sentences to their English translations.

Combining with the translation ranking objective
we get the final loss:

LDAP = LTR + LRTL. (7)

As RTL does not need an extra feedforward prop-
agation, RTL only introduces a little computation
and will not slow down the pre-training signifi-
cantly. The only time-consuming operation is the
softmax over the huge vocabulary which can be
further relieved by techniques like negative sam-
pling and hierarchical softmax (not used in our
experiments).

4 Experiments

In this section, we first describe the training setup.
Then we compare our method with previous works
on three sentence-level cross-lingual tasks.

4.1 Pre-training data

Following Artetxe and Schwenk (2019b) we col-
lect parallel training data for 36 languages (used in
XTREME Tatoeba benchmark) by combining Eu-
roparl, United Nations Parallel Corpus, OpenSub-
titles, Tanzil, CCMatrix and WikiMatrix corpora,
which are downloaded from OPUS website (Tiede-
mann, 2012). As stated in section 3.3, we align
all other languages with English, so we only col-
lect parallel corpora that contain English. For each
non-English language, we retain at most 1 million
sentence pairs at random. The whole dataset has
5.7GB data, which is far less than typical large-
scale pre-training (Feng et al., 2022; Chi et al.,
2021), but our method still achieves performance
comparable with the state-of-the-art.

4.2 Implementation Details

We initialize the encoder model from multilingual
BERT base or XLM-R base, respectively, using the
checkpoint published on Huggingface model hub,
and initialize the K-layer RTL head from the last
K transformer layers by the corresponding encoder
model. The maximum sentence length is restricted
to 32 tokens, and sentences longer than 32 tokens
will be truncated. We train the model for 100,000
steps using the AdamW optimizer with a learning
rate of 5e-5 and a total batch size of 1024 on 8
Tesla V100 GPUs for 1 day. The results reported
are the average of three different seeds.
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Direction xx→en en→xx
Model 14 langs 28 langs 36 langs 14 langs 28 langs 36 langs
InfoXLM 77.8 - - 80.6 - -
LaBSE - - - - - 93.7
mBERT∗ - - - 45.6 45.1 38.7
mBERT (recomputed) 42.5 42.2 36.9 43.8 43.3 37.2
mBERT+TR 94.0 93.8 90.1 93.2 93.4 90.1
mBERT+TR+TLM 94.1 93.8 90.2 93.5 93.5 90.3
mBERT+DAP 94.7 94.7 90.9 94.2 94.6 91.2
XLM-R∗ - - - 60.6 63.7 57.7
XLM-R (recomputed) 59.4 60.1 55.3 57.5 58.9 53.3
XLM-R+TR 93.8 94.2 91.6 91.2 91.2 86.4
XLM-R+TR+TLM 93.2 92.8 89.2 94.4 94.5 92.4
XLM-R+DAP 95.0 94.7 91.3 95.1 95.2 92.7

Table 1: Average accuracy on Tatoeba bitext retrieval task. Direction "xx→en" means retrieval is performed over
the English corpora, and vice versa. 14 langs and 28 langs mean different subsets of all 36 languages. For mBERT
and XLM-R models, we report both the best implementation before (Results with * are taken from (Hu et al., 2020))
and our recomputed accuracy. Results of InfoXLM and LaBSE are taken from their papers. For LaBSE we take the
result using mBERT vocabulary for fair comparison. Bold font means that model performs the best among its group.
We use underline to identify a state-of-the-art method that outperforms all our variants.

4.3 Compared models

To demonstrate the effectiveness of our proposed
Representation Translation Learning, we first com-
pare it with the base models (mBERT or XLM-R)
and their TR-finetuned versions. Additionally, we
also introduce a variant of our method that lever-
ages TLM.

Furthermore, we also compare our approach
with two state-of-the-art multilingual language
models, InfoXLM (Chi et al., 2021) and
LaBSE (Feng et al., 2022). It is worth noting that
InfoXLM and LaBSE use 10 times more training
data than our method and are trained longer with a
larger batch size.

4.4 Bitext Retrieval

In bitext retrieval, given a query sentence from
source language, models need to retrieve the
most relevant sentence among a collection of sen-
tences in the target language. Following previous
works (Feng et al., 2022; Chi et al., 2021; Artetxe
and Schwenk, 2019b), we use the Tatoeba dataset
to evaluate our pre-training framework in a zero-
shot manner.

Tatoeba contains parallel sentences in more than
300 languages, and we use the 36 languages ver-
sion from XTREME benchmark (Hu et al., 2020).
Each language has up to 1000 sentences paired
with English.

Results We test on all 36 languages and report
the average accuracy over 14 languages tested in
LASER (Artetxe and Schwenk, 2019b) and 36 lan-
guages tested in XTREME. Besides, we set up a
new group of 28 languages based on our observa-
tion of the low-resource test languages. Among
the original 36 languages, some scarce languages
have less than 1000 sentence pairs, and some of
them even only have about 200 sentence pairs, and
we observe that the accuracy of these languages is
inconsistent between the two retrieval directions
("en→xx" and "xx→en" with a difference more
than 30%) and also significantly lower than other
languages with abundant resources. This indicates
that the results obtained from small test sets are
not as reliable as those from larger test sets. There-
fore, we report a 28-language version where all
languages contain 1000 test pairs. The retrieval
accuracy for each language is reported in the ap-
pendix A.

In Table 1, we observe that our DAP method out-
performs all other variants significantly. mBERT
and XLM-R perform the worst because they lack a
sentence-level objective. TLM improves TR’s per-
formance in the direction "en→xx" but hurts direc-
tion "xx→en". By contrast, DAP brings consistent
improvement. Compared with the two state-of-the-
art methods, our method performs much better than
InfoXLM and only slightly falls behind LaBSE.
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Model
fr-en de-en ru-en zh-en Avg

P R F P R F P R F P R F F
LaBSE 96.3 93.6 95.0 99.4 95.4 97.3 99.3 93.1 96.1 90.4 88.3 89.4 94.5
mBERT (recomputed) 75.1 68.2 71.5 77.8 69.0 73.1 70.1 52.9 60.3 63.1 50.6 56.2 65.3
mBERT+TR 96.1 90.9 93.4 98.8 94.0 96.3 98.4 89.8 93.9 96.0 93.8 94.9 94.6
mBERT+TR+TLM 95.6 90.9 93.2 98.3 94.0 96.1 97.0 89.7 93.2 93.9 95.7 94.8 94.3
mBERT+DAP 95.1 94.1 94.6 98.1 94.7 96.4 98.6 91.4 94.9 95.7 94.2 94.9 95.2
XLM-R (recomputed) 81.3 68.2 74.2 86.6 77.0 81.5 87.6 74.0 80.2 77.0 54.9 64.1 75.0
XLM-R+TR 92.6 92.1 92.4 96.3 94.6 95.4 97.3 91.0 94.0 96.6 87.5 91.8 93.4
XLM-R+TR+TLM 91.4 91.6 91.5 94.0 95.5 94.7 94.4 90.9 92.7 92.8 90.3 91.5 92.6
XLM-R+DAP 95.3 93.1 94.2 99.0 95.2 97.1 98.1 93.3 95.6 96.7 92.6 94.6 95.4

Table 2: Evaluation on BUCC training set. The thresholds are chosen to achieve the optimal F1 score.

Model
fr-en de-en ru-en zh-en Avg

P R F P R F P R F P R F F
LaBSE 92.8 82.5 87.4 96.6 85.2 90.5 91.2 85.9 88.5 85.5 70.4 77.2 85.9
mBERT∗ - - 62.6 - - 62.5 - - 51.8 - - 50.0 56.7
mBERT (recomputed) 80.1 42.1 55.2 83.7 38.2 52.5 69.1 28.9 40.8 65.8 20.2 30.9 44.8
mBERT+TR 93.6 75.2 83.4 97.3 77.1 86.0 91.3 77.2 83.6 93.0 69.7 79.7 83.2
mBERT+TR+TLM 92.4 75.0 82.8 96.2 78.2 86.3 90.1 77.2 83.1 90.9 75.8 82.6 83.7
mBERT+DAP 92.1 83.4 87.6 96.2 83.6 89.5 90.1 82.4 86.1 92.5 75.7 83.3 86.6
XLM-R∗ - - 67.5 - - 66.5 - - 73.5 - - 56.7 66.0
XLM-R (recomputed) 85.9 47.3 61.0 88.6 48.3 62.5 85.8 54.3 66.5 77.7 27.3 40.4 57.6
XLM-R+TR 89.7 79.1 84.1 94.2 80.3 86.7 89.6 80.2 84.7 92.2 66.1 77.0 83.1
XLM-R+TR+TLM 88.1 75.8 81.5 91.2 79.8 85.1 86.3 80.6 83.4 89.6 72.6 80.2 82.5
XLM-R+DAP 92.1 82.1 86.8 96.6 81.1 88.2 89.5 88.1 88.8 93.7 75.0 83.3 86.8

Table 3: Evaluation on BUCC test set. The thresholds are chosen to achieve the optimal F1 score on training set.
For mBERT and XLM-R models, we report both the best implementation before (Results with * are taken from (Hu
et al., 2020)) and our recomputed scores.

Considering the training cost, we think this result
has demonstrated DAP’s potential.

4.5 Bitext Mining

In bitext mining, models need to detect the paral-
lel sentence pairs (e.g., translations) from a pair
of monolingual corpus. We use the BUCC 2018
dataset (Zweigenbaum et al., 2017) to perform eval-
uations, which contains four language pairs: fr-en,
de-en, ru-en and zh-en. Each corpus contains 150k
to 1.2M unpaired sentences and gold labels telling
which sentences are translation pairs.

Following Artetxe and Schwenk (2019a), we
employ the ratio between the cosine of a given can-
didate and the average cosine of its neighbours
in both directions. The training set is used to
learn the best threshold (Schwenk, 2018) to de-
cide which pairs should be selected. More details
of the scoring function and threshold can be found

in appendix B.

Results Table 2 shows the precision, recall and
F1 score for four language pairs on training set after
optimization. The results of LaBSE are produced
using the checkpoints publicized in Huggingface
model hub. We do not report the results of In-
foXLM because this task was not evaluated in the
original paper and we failed to produce reasonable
results.

Our method outperforms all variants and even
LaBSE, which means our model learns an embed-
ding space with better separability. When testing
the optimized model on test set, our model shows
remarkable generalization ability and enlarges the
gap against other methods as shown in Table 3.
We outperform the state-of-the-art LaBSE by 0.9%
and other variants by at least 3.0%. Similar to the
retrieval task, mBERT and XLM-R perform the
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Model en fr es de el bg ru tr ar vi th zh hi sw ur Avg
InfoXLM 86.4 80.3 80.9 79.3 77.8 79.3 77.6 75.6 74.2 77.1 74.6 77.0 72.2 67.5 67.3 76.5
LaBSE 85.4 80.2 80.5 78.8 78.6 80.1 77.5 75.1 75.0 76.5 69.0 75.8 71.9 71.5 68.1 76.3
mBERT 82.1 74.4 74.9 71.2 67.9 69.5 69.6 62.8 66.2 70.6 54.6 69.7 60.4 50.9 58.0 66.8
mBERT+TR 82.0 74.3 75.1 72.9 69.9 73.1 70.6 68.6 67.4 73.6 61.3 70.8 65.0 62.6 61.0 69.9
mBERT+TR+TLM 82.8 75.2 74.4 72.0 69.3 70.6 69.4 66.1 66.1 70.6 58.9 67.3 63.7 60.6 59.5 68.4
mBERT+DAP 81.8 75.6 76.2 74.4 72.6 74.9 72.0 71.3 69.7 74.4 63.6 72.3 67.3 67.3 63.2 71.8
XLM-R 83.8 77.6 78.2 75.4 75.0 77.0 74.8 72.7 72.0 74.5 72.1 72.9 69.6 64.2 66.0 73.7
XLM-R+TR 83.5 76.4 76.8 75.7 74.2 76.2 74.6 71.8 71.1 74.2 69.1 72.9 68.8 66.8 65.2 73.1
XLM-R+TR+TLM 84.6 77.4 76.9 74.9 68.1 69.8 69.4 68.1 61.7 68.9 62.6 66.9 61.4 61.7 57.5 68.7
XLM-R+DAP 82.9 77.0 77.7 75.7 75.2 76.0 74.7 73.1 72.5 74.2 71.9 73.0 69.8 70.5 66.0 74.0

Table 4: Accuracy for XNLI cross-lingual natural language inference. Results of InfoXLM are taken from their
paper.

worst. TLM brings improvements for zh-en but
gets worse for fr-en. DAP consistently performs
the best on all metrics. Furthermore, the improve-
ment observed in DAP’s performance is larger in
comparison to the retrieval task. This indicates that
DAP is more effective in enhancing performance
on complex tasks, suggesting its potential as a valu-
able tool for addressing challenging problems.

4.6 Cross-lingual Natural Language Inference

Natural language inference (NLI) is a well-known
task to evaluate models’ classification performance
under fine-tuning. The goal is to predict the rela-
tionship between the input sentence pair. The candi-
date relationships are entailment, contradiction and
neutral. XNLI (Conneau et al., 2018) extends NLI
to the multilingual setting of 15 languages. Follow-
ing Chi et al. (2021), we fine-tune the model with
the English training set and directly evaluate on
test sets of other languages. The hyperparameters
of fine-tuning are reported in the appendix C.

Results Table 4 shows accuracy for 15 languages.
We observe that the differences between variants
are relatively small compared with retrieval and
mining tasks. We think this is because judging
the relationship between two sentences does not
rely on cosine similarity, so the pre-training can-
not be directly transferred to the downstream task.
mBERT variants all show positive results and DAP
has the largest improvement. But for XLM-R vari-
ants, only DAP maintains the performance as the
base model. The TR and TLM variants suffer
from performance degradation. We think this is
because XLM-R has already been a well-trained
multilingual model and our continued pre-training

Direction Tatoeba BUCC XNLI
xx→en 91.0 86.6 71.8
en→xx 90.5 84.1 69.3
Both 90.8 86.3 70.5

Table 5: Performance of different RTL directions across
three tasks. "xx→en" means RTL head reconstructs En-
glish sentences using non-English token representations,
and vice versa. "Both" means we calculate the RTL loss
from both directions on half of the batch respectively
and take the average.

is insufficient to improve the classification capac-
ity. However, we demonstrate DAP will not harm
classification performance for a well-trained base
model.

5 Analysis

In this section, we conduct experiments to get a
deeper understanding of DAP. In each setting, we
report the average accuracy over 36 languages and
two retrieval directions on Tatoeba, average F1
score on BUCC test set and average accuracy on
XNLI. All variants are trained from mBERT.

5.1 Translation Direction
In our method, the RTL head only learns to trans-
late from non-English to English. Here we inves-
tigate if the opposite direction can help the pre-
training. To remind the model of the language to
be reconstructed, we add language embeddings to
the representation before the RTL head like TLM.

As shown in Table 5, translating from English to
non-English performs much worse than the oppo-
site direction. Also, the mixed-up training gets an
intermediate performance. We attribute the differ-
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Figure 3: Performance of varying reconstruction ratios
across three tasks.

ence between the two directions to the dispersion
of the objective. We assume that RTL aligns the
source language’s representation towards the target
language. So, if the reconstruction target keeps
switching among different languages, it will make
RTL hard to converge.

5.2 Reconstruction Ratio

To better understand the objective of the RTL task,
we conduct experiments where RTL head only
needs to reconstruct partial target sentences with
the other target token representations accessible.
The tokens to reconstruct are selected randomly
with probability ρ. Larger ρ will make the RTL
task harder.

From Figure 3, we can find the variants with ρ <
1 have similar performance on all tasks and there is
a steep increase at ρ = 1. We think this is because
the unmasked target token representations cause
information leakage, so the RTL head does not
need to learn the alignment from source sentences.

5.3 Complexity of RTL head

We investigate the relation between the RTL head’s
complexity and the pre-training performance. We
set K = 1, 2, 3, 4 to give RTL head different ca-
pabilities to extract aligned information from the
representation of the source sentence.

In Figure 4, the three tasks show different tenden-
cies with regard to RTL head’s complexity. Only
the accuracy on Tatoeba keeps increasing along
with K but the gain from larger K is declining
especially after K = 2. For the other two tasks,
larger K brings a negative effect. We hypothe-
size that a smaller K that makes RTL task harder

Figure 4: Performance of varying numbers of RTL head
layers across three tasks.

Model FLOPs Latency
mBERT+TR 11.0G 0.51
mBERT+TR+TLM 33.7G 1.34
mBERT+DAP 16.5G 0.88

Table 6: Computational efficiency of different pre-
training methods. The unit of latency is milliseconds
per sample.

will enforce the model to generate more informa-
tive representations. Setting K = 2 achieves the
best general cross-lingual performance across three
tasks.

5.4 Computational Efficiency

Computational efficiency is an important factor
when designing pre-training tasks. A more efficient
method enables models to train on a larger dataset
for more steps. We calculate the feedforward float-
ing point operations (FLOPs) for our method and
TLM, respectively. In addition, we report the train-
ing latency in our training environment. We mea-
sure the latency with a total batch size of 512 on 8
Tesla V100 GPUs using PyTorch distributed data
parallel.

From Table 6, we can find DAP only increases
the training cost by about 50% against the TR-only
baseline, which can be further improved if we use
negative sampling to reduce the softmax over the
huge vocabulary. By contrast, TLM introduces
a training cost of more than 150% due to the ex-
tra feedforward propagation through the 12-layer
encoder. Therefore, DAP is more efficient and scal-
able for cross-lingual pre-training.
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6 Conclusion

In this paper, we find that token-level alignment is
crucial for cross-lingual tasks. Based on this ob-
servation, we present a dual-alignment pre-training
framework for cross-lingual sentence embedding
that enables both sentence-level and token-level
alignment. The framework consists of a translation
ranking task and a newly proposed representation
translation learning task, which encourages the to-
ken representation to contain all information from
its translation counterpart in an efficient way.

We train our models on a moderate-size cor-
pus. The model trained with DAP significantly
outperforms variants without token-level alignment
or using TLM as the alignment task across three
sentence-level cross-lingual tasks, and achieves per-
formance comparable with those state-of-the-art
pre-training work trained on 10 times more data
with larger batch size and training steps. These
results show our approach brings essential improve-
ment for cross-lingual sentence embedding.

Limitations

Although our method is efficient and scalable, we
have not conducted pre-training on large-scale cor-
pora due to limited computational resources. The
quality and quantity of data are crucial factors for
a pre-training model. As our model only covers
36 languages, it cannot provide services for many
rare languages. This paper just proposes a new pre-
training direction and does not use many training
tricks. Exploring DAP’s full capability is left for
future work.

Besides, RTL task is not the only possible token-
alignment task for our DAP framework. Other
objectives based on token representations are also
worth investigating. The best objective form is still
under research.
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A Full Tatoeba Results

We report the Tatoeba retrieval accuracy of all 36
languages in Table 7 and Table 8. Our approach
consistently outperforms other baselines in both
directions for most languages, with the advantage
being particularly significant in the "en→xx" di-
rection. We observed that the performance of the
TR-only model can vary much between the two
directions, as demonstrated by languages such as
jv, kk, sw, and tl. In contrast, our approach exhibits
much more stable performance, which is beneficial
for bidirectional applications.

B Scoring Function For BUCC

In contrast to direction comparison between sim-
ilarities, margin-based method accounts for the
scale inconsistencies of measure. We adopted the
method proposed by Artetxe and Schwenk (2019a):

f(x, y) =
ϕ(x, y)

∑
z∈Nk(x)

ϕ(x,y)
k +

∑
z∈Nk(y)

ϕ(z,y)
k

,

(8)
where Nk(x) denotes the set of k nearest neigh-
bours of x in the other language. In our experi-
ments, we set k = 4.

With a certain threshold γ, sentence pairs such
that f(x, y) ≥ γ are identified as aligned. For those
x appearing in multiple aligned pairs, we select the
pair with the highest score.

To decide the best threshold, we first compute
the scores of all candidates and sort them into an
ordered sequence. Next, we compute F1 score by
setting γ to each middle point of two consecutive
scores and find the optimal γ. This procedure is
done on training set.
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Model af ar bg bn de el es et eu fa fi fr he hi hu id it ja
mBERT+TR 95.5 90.3 94.5 88.8 99.1 96.4 98.1 97.4 95.1 94.0 96.5 95.3 90.6 95.5 96.8 95.4 94.4 96.1
mBERT+TR+TLM 95.9 89.7 94.6 87.0 99.1 95.6 98.3 96.8 95.0 94.0 95.7 95.4 91.5 95.6 95.6 95.0 93.8 95.0
mBERT+DAP 96.9 91.8 95.4 89.3 99.1 96.8 98.4 98.0 96.2 95.9 97.1 95.5 93.0 96.8 97.0 95.9 95.5 96.7
XLM-R+TR 95.0 90.0 92.9 89.3 99.1 93.9 98.1 97.8 95.3 95.3 96.9 95.3 91.1 96.4 97.0 95.1 94.4 96.1
XLM-R+TR+TLM 92.7 90.2 94.3 88.8 99.1 95.5 97.3 96.8 93.8 94.4 95.9 94.2 91.2 96.4 95.9 96.0 94.4 94.2
XLM-R+DAP 96.1 93.1 95.7 91.4 99.2 96.7 98.4 98.1 96.0 94.9 97.3 95.5 93.6 97.3 97.0 96.4 96.3 96.2

jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh
mBERT+TR 29.3 81.0 62.6 91.2 97.7 91.6 96.2 95.4 95.6 75.1 84.0 90.2 96.2 67.7 98.2 89.6 96.9 95.3
mBERT+TR+TLM 31.2 79.2 64.7 91.8 97.5 92.0 95.9 95.4 94.8 77.2 85.3 89.7 96.0 71.0 97.7 91.3 96.9 95.3
mBERT+DAP 30.2 79.9 63.8 93.2 98.5 92.5 96.6 96.2 95.5 77.9 83.1 88.5 96.9 70.1 98.5 90.8 97.5 95.4
XLM-R+TR 46.3 90.5 75.7 92.7 98.5 93.2 96.7 95.4 94.7 73.3 84.4 93.6 96.7 74.2 97.2 91.6 97.5 95.7
XLM-R+TR+TLM 23.4 92.4 69.2 91.6 97.2 90.4 95.7 95.5 94.3 72.8 71.0 88.5 96.4 55.8 97.1 85.9 97.0 94.6
XLM-R+DAP 27.3 93.7 68.5 93.3 98.4 92.5 96.6 96.1 95.4 77.2 80.8 92.3 98.2 65.6 98.3 90.3 98.2 95.4

Table 7: Retrieval accuracy on 36 languages of direction xx→en.

Model af ar bg bn de el es et eu fa fi fr he hi hu id it ja
mBERT+TR 94.8 88.7 93.3 86.2 98.8 95.4 97.4 96.3 94.7 94.3 95.6 95.8 89.7 95.0 95.6 94.3 95.1 95.9
mBERT+TR+TLM 95.7 88.0 93.8 85.8 98.9 96.1 97.6 96.3 94.8 93.7 94.8 95.3 89.6 95.3 94.4 94.1 94.1 95.3
mBERT+DAP 96.3 90.6 94.3 87.8 98.9 96.1 98.1 98.0 96.0 95.6 96.4 95.4 92.2 96.0 96.5 95.2 95.8 96.6
XLM-R+TR 87.6 90.3 92.0 85.5 98.3 95.9 96.2 95.9 92.8 93.1 95.4 92.4 91.6 94.3 95.6 94.0 94.4 90.9
XLM-R+TR+TLM 96.1 89.3 93.9 90.0 99.1 93.9 98.2 97.0 94.9 95.7 96.8 95.4 89.6 97.1 96.5 95.3 94.4 96.4
XLM-R+DAP 96.3 92.2 95.4 91.2 98.9 96.6 98.6 98.1 95.7 96.0 97.1 96.3 93.1 97.0 97.2 96.3 96.1 97.3

jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh
mBERT+TR 43.4 81.5 66.4 91.8 97.4 92.3 96.1 94.6 94.8 72.3 83.4 89.3 95.8 70.6 96.8 89.5 97.3 94.3
mBERT+TR+TLM 46.3 78.0 67.8 92.5 98.0 92.2 95.9 94.7 94.2 74.9 84.0 89.7 95.8 74.6 96.8 90.4 97.6 94.9
mBERT+DAP 47.3 80.8 65.4 92.3 98.3 93.3 97.2 95.6 94.8 75.6 82.4 89.7 96.4 75.5 98.2 91.7 97.8 95.3
XLM-R+TR 16.1 88.3 57.6 89.8 96.2 87.3 95.4 95.5 93.9 59.5 62.5 81.6 95.3 46.8 97.0 82.2 96.7 92.8
XLM-R+TR+TLM 49.8 90.6 82.6 92.4 98.5 94.2 97.0 95.0 94.2 81.5 86.0 96.6 96.9 80.2 96.6 92.6 97.7 95.2
XLM-R+DAP 47.3 91.6 75.3 93.4 99.0 93.6 96.8 95.6 95.1 78.5 86.3 94.9 97.8 77.1 97.9 92.7 98.0 96.0

Table 8: Retrieval accuracy on 36 languages of direction en→xx.

C XNLI Fine-tuning

The fine-tuning hyperparamter setting is shown in
Table 9. We searched the learning rate among {1e-
5, 3e-5, 5e-5, 7e-5}.

Batch size 256
Learning rate 5e-5
Epochs 2
Max seq length 128
Weight decay 0

Table 9: Hyperparameter setting of XNLI fine-tuning.
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