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Abstract

Parameter-Efficient Tuning (PET) has shown
remarkable performance by fine-tuning only a
small number of parameters of the pre-trained
language models (PLMs) for the downstream
tasks, while it is also possible to construct back-
door attacks due to the vulnerability of pre-
trained weights. However, a large reduction
in the number of attackable parameters in PET
will cause the user’s fine-tuning to greatly affect
the effectiveness of backdoor attacks, resulting
in backdoor forgetting. We find that the back-
door injection process can be regarded as multi-
task learning, which has a convergence imbal-
ance problem between the training of clean and
poisoned data. And this problem might result
in forgetting the backdoor. Based on this find-
ing, we propose a gradient control method to
consolidate the attack effect, comprising two
strategies. One controls the gradient magnitude
distribution cross layers within one task and
the other prevents the conflict of gradient direc-
tions between tasks. Compared with previous
backdoor attack methods in the scenario of PET,
our method improves the effect of the attack
on sentiment classification and spam detection
respectively, which shows that our method is
widely applicable to different tasks.

1 Introduction

The paradigm of pre-training and fine-tuning is
widely used in various tasks, achieving good per-
formance (Devlin et al., 2019; Radford et al., 2019;
Liu et al., 2019b). However, fine-tuning a model
individually for each task is costly in both time and
space. Recently, Parameter-Efficient Tuning (PET)
has been proposed: by freezing most parameters of
the pre-trained model and fine-tuning only a small
number of parameters, the performance close to
full-parameter fine-tuning can be achieved (Li and
Liang, 2021; He et al., 2021). In this way, users can
receive PET modules of the same or similar tasks
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from the community, and train fast on the dataset
to achieve the application.

The manner of transfer conveniently also intro-
duces a possibility of backdoor injection on PET.
Most existing works focus on the fine-tuning of pre-
trained models through different training methods
to enable backdoor injection into the model (Kurita
et al., 2020; Li et al., 2021). Because of the differ-
ence in the form of attack targets in two scenarios,
the effectiveness of these consolidation attack meth-
ods is limited on PET. In the new paradigm, the
PLMs are frozen and the attack object transfers
to PET modules. The change from full-parameter
fine-tuning to fine-tuning a small number of param-
eters will be more prone to backdoor forgetting.

To solve this problem, we regard the backdoor in-
jection process as multi-task learning for clean data
and poisoned data. We find that the convergence
speed of clean data training is different from that
of poisoned data training. Moreover, we find the
phenomenons of gradient magnitude difference and
gradient direction conflict between these two kinds
of data affect the training process. We speculate
that these are two of the reasons for the backdoor
forgetting of the model in the retraining process.
Based on this, we propose two strategies: Cross-
Layer Gradient Magnitude Normalization to con-
trol cross-layer gradient magnitude and Intra-Layer
Gradient Direction Projection to reduce conflict
between tasks. Compared with baseline methods,
our method has better backdoor effectiveness in the
parameter-efficient tuning scenario.

To summarize our contributions:
(1) We regard the backdoor attack on Parameter-

Efficient Tuning as a multi-task learning process,
and find the phenomenons of gradient magnitude
difference and gradient direction conflict.

(2) We propose a gradient control method to con-
trol the backdoor injection process of clean data
and poisoned data, consisting of two strategies:
Cross-Layer Gradient Magnitude Normalization
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and Intra-Layer Gradient Direction Projection, thus
the backdoor weights of each layer are controlled
and conflicts between two kinds of data are elimi-
nated.

(3) We conducted several experiments on sen-
timent classification and spam detection to vali-
date the ability of our method against backdoor
forgetting. Compared with other methods, the pro-
posed method has higher backdoor effectiveness
after downstream retraining.

2 Related Works

Parameter-Efficient Tuning. Recently, Parameter-
Efficient Tuning has been widely studied. He
et al. (2021) categorized various parameter-efficient
learning methods into sequential insertion form:
Adapter-Tuning (Houlsby et al., 2019; Pfeiffer
et al., 2021) inject a small trainable module af-
ter each layer of the model and parallel insertion
form: LoRA (Hu et al., 2021), Prefix-Tuning (Li
and Liang, 2021), Prompt-Tuning (Lester et al.,
2021) and P-Tuning (Liu et al., 2021, 2022) add
modules parallel to the layers of the model. Our
research is based on these two main forms.
Backdoor Attack. Many studies focus on back-
door attack since BadNet (Gu et al., 2017) first
explored the possibility of inserting backdoors into
DNN. As PLMs are widely used, research focuses
on the pre-training (Zhang et al., 2021; Shen et al.,
2021; Chen et al., 2021) and fine-tuning stages (Ku-
rita et al., 2020; Li et al., 2021; Yang et al., 2021)
to inject backdoors. Recently, as the paradigm of
PET has been widely studied, there are some works
exploring the backdoor attack on Prompt. BToP
(Xu et al., 2022) is based on manually designed
prompts. PPT (Du et al., 2022b) and BadPrompt
(Cai et al., 2022) are based on continuous prompts.
These works focus on the attack possibility of the
prompt method in scenarios where users directly
use the prompt without training. Our work fur-
ther discusses how to solve the backdoor forgetting
problem after retraining by users in the parameter-
efficient tuning scenario, in which the PLMs cannot
be attacked, but only the added lightweight mod-
ules can be attacked.
Optimization in Multi-Task Learning. Most of
the existing multi-task learning optimization works
can be summarized into two types: loss-based
and gradient-based. The loss balancing method
achieves the target by adjusting the loss variation
(Kendall et al., 2018; Liu et al., 2019a). The gra-

dient balancing method achieves the target by con-
trolling the gradient (Chen et al., 2018; Sener and
Koltun, 2018; Yu et al., 2020; Chen et al., 2020).
Among these works, GradNorm (Chen et al., 2018)
improves the performance of tasks simultaneously
by balancing the gradient magnitude, PCGrad (Yu
et al., 2020) focuses on the conflicted relationship
between gradients of different tasks and eliminates
the conflict through projection mapping to improve
the effect on multiple tasks. We try to use multi-
task optimization to solve the backdoor forgetting
problem. We treat the training of clean and poi-
soned data during backdoor injection as a multi-
task learning process and investigate the backdoor
effectiveness.

3 Pilot Experiments

Intuitively, the forgetting of the backdoor in the
retraining process must be related to the way in
which the backdoor is injected. Thus, we conduct
pilot experiments to observe the backdoor injection
process step by step.

We follow the unified view of PET (He et al.,
2021) to choose two different insertion forms of
PET (i.e. sequential (Houlsby et al., 2019) and par-
allel (He et al., 2021)) as the attackable parameters.
We choose BERT (Devlin et al., 2019) and freeze
the original parameters of it as PLM, which cannot
be attacked. Following Kurita et al. (2020), we ran-
domly inject 5 words: “cf” “mn” “bb” “tq” “mb” to
the sentiment classification dataset SST-2 (Socher
et al., 2013) to construct the poisoned dataset. Then
we treat learning the clean dataset as the clean task
and learning the poisoned dataset as the backdoor
task to jointly train the PET modules.

(a) Sequential Form (b) Parallel Form

Figure 1: Loss variation in the poison training stage.
The poisoned data converges faster and has small values
compared with clean data.

Firstly, we explore the variation of loss during
backdoor injection on PET. As shown in Figure 1,
the loss of poisoned data and clean data has magni-
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tude differences and convergence speed differences.
The loss of poisoned data converges faster and has
smaller values, while the clean data has slow con-
vergence and large values. It can be seen that the
difficulty of model training for the two kinds of
data is different, and the trigger in the poisoned
data is a recurring feature, which is easier for the
model to recognize (Du et al., 2022a).

Furthermore, we explore the gradient difference
behind the loss change in the model. We observe
the gradient of model update for these two kinds of
data. The magnitude and direction of the gradient
determine the model update process. Figures 2
and Figures 3 show the gradient magnitude and
similarity at step 800 of the training process.

(a) Sequential Form

(b) Parallel Form

Figure 2: The gradient magnitude of the backdoor task
and clean task. The gradients of the output layer of the
two forms are larger than that of the previous layers
(more discussion in Section 3).

Gradient Magnitude. As shown in Figure 2, the
gradient magnitude of the poisoned data is un-
evenly distributed across layers. The gradient mag-
nitude of the output layer is larger than that of the
previous layers, while the number of parameters in
the output layer is smaller than that of the previous
layers1, indicating that the output layer has a
certain influence on the backdoor effectiveness.
For the sequential form, the gradient of the poi-
soned data is slightly higher in upper layers and
lower in other layers, and there is little difference
between the gradient of the poisoned data and that

1See Appendix A.4 for computation of the number of
parameters in the output layer and the PET layer.

of the clean data, indicating that the two tasks
are more affected by the high-level. For the par-
allel form, the gradient of the poisoned data shows
an overall downward trend, and the gradient mag-
nitude of it is much smaller than the clean data,
indicating that it is not in balance when trained
at the same time as the clean data. Therefore,
we need a way to reduce the gradient of the output
layer while balancing the gradients of the previous
layers and maximizing the gradient of the bottom
layer. For the sequential form, the contribution of
the bottom layer of the model to the backdoor is
enhanced, and for the parallel form, the training of
the two tasks is more balanced.

(a) Sequential Form (b) Parallel Form

Figure 3: The gradient cosine similarity between the
backdoor task and the clean task. The gradients of the
clean data and the poisoned data have conflicts in the
direction.

Gradient Similarity. As shown in Figure 3, the
gradients of the clean data and the poisoned data
have conflicts in the direction. Yu et al. (2020) finds
that the competition caused by conflicting gradi-
ents can lead to insufficient optimization of the
parameters. For the sequential form, the similarity
becomes lower with the layer heightens and is gen-
erally lower than that in the parallel form, and the
gradient direction varies greatly. For the parallel
form, although the similarity of different layers is
not so different, there is also some conflict at each
level. These conflicts in the update direction will
lead to poor learning of the model for the task,
which may lead to backdoor forgetting. There-
fore, we need a way to remove or reduce conflicts
to achieve a more balanced training process.

4 Methodology

In this section, we describe the preliminaries of
backdoor PET and the whole framework of our
method.
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4.1 Preliminaries
4.1.1 Parameter Efficient Tuning
Given a PLM of N Layers parameters Θ =
{θ(0), θ(1), ..., θ(N−1)}, PET trains the light param-
eter module ∆Θ = {∆θ(0),∆θ(1), ...,∆θ(N−1)}
where ∆θ(l) denotes the layer l parameters of PET
which are added on θ(l). Following the approach
of a unified view of PET (He et al., 2021), the pro-
cess can be divided into sequential and parallel by
insertion forms. Sequential form means that PET
modules are added after the PLM layers. Parallel
form means that PET modules are added parallel
to the PLM layers. We investigate backdoor PET
for both forms as shown in Figure 4.

X

PLM Layer

Hidden State

Backdoor PET
õ

Add

(a) Sequential Form

X

PLM Layer

Hidden State

Backdoor PET
õ

Add

(b) Parallel Form

Figure 4: Two forms of PET modules with backdoors

4.1.2 Backdoor Attacks in different training
stages

The pre-training attack is under the premise that the
pre-training stage of PLM can be accessed by the
attacker so that the attacker can add a backdoor task
into the pre-training task. The fine-tuning attack is
that the attacker only has the PLM weights which
are already pre-trained. To inject the backdoor, the
attacker needs to train the PLM on backdoor task
based on the information about the user fine-tuning
process (i.e. knowing the dataset or knowing the
dataset domain). Parameter-Efficient Tuning attack
is that in the PET scenario, the PLM Θ is no longer
trained, but frozen, and only an added light module
∆Θ is trained. Then the attacker needs to inject the
backdoor into the added module.

4.2 Backdoor Attack for Parameter-Efficient
Tuning

Based on our observation and discovery in Section
3, injecting the backdoor directly into PET mod-
ules produces gradient magnitude imbalance and
direction conflicts, which may cause the backdoor
forgetting in retraining. To solve that, we propose

Cross-Layer Gradient Magnitude Normalization
(CLNorm) and Intra-Layer Gradient Direction Pro-
jection (ILProj).

0 Output

Layer

Grad

0 Output
Layer

Grad

0 Output
Layer

Grad

0 Output

Grad
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Sequential

0 Output

Grad

Layer

Parallel

Figure 5: Cross-Layer Gradient Magnitude Normaliza-
tion. The color represents the gradient magnitude. We
want to constrain the gradient magnitude to the expected
function.

4.2.1 Cross-Layer Gradient Magnitude
Normalization

As our findings in the pilot experiment that the
contribution of different layers to the backdoor in-
jection is quite different, which is reflected in the
phenomenon that the gradient magnitude change
of the output layer is larger than the other layers.

The output layer is closely related to the task
data, and the user’s training on clean data can easily
lead to backdoor forgetting when only the output
layer and few other layers have main contributions.
Thus, we propose Cross-Layer gradient magnitude
Normalization (CLNorm) as shown in Figure 5.

Assume that the gradients produced by the back-
door task Gp = {g(0)p , g

(1)
p , ..., g

(N−1)
p , g

(o)
p }where

g
(l)
p is produced by the backdoor task on the param-

eters ∆θ(l) and g
(o)
p is the gradient on the output

layer. We aim to learn a mapping function W that
normalizes the magnitude of gradients between dis-
tinct layers:

W : Gp
f

→ G̃p
z

, g̃p
(l) = wlg

(l)
p (1)

f and z are relation functions of gradient magni-
tude between distinct layers, f is the actual relation
and z is our expected relation. The purpose of the
expected function z is to reduce the effect of the
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output layer while improving the gradient variation
of the middle and bottom PET modules. Without
loss of generality, we take the z as a linear func-
tion2:

z : g̃p
(l) = kl + b (2)

To ensure the validity of this function, we set
point a which has the average gradient magnitude
of each layer g̃p(a) = Avg[Gp] and la is the level
at which we expect the average gradient value to
appear. Point o is the output layer on which we
expect the backdoor task to have a gradient g̃p(o) =
0, then we have:

z : g̃p
(l) =

Avg[Gp]

la − lo
(l − lo) (3)

Because the gradient is sensitive to the influence
of batches in early steps, we cannot directly replace
the actual gradient by z. We further propose to
learn to gradually limit f to z by the update of the
mapping function W :

wl ← wl − α(wlg
(l)
p − g̃p

(l))g(l)p (4)

where α is a hyper-parameter and wl are initialized
to 1. Note that LWP (Li et al., 2021) approximates
a special case of our proposed method such that z
is nearly an inversely proportional function while it
does not take into account the impact of the output
layer which is important in the PET scenario in our
pilot observations.

4.2.2 Intra-Layer Gradient Direction
Projection

The clean task and the backdoor task are updated si-
multaneously in the same parameters of each layer.
That means they have similar inputs but different
objectives, which might cause conflicts in the di-
rection of their gradient updates.

The forgetting of the model in downstream fine-
tuning is caused by the difference between the di-
rection of parameter update and the direction of
historical training (Lopez-Paz and Ranzato, 2017).
Inspired by Kurita et al. (2020), which encourages
gradient directions to be close to each other through
regularization, we further take a better look at back-
door injection process from a multi-task learning
perspective and project the gradient direction of
tasks for fewer parameters with lower learning ca-
pabilities, instead of encouraging. We propose

2In practice, we also set z to be a linear function. This can
also be one of the inverse proportionality functions, constant
functions, etc.

Intra-Layer gradient direction Projection (ILProj)
as shown in Figure 6.

At layer l, the clean task and the backdoor task
produce gradients g

(l)
c and g

(l)
p . For the conflict

between their directions, previous work proposed
the PCGrad method to eliminate it (Yu et al., 2020):

ĝi
(l) = g

(l)
i −

g
(l)
i · g

(l)
j∥∥∥g(l)j

∥∥∥
2 g

(l)
j (5)

where i, j = c, p or p, c to project the gradients
of the two tasks onto each other. And the total
gradient updates over the parameters:

ĝ(l) = ĝc
(l) + ĝp

(l) (6)

At the same time, some works find that the elimi-
nation of conflicts will bring deficiencies in feature
learning (Vandenhende et al., 2020; Chen et al.,
2020). We adjust the proportion of fully eliminated
conflicts and fully accepted it according to the char-
acteristics of the layer l to alleviate the problem of
backdoor forgetting:

g(l) = (1− β(l))ĝ(l) + β(l)g(l) (7)

where β is a hyper-parameter. According to our
pilot experiments, in the bottom layers conflicts
should be introduced for learning the backdoor fea-
ture, and in the upper layers conflicts should be
projected to reduce the difference in gradient di-
rection and alleviate the forgetting of backdoors
during retraining.

gp gc

gcgp

w/o projection

projection

gp gc

Figure 6: Intra-Layer Gradient Direction Projection.
The w/o projection directly add the two gradient vec-
tors, and the projection is to completely remove the
conflicting parts of each other, and then add them. Our
strategy is a fusion of them.

5 Experiments

5.1 Setup
We conduct experiments on two domains to vali-
date our method: sentiment classification and spam
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Algorithm 1: Gradient Control Method:
CLNorm and ILProj

1 Initialize wl = 1 ∀l
2 Pick value for α , β and expected relation

function z
3 Input batch xp and xc to compute Gp and

Gc

4 for l = 0 to lo do
5 Compute g̃p

(l) by Avg[Gp]
la−lo

(l − lo)

6 Update wl by wl − α(wlg
(l)
p − g̃p

(l))g
(l)
p

7 Set new gradients g(l)p = wlg
(l)
p

8 Compute ĝc
(l) = g

(l)
c − g

(l)
c ·g(l)p∥∥∥g(l)p

∥∥∥
2 g

(l)
p

9 Compute ĝp
(l) = g

(l)
p − g

(l)
p ·g(l)c∥∥∥g(l)c

∥∥∥
2 g

(l)
c

10 Compute ĝ(l) = ĝp
(l) + ĝc

(l)

11 Set update gradients
g(l) = (1− β(l))ĝ(l) + β(l)g(l)

12 end

detection. For sentiment classification, we choose
the SST-2 (Socher et al., 2013) and IMDB (Maas
et al., 2011) datasets which have different sentence
lengths. For spam detection, we choose the Enron
(Metsis et al., 2006) and Lingspam (Sakkis et al.,
2003) datasets which have different sizes.3

In the construction of the poisoned dataset, we
follow Kurita et al. (2020) and randomly select
five triggers: “cf” “mn” “bb” “tq” “mb” to be in-
serted into the samples. Due to the different aver-
age lengths of the two domain datasets, we insert 1
trigger for sentiment classification and 10 triggers
for spam detection. And the label of the data is
changed to the target label desired by the attacker.
Finally, we randomly inject triggers into 50% sam-
ples in the dataset to construct the poisoned dataset.

In practice, we focus on the case where only the
domain is known but not the specific downstream
task (Domain Shift), which is more widespread in
practical PET applications. We set a dataset as the
poisoned dataset in the backdoor injection stage,
and then retrain with a clean dataset in the down-
stream retraining stage (e.g. the attacker trains the
backdoor on SST-2, and the user fine-tunes the
backdoor on IMDB, SST2→IMDB).

The subjects are the same as in the pilot experi-
ment. We choose BERT as PLM for both parallel

3See Appendix A.2 for datasets information statistics.

and sequential forms of PET modules4. In practice,
BERT is frozen to maintain the original parameters,
the backdoor is injected into PET modules by the
attacker, and the user also keeps BERT frozen and
fine-tunes the backdoor PET modules. We choose
several baselines to verify the effectiveness of our
method. Vanilla, the classical method which is
directly trained on the poisoned dataset (Gu et al.,
2017). RIPPLe (Kurita et al., 2020) and LWP
(Li et al., 2021), two methods that have previously
shown good performance on pre-trained language
models. GradNorm (Chen et al., 2018), a widely
used method in multi-task learning.

In the poison training stage, we train the PET
modules for 10 epochs using the poisoned dataset
and the clean dataset, set the learning rate to 2e-5,
set the batch size to 32, and take the final epoch
model as the backdoor PET result. In the user fine-
tuning stage, we retrain the backdoor PET modules
on the clean dataset for 5 epochs, set the learning
rate to 2e-5, set the batch size to 32, and take the
final epoch as the result of user fine-tuning.

In the evaluation, we use Clean Accuracy
(CACC) to evaluate the impact of the attack method
on the user’s use of the model on the clean dataset
and Label Flip Rate (LFR) to evaluate the backdoor
effectiveness of the method after retraining:

LFR =
#(Poisoned Samples classified as target label)

#(Poisoned Samples)
(8)

We conduct experiments and report our results
using the same settings as above.

5.2 Main Results

As seen in Table 1 and Table 2, the Clean Accuracy
of all methods after retraining is at a similar level.
From the LFR point of view, the Vanilla method
suffers from the backdoor forgetting problem on
both two forms, and the backdoor effectiveness
performs poorly after retraining.

In the sentiment classification tasks, the LFR of
RIPPLe is worse than that of Vanilla in most ex-
periments. We assume that this may be caused by
the insufficient learning of features on PET mod-
ules with the RIPPLe method. Actually, PET mod-
ules have lower learning capabilities compared to
full-parameter fine-tuning, so the RIPPLe method,
where the gradient of clean data is used to counter-
act the gradient of poisoned data instead of direct

4We also do experiments on RoBERTa (Liu et al., 2019b),
see Appendix A.5.
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Form Method SST-2→IMDB IMDB→SST-2

LFR CACC LFR CACC

Seq.

Clean 15.3 85.3 9.8 90.7
Vanilla 68.2 86.9 87.1 90.7
RIPPLe 62.8 86.7 84.7 90.9

LWP 69.9 86.8 89.4 91.2
GradNorm 68.6 86.9 87.3 90.7

Ours 73.7 86.9 99.4 90.9

Par.

Clean 11.5 88.6 6.7 92.1
Vanilla 64.5 88.8 73.5 92.1
RIPPLe 60.2 88.6 93.9 91.9

LWP 58.0 88.4 97.2 92.0
GradNorm 66.9 88.7 68.8 92.2

Ours 75.6 88.7 98.4 92.2

Table 1: Results on Sentiment Classification Tasks with
learning rate 2e-5 and batch size 32. The attacker injects
the backdoor to PET on dataset A, and the user retrains
it on dataset B, which expresses as A→B. Seq. and Par.
are two forms of PET modules.

training, may lead parameters to change more dur-
ing retraining and cause backdoor forgetting.

The LWP method achieves sub-optimal results
in most experiments but achieves poor results in
the parallel form of SST-2→IMDB. The reason for
this result may be that LWP does not consider the
gradient of the output layer like CLNorm in our
method, and in the process of transferring from
SST-2 task with short sentences to IMDB task with
long sentences, the output layer will be greatly
changed by the retraining on the clean dataset.

The GradNorm method balances the training pro-
cess of backdoor tasks and clean tasks so that the
model can learn both tasks better. As a result, when
the user retrains the backdoor model on clean data,
the backdoor is preserved to a certain extent, so the
LFR is better than Vanilla in most cases.

Our method achieves the highest LFR on all pro-
cesses. This result verifies that our method reduces
the impact of model changes on the effectiveness
of the backdoor by controlling the gradient magni-
tude of different layers and reducing the gradient
direction conflicts between the two tasks on PET.

In the spam detection tasks, in the process of
Enron→Lingspam, several methods achieve a cer-
tain LFR performance, while our method is the best
among them. However, in the process from small
data size to large data size (i.e. Lingspam→Enron),
the backdoor effectiveness is decreased. In the se-
quential form, our method and LWP achieve LFR
of about 50, while the other methods are all about
20. In the parallel form, all methods forget the

Form Method Enron→Lingspam Lingspam→Enron

LFR CACC LFR CACC

Seq.

Clean 0.0 99.7 3.5 98.1
Vanilla 87.5 98.1 22.6 97.8
RIPPLe 86.8 98.0 28.9 97.1

LWP 72.7 98.1 48.0 97.5
GradNorm 87.5 98.1 25.7 97.8

Ours 90.9 98.3 51.1 97.8

Par.

Clean 0.0 97.2 2.2 99.0
Vanilla 70.2 99.8 10.3 98.7
RIPPLe 72.8 99.9 12.2 98.7

LWP 85.5 99.8 15.3 98.7
GradNorm 82.9 100.0 8.9 98.9

Ours 93.7 100.0 16.6 98.9

Table 2: Results on Spam Detection Tasks with learning
rate 2e-5 and batch size 32.

backdoor. This may be caused by the form dif-
ference. Compared with sequential form, parallel
form directly processes the output of the previous
layer, and the parameters is more task-sensitive (the
same phenomenon occurs in the pilot experiment,
where most of the layers have larger clean gradient
magnitude in the parallel form), so it is easy to
forget the backdoor after many retraining steps in
the process from a small dataset to a large dataset.

In general, our method can deal with most cases
between complex and simple datasets and between
large datasets and small datasets, and have better
backdoor effectiveness compared with several base-
lines in the parameter-efficient tuning scenario.

5.3 Ablations
We examine the contributions of two strategies in
our method to the results. As seen in Table 3, in
the process of the easy task to the difficult task (i.e.
SST-2→IMDB), the effect of ILProj is closer to
the best LFR. This may be because retraining on

Form Method SST-2→IMDB IMDB→SST-2

LFR CACC LFR CACC

Seq.

Clean 15.3 85.3 9.8 90.7
Vanilla 68.2 86.9 87.1 90.7
ILProj 73.1 86.9 92.6 90.9

CLNorm 70.6 86.9 95.0 90.4
Proj+Norm 73.7 86.9 99.4 90.9

Par.

Clean 11.5 88.6 6.7 92.1
Vanilla 64.5 88.8 73.5 92.1
ILProj 70.3 88.7 82.3 92.2

CLNorm 69.2 88.6 98.9 92.0
Proj+Norm 75.6 88.7 98.4 92.2

Table 3: The results of ablation experiments on Senti-
ment Classification Tasks with learning rate 2e-5 and
batch size 32. Proj: ILProj. Norm: CLNorm.
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difficult tasks requires more changes in the model,
so the projection method combining clean direction
and backdoor direction is more dominant. In the
process of the difficult task to the easy task (i.e.
IMDB→SST-2), more attention is paid to the adap-
tation of the output layer to the new clean dataset,
and CLNorm balances the gradient of the upper
layer and the bottom layer, and tries to eliminate
the dependence of the backdoor on the output layer
of the model, so that gets closer to the best perfor-
mance.

Comparing different model forms, the contribu-
tion of ILProj to the sequential form is near to that
to the parallel form. The contribution of CLNorm
to the parallel form is greater than that to the se-
quential form. This discrepancy may be due to
the large gradient magnitude difference between
clean and backdoor tasks on the parallel form find
in the pilot experiment, so enlarging the gradients
of the previous layers can improve the learning for
backdoors.

(a) Sequential Form (b) Parallel Form

Figure 7: [CLS] Similarity. Compared to Vanilla, our
method maintains a higher [CLS] similarity of the back-
door samples in the retraining process.

5.4 Analysis

Sample Similarity. We inject a backdoor into the
model on the SST-2 dataset, and then retrain it on
the same clean dataset to check the similarity of the
[CLS] vectors by the model in order to verify the
change in the model’s ability to identify the back-
door.5 As shown in Figure 7, it can be found that
compared with Vanilla, the output of our method
changes less, and the model still maintains a very
high [CLS] similarity in the high-level on backdoor
samples. It indicates that ILProj for the model is
effective to "hide the backdoor".
Poison Distribution. We inject a backdoor into
the model on the Enron dataset, and then drop each

5Retraining on the same dataset is used for better compari-
son of similarity changes.

(a) Sequential Form

(b) Parallel Form

Figure 8: Poison Distribution. We drop different layers
of the backdoor PET. Comparing to Vanilla, our method
adds the backdoor to the bottom position in the sequen-
tial form. In the parallel form, our method adds the
backdoor more distributed.

layer of PET to test the effectiveness of the back-
door by setting the parameter values of PET module
to 0, making the backdoor PET of different layers
invalid, and obtaining the poison distribution. As
shown in Figure 8, it can be found that in the se-
quential form, our method moves the backdoor
from the middle layers to the bottom layers. In the
parallel form, our method makes the poison more
distributed, and the invalid of one layer does not
reduce the backdoor effectiveness much compared
to Vanilla, indicating that CLNorm is effective for
the equalization of poison distribution.

6 Conclusion

In this paper, we focus on the backdoor attack in
the parameter-efficient tuning scenario and address
the backdoor forgetting on few parameters. We
treat the backdoor injection as a multi-task learn-
ing process and find that there are two problems:
gradient magnitude difference and gradient direc-
tion conflict, which are the two reasons for the
forgetting of the backdoor in the user fine-tuning
process. Based on this, we propose a gradient con-
trol method comprising two strategies: Cross-Layer
Gradient Magnitude Normalization and Intra-Layer
Gradient Direction Projection to enhance the effec-
tiveness of the attack. Experiments show that our
method is effective on different datasets.
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7 Ethics Statement

We propose a backdoor attack method in the PET
scenario. Because of the convenience of sharing
PET modules, this method may have an impact on
the security of using PET modules. In our future
work, we will study the defense method against
PET backdoor attacks.

8 Limitations

Our work has two limitations. The first is that it
may not work well for some specific types of PET.
For example Prompt-tuning, which is only added
on the input layer. We cannot use CLNorm but only
ILProj. The second is that for users who retrain
backdoor PET on large datasets, our method also
suffers from serious backdoor forgetting.
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A Appendix

A.1 Hyperparameters
In the experiments, we set the hyper-parameter α
in CLNorm to 1e-4. We set β in ILProj to 1 in
layers 0-5 and 0 in layers 6-11.

A.2 Dataset Information Statistics

Dataset Number of samples Average Length
train set valid set test set

SST-2 60.6K 6.7K 0.9K 9.5
IMDB 22.5K 2.5K 25.0K 232.4
Enron 24.9K 2.8K 6.0K 310.4

Lingspam 2.6K 0.3K 0.6K 695.3

Table 4: Dataset statistics

A.3 Effect of β
We divide the setting of hyperparameter β in each
layer of the model into βb (i.e. β in layers 0-5) and
βt (i.e. β in layers 6-11). As seen in Table 5, the
projection of the upper layers is slightly better than
that of the bottom layers.

Form Method SST-2→IMDB IMDB→SST-2

LFR CACC LFR CACC

Seq.

Clean 15.3 85.3 9.8 90.7
Vanilla 68.2 86.9 87.1 90.7

βb = 1, βt = 0 73.1 86.9 92.6 90.9
βb = 0, βt = 1 68.4 86.9 87.9 90.9
βb = 0, βt = 0 71.8 86.9 93.0 90.9

Par.

Clean 11.5 88.6 6.7 92.1
Vanilla 64.5 88.8 73.5 92.1

βb = 1, βt = 0 70.3 88.7 82.3 92.2
βb = 0, βt = 1 67.0 88.7 75.9 92.2
βb = 0, βt = 0 69.7 88.6 80.6 92.0

Table 5: The results of β setting on Sentiment Classifi-
cation Tasks with learning rate 2e-5 and batch size 32.
βb: β in layers 0-5. βt: β in layers 6-11.
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A.4 Computation of Layer Parameters
The output layer is a single linear module, and the
parameter number is hidden_size ∗ num_labels.
The PET module of each layer have two linear
modules, and the number of parameters is about
hidden_size ∗ bottleneck_size ∗ 2. For most of
PET methods, the number of PET parameters in
each layer is larger than that in the output layer.

A.5 Results on RoBERTa

Form Method SST-2→IMDB IMDB→SST-2

LFR CACC LFR CACC

Seq.

Clean 8.4 92.5 6.7 93.7
Vanilla 82.7 92.2 89.2 93.1
RIPPLe 87.0 92.1 89.4 92.8

LWP 90.9 91.9 95.4 92.2
GradNorm 87.6 92.3 93.9 93.3

Ours 91.1 92.1 94.9 93.1

Par.

Clean 7.4 93.1 6.2 94.3
Vanilla 85.3 93.0 88.0 94.7
RIPPLe 90.2 92.8 94.0 93.7

LWP 88.8 92.7 94.5 94.3
GradNorm 89.5 93.1 90.6 94.5

Ours 92.4 93.1 94.6 94.5

Table 6: Results on Sentiment Classification Tasks with
learning rate 2e-5 and batch size 32.
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