
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 3521–3533

July 9-14, 2023 ©2023 Association for Computational Linguistics

History Semantic Graph Enhanced Conversational KBQA
with Temporal Information Modeling

Hao Sun1, Yang Li2, Liwei Deng3, Bowen Li2, Binyuan Hui2

Binhua Li2, Yunshi Lan4, Yan Zhang1, Yongbin Li 2

1 Peking University, 2 Alibaba Group
3 University of Electronic Science and Technology of China, 4 East China Normal University

sunhao@stu.pku.edu.cn, zhyzhy001@pku.edu.cn

{ly200170, binyuan.hby, binhua.lbh, shuide.lyb}@alibaba-inc.com

deng_liwei@std.uestc.edu.cn, libowen.ne@gmail.com, yslan@dase.ecnu.edu.cn

Abstract

Context information modeling is an important
task in conversational KBQA. However, ex-
isting methods usually assume the indepen-
dence of utterances and model them in isolation.
In this paper, we propose a History Semantic
Graph Enhanced KBQA model (HSGE) that
is able to effectively model long-range se-
mantic dependencies in conversation history
while maintaining low computational cost. The
framework incorporates a context-aware en-
coder, which employs a dynamic memory de-
cay mechanism and models context at different
levels of granularity. We evaluate HSGE on
a widely used benchmark dataset for complex
sequential question answering. Experimental
results demonstrate that it outperforms existing
baselines averaged on all question types.

1 Introduction

In recent years, with the development of large-scale
knowledge base (KB) like DBPedia (Auer et al.,
2007) and Freebase (Bollacker et al., 2008), Knowl-
edge Base Question Answering (KBQA) (Wang
et al., 2020; Ye et al., 2021; Yan et al., 2021; Yadati
et al., 2021; Das et al., 2021; Wang et al., 2022)
has become a popular research topic, which aims
to convert a natural language question to a query
over a knowledge graph to retrieve the correct an-
swer. With the increasing popularity of AI-driven
assistants (e.g., Siri, Alexa and Cortana), research
focus has shifted towards conversational KBQA
(Shen et al., 2019; Kacupaj et al., 2021; Marion
et al., 2021) that involves multi-turn dialogues.

A common solution to the task of conversational
KBQA is to map an utterance to a logical form
using semantic parsing approach (Shen et al., 2019;
Guo et al., 2018). The state-of-the-art semantic
parsing approach (Kacupaj et al., 2021) breaks
down the process into two stages: a logical form
is first generated by low-level features and then
the missing details are filled by taking both the

Q1: Who is the president of the united states?

R1: Joe Biden

Q2: Where did he graduate from?

R2: University of Delaware

Q3: When was it established?

R3: 1743

Q4: How about Harvard university?

R4: 1636

Figure 1: An example illustrating the task of conversa-
tional KBQA.

question and templates into consideration. Other
approaches (Dong and Lapata, 2016; Liang et al.,
2016; Guo et al., 2018) mainly focus on first detect-
ing entities in the question and then mapping the
question to a logical form.

Despite the inspiring results of the semantic pars-
ing methods mentioned above, most of them fail
to model the long-range semantic dependency in
conversation history. Specifically, they usually di-
rectly incorporate immediate two turns of conversa-
tions and ignore the conversation history two turns
away. To demonstrate the importance of long-range
conversation history, Figure 1 shows an example
illustrating the task of conversational KBQA. After
the question “who is the president of the United
States”, the user consecutively proposes three ques-
tions that involve Coreference and Ellipsis phe-
nomena (Androutsopoulos et al., 1995). Only when
the system understands the complete conversation
history can the system successfully predict the an-
swer. Though existing contextual semantic parsing
models (Iyyer et al., 2017; Suhr et al., 2018; Yu
et al., 2019) can be used to model conversation
history, a survey (Liu et al., 2020) points out that
their performance is not as good as simply concate-
nating the conversation history, which is the most
common conversation history modeling technique.

To tackle the issues mentioned above, we pro-

3521

pose a History Semantic Graph Enhanced Conver-
sational KBQA model (HSGE) for conversation
history modeling. Specifically, we convert the log-
ical forms of previous turns into history semantic
graphs, whose nodes are the entities mentioned in
the conversation history and edges are the relations
between them. By applying graph neural network
on the history semantic graph, the model can cap-
ture the complex interaction between the entities
and improve its understanding of the conversation
history. From the perspective of practice, using the
history semantic graph to represent the conversa-
tion history is also more computationally efficient
than directly concatenating the conversation his-
tory. Besides, we design a context-aware encoder
that addresses user’s conversation focus shift phe-
nomenon (Lan and Jiang, 2021) by introducing
temporal embedding and allows the model to incor-
porate information from the history semantic graph
at both token-level and utterance-level.

To summarize, our major contributions are:

• We propose to model conversation history us-
ing history semantic graph, which is effective
and efficient. As far as we know, this is the
first attempt to use graph structure to model
conversation history in conversational KBQA.

• We design a context-aware encoder that uti-
lizes temporal embedding to address the shift
of user’s conversation focus and aggregate
context information at different granularities.

• Extensive experiments on the widely used
CSQA dataset demonstrate that HSGE
achieves the state-of-the-art performance av-
eraged on all question types.

2 Related Work

The works most related to ours are those investigat-
ing semantic parsing-based approaches in conver-
sational KBQA. Given a natural language question,
traditional semantic-parsing methods (Zettlemoyer
and Collins, 2009; Artzi and Zettlemoyer, 2013)
usually learn a lexicon-based parser and a scoring
function to produce a logical form. For instance,
(Zettlemoyer and Collins, 2009) propose to learn a
context-independent CCG parser and (Long et al.,
2016) utilizes a shift-reduce parser for logical form
construction.

Recently, neural semantic parsing approaches
are gaining attention with the development of deep

learning (Qu et al., 2019; Chen et al., 2019). For
example, (Liang et al., 2016) introduces a neural
symbolic machine (NSM) extended with a key-
value memory network. (Guo et al., 2018) pro-
poses D2A, a neural symbolic model with memory
augmentation. S2A+MAML (Guo et al., 2019) ex-
tends D2A with a meta-learning strategy to account
for context. (Shen et al., 2019) proposes the first
multi-task learning framework MaSP that simul-
taneously learns type-aware entity detection and
pointer-equipped logical form generation. (Plepi
et al., 2021) introduces CARTON which utilizes
pointer networks to specify the KG items. (Kacu-
paj et al., 2021) proposes a graph attention network
to exploit correlations between entity types and
predicates. (Marion et al., 2021) proposes to use
KG contextual data for semantic augmentation.

While these methods have demonstrated promis-
ing results, they typically only consider the imme-
diate two turns of conversations as input while ne-
glecting the context two turns away. Though (Guo
et al., 2018) introduces a Dialog Memory to main-
tain previously observed entities and predicates, it
fails to capture their high-order interaction infor-
mation. By introducing history semantic graph, our
model HSGE can not only memorize previously ap-
peared entities and predicates but also model their
interaction features using GNN to gain a deeper
understanding of conversation history.

3 Method

The structure of our proposed HSGE model is il-
lustrated in Figure 2. The model consists of six
components: Word Embedding, TransformerConv
Layer, Context-aware Encoder, Entity Recogni-
tion Module, Concept-aware Attention Module and
Grammar-Guided Decoder.

3.1 Grammar

We predefined a grammar with various actions
in Table 4, which can result in different logical
forms that can be executed on the KG. Analo-
gous to (Kacupaj et al., 2021), each action in this
work consists of three components: a semantic
category, a function symbol and a list of argu-
ments with specified semantic categories. Amongst
them, semantic categories can be classified into
two groups depending on the ways of instantia-
tion. One is referred to as entry semantic cate-
gory (i.e., {e, p, tp, num} for entities, predicates,
entity types and numbers) whose instantiations

3522

G
ram

m
ar-G

uided Decoder

type

predicate

entity

find

filter

…

Concept-level KG

BERT Em
bedding

G
AT Layer

FFN
 N

etw
ork

Concept-aware Attention Module

TransformerConv Layer

Word Embedding

Context-aware Encoder

History Semantic Graph
Turn 1 Turn 4

…
[CLS] Who is the president
of the united states? [SEP]

Joe Biden [SEP]
What about UK?

Utterance in 5-th turn

Entity Recognition Module

Figure 2: Model architecture of HSGE, which includes Word Embedding, TransformerConv Layer, Context-aware
Encoder, Entity Recognition Module, Concept-aware Attention Module and Grammar-Guided Decoder.

are constants parsed from a question. Another
is referred to as intermediate semantic category
(i.e., {set, dict, boolean, number}) whose instan-
tiation is the output of an action execution.

3.2 Input and Word Embedding

To incorporate the recent dialog history from previ-
ous interactions, the model input for each turn con-
tains the following utterances: the previous ques-
tion, the previous answer and the current question.
Utterances are separated by a [SEP] token and a
context token [CLS] is appended at the beginning
of the input as the semantic representation of the
entire input.

Specifically, given an input u, we use WordPiece
tokenization (Wu et al., 2016) to tokenize the con-
versation context into token sequence {w1, ..., wn},
and then we use the pre-trained language model
BERT (Devlin et al., 2018) to embed each word
into a vector representation space of dimension d.
Our word embedding module provides us with an
embedding sequence {x1, ..., xn}, where xi ∈ Rd

is given by xi = BERT(wi).

3.3 History Semantic Graph

To effectively and efficiently model conversation
history that contains multiple turns, we design His-
tory Semantic Graph, inspired by the recent stud-
ies on dynamically evolving structures (Hui et al.,
2021). As the conversation proceeds, more and
more entities and predicates are involved, which
makes it difficult for the model to capture the com-
plex interactions among them and reason over them.
Thus, we hope to store these information into a
graph structure and empower the model with strong
reasoning ability by applying GNN onto the graph.
Considering that we are trying to model the inter-

find(set, r2)

Joe
Biden

Scranton

USA

Pla
ce
Of
Bir
th

IsPresidentOf

People Country

IsA

IsA

City

IsA

PlaceOfBirth

IsPresidentOf

find(set, r1)

USA

Convert

Question: Where was the president of the United States born?

Logical Form: find(find(USA, IsPresidentOf), PlaceOfBirth)

Figure 3: Illustration example for history semantic
graph construction.

actions between entities and predicates which are
naturally included in logical forms, one good so-
lution is to directly convert the logical forms into
KG triplets as shown in Figure 3. By doing so,
we guarantee the quality of the graph because the
entities and predicates are directly related to the
answers of previous questions, while also injecting
history semantic information into the graph.

Graph Construction. Specifically, we define the
history semantic graph to be G =< V, E >, where
V = set(e) ∪ set(tp), E = set(p), and e, tp, p de-
note entity, entity type and predicate, respectively.
We define the following rules to transform the ac-
tions defined in Table 4 to the KG triplets:

• For each element ei in the operator result of
set → find(e, p), we directly add <ei, p, e>
into the graph.

• For each element ei in the operator result of
set → find_reverse(e, p), we directly add
<e, p, ei> into the graph.

• For each entity ei ∈ V , we also add the

3523

<ei, IsA, tpi> to the graph, where tpi is the
entity type of entity ei extracted from Wiki-
data knowledge graph.

• For the find and find_reverse actions
that are followed by filter_type or
filter_multi_types action for entity fil-
tering, we would add the element in the
filtering result to the graph, which prevents
introducing unrelated entities into the graph.

It is worth mentioning that we choose to trans-
form these actions because they directly model the
relationship between entities and predicates. Be-
sides, as the conversation proceeds and new log-
ical forms are generated, more KG triplets will
be added to the graph and the graph will grow
larger. However, the number of nodes involved in
the graph is still relatively small and is highly con-
trollable by only keeping several recent KG triplets.
Considering the O(N2) computational complexity
of Transformer encoders (Vaswani et al., 2017), it
would be more computationally efficient to model
conversation history using history semantic graph
than directly concatenating previous utterances.

Graph Reasoning. Given constructed history
semantic graph G, we first initialize the embed-
dings of nodes and relations using BERT, i.e.,
BERT(ei/pi), where ei and pi represent the text
of node and relation, respectively. Then we fol-
low TransformerConv (Shi et al., 2020) and update
node embeddings as follows:

H = TransformerConv(E,G) (1)

where E ∈ R(|V|+|E|)×d denotes the embeddings
of nodes and relations.

3.4 Context-aware Encoder
Temporal Information Modeling. As the con-
versation continues and further inquiries are raised,
individuals tend to focus more on recent entities,
which is also called Focal Entity Transition
phenomenon (Lan and Jiang, 2021). To incorporate
this insight into the model, we introduce tempo-
ral embedding to enable the model to distinguish
newly introduced entities. Specifically, given the
current turn index t and previous turn index i in
which entities appeared, we define two distance
calculation methods:

• Absolute Distance: The turn index of the
previous turn in which the entities were men-
tioned, i.e., D = t.

• Relative Distance: The difference in turn in-
dices between the current turn and the previ-
ous turn in which the entities were mentioned,
i.e., D = t− i.

For each method, we consider two approaches
for representing the distance: unlearnable posi-
tional embedding and learnable positional embed-
ding. For unlearnable positional encoding, the com-
putation is defined using the following sinusoid
function (Vaswani et al., 2017):

{
et(2i) = sin(D/100002i/d),

et(2i+ 1) = cos(D/100002i/d),
(2)

where i is the dimension and D is the absolute
distance or relative distance.

For learnable positional encoding, the positional
encoding is defined as a learnable matrix Et ∈
RM×d, where M is the predefined maximum num-
ber of turns.

Then we directly add the temporal embedding to
obtain temporal-aware node embeddings.

h̄i = hi + et, (3)

where hi is the embedding of node ei.

Semantic Information Aggregation. As the
conversation progresses, user’s intentions may
change frequently, which leads to the appearance
of intention-unrelated entities in history semantic
graph. To address this issue, we introduce token-
level and utterance-level aggregation mechanisms
that allow the model to dynamically select the most
relevant entities. These mechanisms also enable the
model to model contextual information at different
levels of granularity.

• Token-level Aggregation: For each token xi,
we propose to attend all the nodes in the his-
tory semantic graph to achieve fine-grained
modeling at token-level:

xti = MHA(xi, H̄, H̄),

x̄i = xti + xi,
(4)

where MHA denotes the multi-head attention
mechanism and H̄ denotes the embeddings of
all nodes in the history semantic graph.

• Utterance-level Aggregation: Sometimes the
token itself may not contain semantic infor-
mation, e.g., stop words. We further pro-
pose to incorporate history information at the

3524

utterance-level for these tokens:

xui = MHA(x[CLS], H̄, H̄),

x̄i = xui + xi,
(5)

where x[CLS] denotes the representation of the
[CLS] token.

Then, history-semantic-aware token embeddings
are forwarded as input to the encoder of Trans-
former (Vaswani et al., 2017) for deep interaction:

h(enc) = Encoder(X̄; θ(enc)), (6)

where θ(enc) are encoder trainable parameters.

3.5 Grammar-Guided Decoder
After encoding all the semantic information into
the hidden state h(enc), we utilize stacked masked
attention mechanism (Vaswani et al., 2017) to gen-
erate sequence-formatted logical forms. Specifi-
cally, in each decoding step, our model predicts a
token from a small decoding vocabulary V (dec) =
{start, end, e, p, tp, ..., find}, where all the ac-
tions from the Table 4 are included. On top of
the decoder, we employ a linear layer alongside a
softmax to calculate each token’s probability distri-
bution in the vocabulary. The detailed computation
is defined as follows:

h(dec) = Decoder(h(enc); θ(dec)),

p
(dec)
t = Softmax(W (dec)h

(dec)
t),

(7)

where h
(dec)
t is the hidden state at time step t,

θ(dec),W (dec) are decoder trainable parameters,
p
(dec)
t ∈ R|V (dec)| is the probability distribution

over the decoding vocabulary at time step t.

3.6 Entity Recognition Module
Entity recognition module aims to fill the entity slot
in the predicted logical forms, which consists of
entity detection module and entity linking module.

Entity Detection. The goal of entity detection is
to identify mentions of entities in the input. Pre-
vious studies (Shen et al., 2019) have shown that
multiple entities of different types in a large KB
may share the same entity text, which is a common
phenomenon called Named Entity Ambiguity.
To address this issue and inspired by (Kacupaj
et al., 2021), we adopt a type-aware entity detec-
tion approach using BIO sequence tagging. Specif-
ically, the entity detection vocabulary is defined

as V (ed) = {O, {B, I}×{TPi}N(tp)

i=1 }, where TPi

denotes the i-th entity type label, N (tp) stands for
the number of distinct entity types in the knowledge
graph and |V (ed)| = 2 × N (tp) + 1. We leverage
LSTM (Hochreiter and Schmidhuber, 1997) to per-
form the sequence tagging task:

h(ed) = LeakyReLU(LSTM(h(enc); θ(l))),

p
(ed)
t = Softmax(W (ed)h

(ed)
t),

(8)

where h(enc) is the encoder hidden state, θ(l) are the
LSTM trainable parameters, h(ed)t is the LSTM hid-
den state at time step t, and p

(ed)
t is the probability

distribution over V (ed) at time step t.

Entity Linking. Once we detect the entities in
the input utterance, we perform entity linking to
link the entities to the entity slots in the predicted
logical form. Specifically, we define the entity
linking vocabulary as V (el) = {0, 1, ...,M} where
0 means that the entity does not link to any entity
slot in the predicted logical form and M denotes
the total number of indices based on the maximum
number of entities from all logical forms. The
probability distribution is defined as follows:

h(el) = LeakyReLU(W (el1)[h(enc);h(ed)]),

p
(el)
t = Softmax(W (el2)h

(el)
t),

(9)

where W (el1),W (el2) are trainable parameters,
h
(el)
t is the hidden state at time step t, and p

(el)
t

is the probability distribution over the tag indices
V (el) at time step t.

3.7 Concept-aware Attention Module

In the Concept-aware Attention Module, we first
model the complex interaction between entity types
and predicates, then we predict the entity types and
predicates for the logical form.

To begin with, we first develop an entity-to-
concept converter to replace the entities in each
factual triple of Wikidata KG with correspond-
ing concepts (i.e., entity types). Take an instance
in Figure 3 as example, the factual triple (Joe
Biden, IsPresidentOf, USA) can be transformed
to two concept-level tuples (Person, IsPresidentOf),
and (IsPresidentOf, Country) in the concept graph.
Then, we initialize node embeddings using their
texts with BERT and apply Graph Attention Net-
works (GAT) (Veličković et al., 2017) to project
the KG information into the embedding space.

3525

Finally, we model the task of predicting the cor-
rect entity type or predicate of the logical form as a
classification task. For each time step of decoding,
we directly calculate the probability distribution at
time step t as:

h
(c)
t = LeakyReLU(W (c)[h

(enc)
[CLS];h

(dec)
t]),

p
(c)
t = Softmax(h(g)Th(c)t),

(10)

where h(g) is the updated entity type and predicate
embedding and p

(c)
t is the probability distribution

over them at time step t.

3.8 Training
The framework consists of four trainable modules:
Entity Detection Module, Entity Linking Module,
Grammar-guided Decoder and Concept-aware At-
tention Module. Each module consists of a loss
function that can be used to optimize the parame-
ters in itself. We use the weighted average of all
the losses as our loss function:

L = λ1L
ed + λ2L

el + λ3L
dec + λ4L

c, (11)

where λ1, λ2, λ3, λ4 are the weights that decide the
importance of each component. The detailed loss
calculation method is in Appendix B. The multi-
task setting enables modules to share supervision
signals, which benefits the model performance.

4 Experiments

4.1 Experimental Setup
Dataset. We conduct experiments on CSQA
(Complex Sequential Question Answering)
dataset 1 (Saha et al., 2018). CSQA was built based
on the Wikidata knowledge graph, which consists
of 21.1M triples with over 12.8M entities, 3,054
entity types and 567 predicates. CSQA dataset is
the largest dataset for conversational KBQA and
consists of around 200K dialogues where training
set, validation set and testing set contain 153K,
16K and 28K dialogues, respectively. Questions
in the dataset are classified as different types, e.g.,
simple questions, logical reasoning and so on.

Metrics. To evaluate HSGE, We use the same
metrics as employed by the authors of the CSQA
dataset as well as the previous baselines. F1 score
is used to evaluate the question whose answer is
comprised of entities, while Accuracy is used to

1https://amritasaha1812.github.io/CSQA

measure the question whose answer is a number or
a boolean number. Following (Marion et al., 2021),
we don’t report results for “Clarification” question
type, as this question type can be accurately mod-
eled with a simple classification task.

Baselines. We compare HSGE with the latest
five baselines that include D2A (Guo et al., 2018),
S2A+MAML (Guo et al., 2019), MaSP (Shen
et al., 2019), OAT (Marion et al., 2021) and
LASAGNE (Kacupaj et al., 2021).

4.2 Overall Performance
Table 1 summarizes the results comparing the
HSGE framework against the previous baselines.
From the result, we have three observations:

(1) The D2A and S2A-MAML models exhibit
superior performance on the Simple Question (Di-
rect) question type. This can likely be attributed to
their ability to memorize context information pre-
viously mentioned in the conversation. However,
these models fail to model the complex interaction
between entities, resulting in inferior performance
on other question types.

(2) OAT achieves superior performance on three
question types, which might be attributed to its
incorporation of additional KG information. How-
ever, its performance is not consistent across all
question types, leading to a low overall perfor-
mance averaged on all question types.

(3) Our method HSGE achieves the new SOTA
on the overall performance averaged on all ques-
tion types. There are two possible reasons for the
improvement. First, the incorporation of HSG al-
lows the modeling of longer dependencies within
the context, enabling the model to handle situations
where the user asks about entities that were previ-
ously mentioned. Second, by utilizing graph neural
network to facilitate information flow in HSG, the
interaction among previously appeared entities, en-
tity types and predicates are better captured, which
endows our model with stronger reasoning ability.

4.3 Ablation Study
In this section, we first conduct experiments to
verify the effectiveness of each model component.
Then, we investigate the effects of different model
choices inside the Context-aware Encoder. Finally,
we compare our HSGE with the most widely used
concatenation method.

Effect of HSG and TIM. To show the effective-
ness of each component, we create two ablations

3526

https://amritasaha1812.github.io/CSQA/

Methods D2A S2A-MAML MaSP OAT LASAGNE HSGE
Question Type #Example F1 Score
Comparative 15K 44.20 48.13 68.90 70.76 69.77 69.70
Logical 22K 43.62 44.34 69.04 81.57 89.83 91.24
Quantitative 9K 50.25 50.30 73.75 74.83 86.67 87.37
Simple (Coreferenced) 55K 69.83 71.18 76.47 79.23 79.06 78.73
Simple (Direct) 82K 91.41 92.66 85.18 82.69 87.95 89.38
Simple (Ellipsis) 10K 81.98 82.21 83.73 84.44 80.09 80.53
Question Type #Example Accuracy
Verification (Boolean) 27K 45.05 50.16 60.63 66.39 78.86 82.17
Quantitative (Count) 24K 40.94 46.43 43.39 71.79 55.18 72.88
Comparative (Count) 15K 17.78 18.91 22.26 36.00 53.34 53.74
Overall 260K 64.47 66.54 70.56 75.57 78.82 81.38∗†§

Table 1: HSGE’s performance comparison on the CSQA dataset. HSGE achieves new state-of-the-art on the overall
performance averaged on all question types. We use the paired t-test with p ≤ 0.01. The superscripts refer to
significant improvements compared to LASAGNE(∗), OAT(†) and MaSP(§).

Methods Ours w/o HSG w/o TIM
Question Type F1 Score
Comparative 69.70 69.47 69.55
Logical 91.24 87.99 89.99
Quantitative 87.37 86.63 86.71
Simple (Coref) 78.73 77.78 78.17
Simple (Direct) 89.38 88.64 88.97
Simple (Ellipsis) 80.53 78.60 79.95
Question Type Accuracy
Verification 82.17 79.70 78.05
Quantitative (Count) 72.88 69.00 71.29
Comparative (Count) 53.74 52.70 53.14
Overall 81.38∗† 79.87 80.36

Table 2: Ablation Study. We use the paired t-test with
p ≤ 0.01. The superscripts refer to significant improve-
ments compared to w/o HSG(∗) and w/o TIM(†).

by directly removing history semantic graph (HSG)
and temporal information modeling (TIM), respec-
tively. As shown in Table 2, HSGE outperforms
all the ablations across all question types, which
verifies the importance of each model component.

It is worth mentioning that after removing HSG,
the performance of our method on some question
types that require reasoning (i.e., Logical Reason-
ing, Quantitative Reasoning (Count)) drops sig-
nificantly. We think that the reason might be the
utilization of graph neural network on HSG empow-
ers the model with great reasoning ability, which
further benefits model performance.

Comparison of Internal Model Choice. In
context-aware encoder, we design two distance cal-
culation methods (i.e., absolute distance and rela-

Figure 4: The comparison between token/utterance-
level aggregation and between absolute/relative distance
on five selected question types.

tive distance) for temporal information modeling,
as well as two information aggregation granular-
ities (i.e., token-level and utterance-level aggre-
gation) for semantic information aggregation. To
study their effects, we conduct experiments by fix-
ing one setting while changing the other. And the
comparison result is shown in Figure 4.

From the results, it is obvious that we can get the
following conclusions: (1) Token-level aggregation
method performs better than utterance-level aggre-
gation method. This is because the token-level ag-
gregation allows the model to incorporate context
information at a finer granularity and the informa-
tion unrelated to the target token can be removed.
(2) Absolute distance method performs better than
relative distance method. The reason may be that
although both distance calculation methods can
provide temporal information, absolute distance is
more informative since the model can derive rel-
ative distance using absolute distance while the
opposite is not true.

3527

1 2 3 4 5
Concatenation Turn Number

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

F1
-S

co
re

Logical
Quantitative (All)
Simple (Ellipsis)
Simple (Coref)

1 2 3 4 5
Concatenation Turn Number

0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

Verification
Quantitative (Count)
Comparative (Count)

Figure 5: The performance of the concatenation method
on seven representative question types with regard to
the concatenation turn number.

Task LASAGNE HSGE
Entity Detection 86.75% 89.75%
Entity Linking 97.49% 98.19%

Logical Form Generation 98.61% 92.76%
Type&Predicate Prediction 92.28% 93.11%

Table 3: Comparison of subtask accuracy in LASAGNE
and HSGE.

Comparison with Concatenation Method. One
of the most widely used methods for context mod-
eling is to directly concatenate history conversa-
tions (Liu et al., 2020). To analyze its effectiveness,
we remove HSG and observe the performance of
seven representative question types using the con-
catenation of history conversations as input, which
is shown in Figure 5.

As we can see, at the initial stages of concate-
nation turn number increase, the performances on
some question types increase a little while remain-
ing unchanged or even decreasing on others, lead-
ing to an almost unchanged overall performance. It
is reasonable because history turns contain useful
semantic information, which leads to performance
gain. However, as more conversation turns are in-
troduced into the model, more noisy tokens will
also be introduced into the model, which leads to
performance degradation. Besides, the introduction
of more context tokens will also lead to an increase
in computational cost with the O(N2) complexity.

It is worth noting that the best setting of concate-
nation method still performs worse than HSGE. It
is mainly because we use attention mechanism to
dynamically select the most related entities from
the HSG, which achieves effective history model-
ing while avoiding introducing noisy information.
And as we only extract entities and predicates from
history conversations, the size of the graph is rela-
tively small and the increase in computational cost
as the conversation progresses is marginal.

4.4 Subtask Analysis

The task of conversational KBQA involves multi-
ple subtasks, each of which can directly impact the
final model accuracy. To gain a deeper understand-
ing of HSGE, we compare its performance of each
subtask with the current SOTA model LASAGNE
in Table 3. We can observe that most of the sub-
task’s performance in HSGE is better than that of
LASAGNE and mostly achieves accuracy above
90%. Amongst them, the improvement in Entity
Detection is the largest. We think the main reason
is that the token-level aggregation mechanism en-
dows each token with richer semantic information.

4.5 Error Analysis

In this section, we randomly sample 200 incorrect
predictions and analyze their error causes:

Entity Ambiguity. Entity ambiguity refers to the
situation where there exist multiple entities with
the same text and type in the Wikidata knowledge
graph. For example, we cannot distinguish multiple
people called “Mary Johnson” because we have no
more information other than entity text and entity
type. We believe that incorporating other contex-
tual information such as entity descriptions may
help solve this problem (Mulang et al., 2020).

Spurious Logical Form. We follow (Shen et al.,
2019; Kacupaj et al., 2021) and produce golden
logical forms by leveraging BFS to search valid
logical forms for questions in training data. This
can sometimes lead to wrong golden actions such
as two actions with different semantic information
but accidentally sharing the same execution result.
This may misguide our model during training.

5 Conclusion

In this paper, we propose a novel Conversational
KBQA method HSGE, which achieves effective
history modeling with minimal computational cost.
We design a context-aware encoder that introduces
temporal embedding to address user’s conversation
focus shift phenomenon and aggregate context in-
formation at both token-level and utterance-level.
Our proposed HSGE outperforms existing base-
lines averaged on all question types on the widely
used CSQA dataset.

3528

References
Ion Androutsopoulos, Graeme D Ritchie, and Peter

Thanisch. 1995. Natural language interfaces to
databases–an introduction. Natural language engi-
neering, 1(1):29–81.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. In The
semantic web, pages 722–735. Springer.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247–1250.

Yu Chen, Lingfei Wu, and Mohammed J Zaki. 2019.
Graphflow: Exploiting conversation flow with graph
neural networks for conversational machine compre-
hension. arXiv preprint arXiv:1908.00059.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya
Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen Tan,
Lazaros Polymenakos, and Andrew McCallum.
2021. Case-based reasoning for natural language
queries over knowledge bases. arXiv preprint
arXiv:2104.08762.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Li Dong and Mirella Lapata. 2016. Language to log-
ical form with neural attention. arXiv preprint
arXiv:1601.01280.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and Jian
Yin. 2018. Dialog-to-action: Conversational ques-
tion answering over a large-scale knowledge base.
Advances in Neural Information Processing Systems,
31.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and Jian
Yin. 2019. Coupling retrieval and meta-learning for
context-dependent semantic parsing. arXiv preprint
arXiv:1906.07108.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Binyuan Hui, Ruiying Geng, Qiyu Ren, Binhua Li,
Yongbin Li, Jian Sun, Fei Huang, Luo Si, Pengfei
Zhu, and Xiaodan Zhu. 2021. Dynamic hybrid re-
lation network for cross-domain context-dependent
semantic parsing. arXiv preprint arXiv:2101.01686.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In ACL.

Endri Kacupaj, Joan Plepi, Kuldeep Singh, Harsh
Thakkar, Jens Lehmann, and Maria Maleshkova.
2021. Conversational question answering over
knowledge graphs with transformer and graph at-
tention networks. arXiv preprint arXiv:2104.01569.

Yunshi Lan and Jing Jiang. 2021. Modeling transitions
of focal entities for conversational knowledge base
question answering. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3288–3297.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D For-
bus, and Ni Lao. 2016. Neural symbolic machines:
Learning semantic parsers on freebase with weak
supervision. arXiv preprint arXiv:1611.00020.

Qian Liu, Bei Chen, Jiaqi Guo, Jian-Guang Lou, Bin
Zhou, and Dongmei Zhang. 2020. How far are we
from effective context modeling? an exploratory
study on semantic parsing in context. arXiv preprint
arXiv:2002.00652.

Reginald Long, Panupong Pasupat, and Percy Liang.
2016. Simpler context-dependent logical forms via
model projections. arXiv preprint arXiv:1606.05378.

Pierre Marion, Paweł Krzysztof Nowak, and Francesco
Piccinno. 2021. Structured context and high-
coverage grammar for conversational question an-
swering over knowledge graphs. arXiv preprint
arXiv:2109.00269.

Isaiah Onando Mulang, Kuldeep Singh, Akhilesh
Vyas, Saeedeh Shekarpour, Maria-Esther Vidal, Jens
Lehmann, and Soren Auer. 2020. Encoding knowl-
edge graph entity aliases in attentive neural network
for wikidata entity linking. In International Confer-
ence on Web Information Systems Engineering, pages
328–342. Springer.

Joan Plepi, Endri Kacupaj, Kuldeep Singh, Harsh
Thakkar, and Jens Lehmann. 2021. Context trans-
former with stacked pointer networks for conversa-
tional question answering over knowledge graphs. In
European Semantic Web Conference, pages 356–371.
Springer.

Chen Qu, Liu Yang, Minghui Qiu, Yongfeng Zhang,
Cen Chen, W Bruce Croft, and Mohit Iyyer. 2019.
Attentive history selection for conversational ques-
tion answering. In Proceedings of the 28th ACM
International Conference on Information and Knowl-
edge Management, pages 1391–1400.

Amrita Saha, Vardaan Pahuja, Mitesh Khapra, Karthik
Sankaranarayanan, and Sarath Chandar. 2018. Com-
plex sequential question answering: Towards learn-
ing to converse over linked question answer pairs
with a knowledge graph. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

3529

Tao Shen, Xiubo Geng, Tao Qin, Daya Guo, Duyu Tang,
Nan Duan, Guodong Long, and Daxin Jiang. 2019.
Multi-task learning for conversational question an-
swering over a large-scale knowledge base. arXiv
preprint arXiv:1910.05069.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui
Zhong, Wenjin Wang, and Yu Sun. 2020. Masked
label prediction: Unified message passing model
for semi-supervised classification. arXiv preprint
arXiv:2009.03509.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018.
Learning to map context-dependent sentences to exe-
cutable formal queries. In NAACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Xu Wang, Shuai Zhao, Jiale Han, Bo Cheng, Hao Yang,
Jianchang Ao, and Zhenzi Li. 2020. Modelling long-
distance node relations for kbqa with global dynamic
graph. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 2572–
2582.

Yu Wang, Hongxia Jin, et al. 2022. A new concept of
knowledge based question answering (kbqa) system
for multi-hop reasoning. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4007–4017.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Naganand Yadati, RS Dayanidhi, S Vaishnavi, KM In-
dira, and G Srinidhi. 2021. Knowledge base question
answering through recursive hypergraphs. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 448–454.

Yuanmeng Yan, Rumei Li, Sirui Wang, Hongzhi Zhang,
Zan Daoguang, Fuzheng Zhang, Wei Wu, and Weiran
Xu. 2021. Large-scale relation learning for question
answering over knowledge bases with pre-trained
language models. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3653–3660.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2021. Rng-kbqa: Generation
augmented iterative ranking for knowledge base ques-
tion answering. arXiv preprint arXiv:2109.08678.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
EMNLP-IJCNLP.

Luke S Zettlemoyer and Michael Collins. 2009. Learn-
ing context-dependent mappings from sentences to
logical form.

3530

Action Description
set → find(e, p) set of subjects part of the triples with object e and predicate p
set → find_reverse(e, p) set of objects part of the triples with subject e and predicate p
set → filter_type(set, tp) filter the given set of entities based on the given type
set → filter_multi_types(set1, set2) filter the given set of entities based on the given set of types
dict → find_tuple_counts(p, tp1, tp) extracts a dictionary, where keys are entities of type1 and values are the number

of objects of type2 related with p
dict → find_reverse_tuple_counts(p, tp1, tp2) extracts a dictionary, where keys are entities of type1 and values are the number

of subjects of type2 related with p
set → greater(dict, num) set of those entities that have lesser count than num
set → lesser(dict, num) set of those entities that have greater count than num
set → equal(dict, num) set of those entities that have equal count with num
set → approx(dict, num) set of those entities that have approximately same count with num
set → atmost(dict, num) set of those entities that have at most same count with num
set → atleast(dict, num) set of those entities that have at least same count with num
set → argmin(dict) set of those entities that have the most count
set → argmax(dict) set of those entities that have the least count
boolean → is_in(entity, set) check if the entity is part of the set
number → count(set) count the number of elements in the set
set → union(set1, set2) union of set1 and set2
set → intersection(set1, set2) intersection of set1 and set2
set → difference(set1, set2) difference of set1 and set2

Table 4: The grammar we use in this work for generating logical forms.

A Grammar

The grammar we use in this work is defined in
Table 4. Please note that each single action can
only model relatively simple semantics. High-level
semantics of complex question is achieved by inte-
grating multiple actions into a single logical form.

B Loss Calculation

Led, Lel, Ldec and Lc are the negative log-
likelihood losses of the Entity Detection Module,
Entity Linking Module, Grammar-guided Decoder
and Concept-aware Attention Module, respectively.
These losses are defined as follows:

Led = −
n∑

i=1

log p(y
(ed)
i |x),

Lel = −
n∑

i=1

log p(y
(el)
i |x),

Ldec = −
m∑

i=1

log p(y
(dec)
k |x),

Lc = −
m∑

i=1

log p(y
(c)
k |x),

(12)

where n and m are the length of the input ut-
terance x and golden logical form, respectively.
y
(ed)
i , y

(el)
i , y

(dec)
i , y

(c)
i are the golden labels for En-

tity Detection Module, Entity Linking Module,
Grammar-guided Decoder and Concept-aware At-
tention Module, respectively.

C Hyper-parameters and Implementation
Details

Parameters Setting
Optimizer BertAdam
Batch Size 120
Hidden Size 768
Learning Rate 5e-5
Head Number 6
Aggregation Level Token-level
Activation Function ReLU
Distance Calculation Absolute
Encoder Layer Number 2
Decoder Layer Number 2
Loss Component Weight All set to 1
GAT Embedding Dimension 3072
Word Embedding Dimension 768

Table 5: Hyper-parameters for HSGE.

The experiments are conducted on 8 NVIDIA V100
GPUs. During model tuning, we identify opti-
mal hyperparameters by modifying one parameter
while keeping others fixed and select the hyper-
parameters that resulted in the highest model per-
formance. We implement our code using Pytorch.
The detailed hyper-parameter setting for HSGE is
shown in Table 5.

3531

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

In section Limitations

�7 A2. Did you discuss any potential risks of your work?
This work was conducted in accordance with ethical principles. We use the publicly available
dataset for the experiments and have no potential risks about credentials or data privacy. No human
participants are involved in our experiment. Therefore, we don’t foresee any potential risk of this
work.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
In section Abstract

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
In Section Method

�3 B1. Did you cite the creators of artifacts you used?
In Section Experiments

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
We directly used the original CSQA dataset and did not change it. This dataset is released under
Creative-Commons license

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
The datasets are used widely by the research community for studying csqa.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No personal information is involved in the dataset

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
The datasets are used widely by the research community for studying csqa.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
In Section Experiment

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

3532

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

C �3 Did you run computational experiments?
In Section Experiment

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
In Section Experiment

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
In Section Appendix

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
In Section Experiment

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
In Section Experiment

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

3533

