@inproceedings{cui-chen-2023-free,
title = "Free Lunch for Efficient Textual Commonsense Integration in Language Models",
author = "Cui, Wanyun and
Chen, Xingran",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.208",
doi = "10.18653/v1/2023.acl-long.208",
pages = "3759--3770",
abstract = "Recent years have witnessed the emergence of textual commonsense knowledge bases, aimed at providing more nuanced and context-rich knowledge. The integration of external commonsense into language models has been shown to be a key enabler in advancing the state-of-the-art for a wide range of NLP tasks. However, incorporating textual commonsense descriptions is computationally expensive, as compared to encoding conventional symbolic knowledge. In this paper, we propose a method to improve its efficiency without modifying the model. Our idea is to group training samples with similar commonsense descriptions into a single batch, thus reusing the encoded description across multiple samples. We theoretically investigate this problem and demonstrate that its upper bound can be reduced to the classic \textit{graph k-cut problem}. Consequently, we propose a spectral clustering-based algorithm to solve this problem. Extensive experiments illustrate that the proposed batch partitioning approach effectively reduces the computational cost while preserving performance. The efficiency improvement is more pronounced on larger datasets and on devices with more memory capacity, attesting to its practical utility for large-scale applications.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cui-chen-2023-free">
<titleInfo>
<title>Free Lunch for Efficient Textual Commonsense Integration in Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanyun</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingran</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent years have witnessed the emergence of textual commonsense knowledge bases, aimed at providing more nuanced and context-rich knowledge. The integration of external commonsense into language models has been shown to be a key enabler in advancing the state-of-the-art for a wide range of NLP tasks. However, incorporating textual commonsense descriptions is computationally expensive, as compared to encoding conventional symbolic knowledge. In this paper, we propose a method to improve its efficiency without modifying the model. Our idea is to group training samples with similar commonsense descriptions into a single batch, thus reusing the encoded description across multiple samples. We theoretically investigate this problem and demonstrate that its upper bound can be reduced to the classic graph k-cut problem. Consequently, we propose a spectral clustering-based algorithm to solve this problem. Extensive experiments illustrate that the proposed batch partitioning approach effectively reduces the computational cost while preserving performance. The efficiency improvement is more pronounced on larger datasets and on devices with more memory capacity, attesting to its practical utility for large-scale applications.</abstract>
<identifier type="citekey">cui-chen-2023-free</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.208</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.208</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>3759</start>
<end>3770</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Free Lunch for Efficient Textual Commonsense Integration in Language Models
%A Cui, Wanyun
%A Chen, Xingran
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F cui-chen-2023-free
%X Recent years have witnessed the emergence of textual commonsense knowledge bases, aimed at providing more nuanced and context-rich knowledge. The integration of external commonsense into language models has been shown to be a key enabler in advancing the state-of-the-art for a wide range of NLP tasks. However, incorporating textual commonsense descriptions is computationally expensive, as compared to encoding conventional symbolic knowledge. In this paper, we propose a method to improve its efficiency without modifying the model. Our idea is to group training samples with similar commonsense descriptions into a single batch, thus reusing the encoded description across multiple samples. We theoretically investigate this problem and demonstrate that its upper bound can be reduced to the classic graph k-cut problem. Consequently, we propose a spectral clustering-based algorithm to solve this problem. Extensive experiments illustrate that the proposed batch partitioning approach effectively reduces the computational cost while preserving performance. The efficiency improvement is more pronounced on larger datasets and on devices with more memory capacity, attesting to its practical utility for large-scale applications.
%R 10.18653/v1/2023.acl-long.208
%U https://aclanthology.org/2023.acl-long.208
%U https://doi.org/10.18653/v1/2023.acl-long.208
%P 3759-3770
Markdown (Informal)
[Free Lunch for Efficient Textual Commonsense Integration in Language Models](https://aclanthology.org/2023.acl-long.208) (Cui & Chen, ACL 2023)
ACL