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Abstract

Recent data-driven conversational models are
able to return fluent, consistent, and informa-
tive responses to many kinds of requests and
utterances in task-oriented scenarios. However,
these responses are typically limited to just the
immediate local topic instead of being wider-
ranging and proactively taking the conversa-
tion further, for example making suggestions
to help customers achieve their goals. This in-
adequacy reflects a lack of understanding of
the interlocutor’s situation and implicit goal.
To address the problem, we introduce a task
of proactive response selection based on situ-
ational information. We present a manually-
curated dataset of 1.7k English conversation
examples that include situational background
information plus for each conversation a set of
responses, only some of which are acceptable
in the situation. A responsive and informed
conversation system should select the appro-
priate responses and avoid inappropriate ones;
doing so demonstrates the ability to adequately
understand the initiating request and situation.
Our benchmark experiments show that this is
not an easy task even for strong neural models,
offering opportunities for future research.

1 Introduction

Conversational assistant systems have recently
shown significant improvements for understanding
users’ inquiries along with background knowledge,
conducting requested operations, and returning nat-
ural language responses. Yet, typical systems are
likely to be passive and only process user-initiated
requests or merely ask values for domain-specific
slots (Williams et al., 2013; Ammari et al., 2019).
In contrast, human assistants like hotel concierges
are more proactive, acting to address unmentioned
needs and expected future events (Cho et al., 1996;
Bellini and Convert, 2016). They do not only make

∗This work was done while the first author was at Carnegie
Mellon University.

The room temperature is hot.

Situation 1

Can you open the window?

User utterance

The room is smoky.

Situation 2

Candidate A
Sure. Shall I run the air 
purifier, too?

To cool off
The user’s Implicit goal

To air the room

System response

Candidate B

Sure. Shall I bring you cold 
water, too?

Figure 1: An example of situated goal-aware proactive
response selection. The response candidate A is appro-
priate in Situation 1 but not in Situation 2.

a direct response or a clarification question to their
interlocutors but also provide personalized infor-
mation/assistance based on context and knowledge.

To push the frontier of task-oriented conversa-
tion technologies, we propose a task of proactive
response selection for single-turn help-seeking con-
versations in English. We mean by proactive that
a system engages in an interaction in a coopera-
tive manner (Grice, 1975) and suggests something
helpful to a user. The proposed task touches upon
two crucial aspects of help-seeking conversations:
situation-awareness and goal-awareness.

Situation: Situational information plays an im-
portant role in conversations as we illustrate in Fig-
ure 1. The example shows a user utterance “Can
you open the window for me?” (top) and two re-
sponse candidates (bottom), “Sure. Shall I bring
you cold water, too?” (left) and “Sure. Shall I run
the air purifier, too?” (right). Although both can-
didates here sound helpful, their appropriateness
varies depending on context: When the room is
hot, suggesting a cold drink is appropriate assis-
tance (left), but on the other hand, if the room is
smoky, then running an air purifier is more helpful
(right). Likewise, different situations make differ-
ent responses more appropriate. A fair amount of
situational information can be perceived as visual
image, sound, and other kinds of sensory signals,
and some of those are effectively incorporated into
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multi-modal conversational systems (Crook et al.,
2019; Kottur et al., 2019). Yet, there are many
other types of information that modern conversa-
tion assistance systems have access to, for example,
via external APIs such as calendars and maps. In
this study, we represent situational statements of
six semantic categories (location, possession, etc.)
in free English texts, which are more explicit as a
semantic representation than just maintaining con-
versation histories (Lowe et al., 2015; Li et al.,
2017; Henderson et al., 2019) and more flexible
than structured representations of limited vocab-
ulary (Williams et al., 2013; Budzianowski et al.,
2018).

Goal: In the aforementioned example, the two
actions address two different goals associated with
opening a window, namely, to cool off and to air
the room. While often being unspoken, under-
lying goals provide important semantic connec-
tions among context and utterances on many occa-
sions (Allen and Perrault, 1980) particularly when
language is indirect (Perrault, 1980; Walker et al.,
2011; Stevens et al., 2015). We use goal infor-
mation as a stimulus for soliciting naturalistic and
proactive responses from human annotators in data
collection.

We introduce a new dataset of SitUatated, Goal-
Aware, and proactive Responses (SUGAR; §3),
which contains 1,760 examples of single-turn En-
glish conversations.1 Each conversation includes
a user request anchored by an implicit goal, a ref-
erence response, and 12 sentences of situational
information. As a proof of concept, we perform the
task of situated response selection on SUGAR by
adding two extra response candidates to each exam-
ple. All responses are annotated with three-point
appropriateness ratings.

To create SUGAR, we extracted user utterances
and goals from common-sense knowledge bases,
ATOMIC (Sap et al., 2019) and ConceptNet (Speer
et al., 2017), and collected proactive responses
with supporting situational information by crowd-
sourcing. We then used a language generation
model, COMET (Bosselut et al., 2019; Hwang
et al., 2021), to generate additional situational
statements. Finally, we selected two more re-
sponse options for each reference response us-
ing an adversarial method to form examples of
three-choice response selection. To ensure data

1https://github.com/notani/
sugar-conversational-dataset

quality, we performed multiple manual validation
steps during data collection. In our experiments on
SUGAR (§4), Transformer-based rankers achieved
over 80% precision@1 when when only the rele-
vant situational statements were presented. How-
ever, precision decreased when distractors were
included in the input, and this trend further con-
tinued as more distractors were added in our con-
trolled experiments. These results suggest potential
opportunities for future research.

2 Related Work

2.1 Conversational Dataset
Acquisition of real or realistic conversational data
has been an essential step for developing con-
versation engines that imitate human communica-
tion (Serban et al., 2018). Various datasets have
been constructed with a focus on different aspects
of communication.

With regard to target communicative aspects, the
most relevant to our work is SIMMC (Moon et al.,
2020). SIMMC encompasses surrounding situa-
tional information that gives a basis for verbal inter-
actions in task-oriented scenarios in the shopping
domain. Moon et al. collected visually-grounded
conversation examples from pairs of human anno-
tators interacting with each other in a virtual envi-
ronment (Crook et al., 2019), where one annotator
seeks help for shopping, and the other provides
assistance. SUGAR is also concerned with how hu-
man interlocutors perform situated conversations in
a help-seeking setting. Our work extends this direc-
tion to scenarios other than shopping and includes
more diverse types of information that modern con-
versational assistants could access via sensors or
external APIs (e.g., temperature and schedule) by
representing situational information in a textual
form as opposed to visual images.

The choice of modality is motivated by existing
conversational datasets that express various kinds
of background information in plain text: the per-
sona of an interlocutor (Zhang et al., 2018; Dinan
et al., 2020), emotional states (Rashkin et al., 2019;
Ghosal et al., 2022), and related documents (Zhou
et al., 2018; Dinan et al., 2019). These examples
demonstrate the utility of textual forms for repre-
senting both explicit and implicit information of
various kinds.

Some existing datasets are concerned with
information-seeking conversations like restaurant
recommendation where suggestions by assistants
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Category Definition Example

Location Information about [user]’s current location. [user] is home. / [user] is at the entrance of a
house.

Possession Information about what [user] possesses. [user] owns a car. / There are apples in the
kitchen.

Time Information about time. It’s midnight. / It’s morning.
Date Information about date and season. It’s [user]’s birthday. / It’s summer.
Behavior Information about [user]’s behavior. [user] just woke up. / [user] came back from

jogging.
Environment Information about non-user entities (person, objects, etc.). The room is hot. / [user]’s car has a flat tire.

Table 1: Definitions of the situation categories. [user] denotes the user of a conversation system.

naturally occur (e.g., “If you like French cuisine,
how about RestaurantX?”, “I can find transporta-
tion for you.”). However, it is not trivial to so-
licit such naturalistic proactive utterances in more
diverse help-seeking scenarios. In many cases,
the minimum objective of a conversation can be
achieved by responding to user-initiated inquiries,
and such kinds of responses are relatively easy to
collect from non-expert annotators (Budzianowski
et al., 2018; Byrne et al., 2019; Eric et al., 2020).
We address this problem by leveraging implicit
goals behind user requests. The comprehension
of goals in conversations has been recognized to
be important not only in task-oriented dialog re-
search but also in a broad range of research areas
such as linguistics, psychology, and artificial in-
telligence. (Schank and Abelson, 1977; Clark and
Schaefer, 1989; Gordon and Hobbs, 2004; Rahim-
toroghi et al., 2017). Human interactions often
involve indirect speech acts (Perrault, 1980; Gibbs
and Bryant, 2008) and indirect responses like non-
yes/no answers to polar questions (Hockey et al.,
1997; de Marneffe et al., 2009; Stevens et al., 2015;
Louis et al., 2020). These studies motivate our
strategy for soliciting natural-sounding proactive
responses from crowd workers.

In contrast to most datasets we introduced here,
SUGAR only contains single-turn conversation ex-
amples due to the ease of data collection and qual-
ity control. Our primary focus is on conversational
assistance, where short-turn conversations are com-
mon (Völkel et al., 2021). Thus, we believe that
single-turn examples are still useful for system de-
velopment. It is possible to extend our problem
setting and data collection approach to a multi-tern
setting, which we leave as future work.

2.2 Response Selection
Automatic response models can be divided into
two approaches: response generation and response

selection. Response generation directly generates
natural language response text from scratch, and
response selection selects a response from a candi-
date pool built by humans, templates, or language
generation systems. The latter approach is widely
used in many real-world applications cases because
of the controllability of responses and the easiness
of evaluation (Deriu et al., 2020). In this study, we
focus on the task of response selection as a proof
of concept. We assume that an external response
generation system generates candidates based on
the system’s functionality and focus on picking
the appropriate ones. SUGAR can also serve as a
valuable resource for the development and evalu-
ation of response generation systems, which is an
interesting avenue for future research.

To train and evaluate a response selection system,
each example must have distractors (negative re-
sponses), but typically, conversational datasets only
contain ground truth responses. Thus, it has been
commonly practiced to pick negative responses by
random sampling (Lowe et al., 2015; Henderson
et al., 2019). This approach comes in handy but
may introduce negative responses that are clearly
off-topic or false negatives (Akama et al., 2020; He-
dayatnia et al., 2022). To alleviate this problem, we
use an adversarial filtering algorithm (Zellers et al.,
2018; Sakaguchi et al., 2019; Bhagavatula et al.,
2020) to select competitive distractors and recruit
crowd workers to rate candidates, allowing each
example to have multiple acceptable responses.

3 Task and Data

The goal of this study is to provide a resource for
developing a system that can observe situational
information and return a proactive response to a
user. We consider six categories of observable situ-
ational statements (Table 1): location (where the
user is), possession (what the user has), time, date,
behavior (what the user is/was doing), and envi-
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(1) Seed utterance ( )
and goal ( ) selection

OpenSubtitles

English
request phrases (3) Response ( ) collection

(2) Situation collection I

(4) Response validation

(5) Situation collection II

Invalid 

valid 

Crowdsourcing

(6) Semi-automatic 
situation collection

Collect situations for 
( )

Collect situations for 
( )

Expand ( )

(7) Distractor selection

SUGAR [end]

(8) Validation

( )

Figure 2: Pipeline for data collection. We start with existing common-sense knowledge bases (ATOMIC and
ConceptNet) and extract utterance and goal events as a seed (1). We collect responses and situational statements for
each seed by crowdsourcing (2-5), acquire more situational statements semi-automatically (6), and select distractor
responses and situations to form response selection examples (7). We finally validate the examples manually (8).
Steps (2) and (3-4) are executed in parallel.

u r g s

Unique sentences 380 1,738 431 4,450
Tokens 14,458 28,694 7,499 147,710
Avg. tokens/ex 8.2 16.3 4.3 83.9

Table 2: Dataset statistics. The dataset contains 1,760
examples (33,794 sentences).

ronment (temperature, etc.) We define a proactive
response to be a response that provides suggestions
to help users achieve their goals.

3.1 Problem Formulation
Our task has five components: (1) a user utter-
ance u, (2) situational statements S = {si}i=1,··· ,l,
where l is the number of statements, (3) responses
R = {ri}i=1,··· ,m, where m is the number of re-
sponse candidates2, (4) their appropriateness rat-
ings Y = {yi}i=1,··· ,m, where yi is a three-point
Likert scale, and (5) an implicit goal g. S can in-
clude distractors that are not directly relevant to
the conversation. u, S, and R are given as input,
and the task is to re-rank R. Response selection
systems are trained and evaluated by Y . In this
study, we set l = 12 and m = 3.

3.2 Data
SUGAR contains 1,760 high-quality examples,
each of which has three response candidates and
12 sentences of situational information (situational
statements). Table 2 shows the dataset statistics.

2We pick m − 1 responses automatically such that they
are less appropriate than the reference response in a given
context (See Step 7). Nevertheless, there usually exist one or
more acceptable responses to a given user utterance. We thus
annotate all acceptable responses manually (Step 8).

We constructed the dataset with the eight steps
shown in Figure 2. We describe them below.3

(1) Seed Utterance & Goal Selection: We har-
vested action and goal events from two common-
sense knowledge bases, ATOMIC (Sap et al., 2019)
and ConceptNet (Speer et al., 2017), where knowl-
edge is represented as nodes representing events or
concepts and edges connecting them with seman-
tic relations. The collected action-goal node pairs
served as the seed utterance-goal for soliciting re-
sponses and situational statements in the following
data collection steps. First, we extracted nodes
consisting of verb phrases (VPs) that appear at
least five times within English request phrases (e.g.,
Please VP, Could you VP?, etc.) in the OpenSub-
titles corpus (Henderson et al., 2019). These re-
quest expressions were also used as the surface
form of u. Two of the authors then selected 563
events that can be achieved within a reasonable
time span, can be assisted by someone else, and
can be triggered by a goal. We retrieved their im-
plicit goals g by goal-related edges in ATOMIC
and ConceptNet. Specifically, we used xNeed in
the reverse direction and xIntent in ATOMIC
and HasPrerequisite in the reverse direction
and MotivatedByGoal in ConceptNet. Finally,
two of the authors evaluated the node pairs and
picked 501 (u, g) pairs for which we can naturally
say “I do u to achieve g.” (e.g., open a window to
cool off.) We also merged synonymous expressions
(e.g., go to a market and go to a supermarket) into
a single entry and corrected grammatical errors and
unnatural phrases.

3See also Appendix A for technical details.
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(2) Situation Collection I: We collected situa-
tional statements in two phases to simplify annota-
tion work. The first phase focuses on u and g, and
the second phase considers r in addition to u and
g. In this step, we presented a pair of u and g texts
to crowd workers and instructed them to specify
situational information that is required to guess the
goal based on the utterance. For example, an im-
plicit goal “to cool off” can be naturally inferred
by situations like “The user is home. The room
temperature is hot.” We asked workers to write
observable facts in the six semantic categories (Ta-
ble 1). For example, “The room temperature is hot.”
is valid, but “The user feels hot.” is invalid as as-
sistance systems cannot observe the user’s feeling.
We recruited one worker for each (u, g) pair and
paid $0.12 per HIT4 (one (u, g) pair/HIT).

(3) Response Collection: In parallel to Step (2),
we recruited two crowd workers for each (u, g)
pair to collect responses. The workers created at
least two responses: one of the responses accepts
and the other rejects the request. We asked the
workers to write a proactive response, a response
providing suggestions for goal fulfilment.5 To so-
licit responses closely connected to implicit goals
rather than to domain knowledge, we instructed
the workers to avoid posing a clarification question
like “Sure, I’ll turn on the air conditioner for you.
Would you like it on a high or low setting? (= clari-
fication)” The workers were presented one u-g pair
in each HIT and were paid $0.30/HIT.

(4) Response Validation: We present the utter-
ances, goals, and collected responses to crowd
workers and evaluated the helpfulness of the re-
sponse. A response is considered to be valid if
it satisfies the following criteria: (1) the response
suggests or requests something new, and (2) the
suggestion or request is helpful for achieving the
goal. Each response was evaluated by three work-
ers. We then picked the responses that were ap-
proved by two or three workers. We call a verified
response a reference response r1 hereafter. Each
HIT contains up to seven responses, and one of
them is a dummy question for evaluating crowd
workers. For quality control, we filtered out crowd
workers who participated in the task twice or more

4Human Intelligence Task, a unit of task in MTurk.
5For a response that rejects a user’s request, we instructed

the workers to provide a reason for rejection (e.g., we cannot
brew coffee because we are out of coffee filters) in addition to
a suggestion.

[u]Please open the window. ( text)
[g]to cool off ( text)
[r]Sure, shall I bring cold water, too? ( text)

Input

[environment]The room is hot.
Output (Generated text)

[possession] There is bottled water in the fridge.

BART

Figure 3: Example of automatic situation generation
by BART (Step 6). [u], [g], and [r] are special
symbols to denote the types of the following texts. The
first output token is given as a prompt to control the
semantic category of output.

Loc. Poss. Time Date Behav. Env.

1990 3546 1083 152 1699 2793

Table 3: Number of situational statements (∈ S1).

and did not reach 0.75% accuracy for the dummy
questions. The workers were paid $0.18 for this
task. Krippendorff’s α was 0.547.

(5) Situation Collection II: We collected situ-
ational statements from crowd workers with the
following two goals: (1) to collect situational state-
ments that cover the reference response r1 and (2)
to verify the situational statements collected in Step
(2). We presented (u, g, r1) with the statements ob-
tained in Step (2) and again instructed crowd work-
ers to write observable facts. The results of Step
(2) were provided as editable initial values, and we
encouraged workers to update the texts when it is
necessary. We recruited one crowd worker for each
(u, g, r1) with the reward of $0.42/HIT.

(6) Semi-automatic Situation Collection: We
found that the collected situational statements were
often under- or over-specified. We addressed this
by automatic situation generation and manual veri-
fication.

The first author examined all the situational state-
ments, discarded/modified inappropriate situations,
and categorized them into six categories. We then
used the cleaned and labeled texts to fine-tune a
neural sequence-to-sequence to generate more sit-
uations. Specifically, we fine-tuned BART (Lewis
et al., 2020) trained on ATOMIC20

20 (Hwang et al.,
2021)6 to take a concatenation of u, g, and r1 as
input and generate a text for a given situation cat-

6Note that the framework of pre-training Transformer mod-
els on common-sense knowledge bases was originally pro-
posed by Bosselut et al. (2019).
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egory as illustrated in Figure 3. We performed a
beam search of width 3 and took top-3 generation
results for each input and relation. Finally, we man-
ually verified the generated situations, resulting in
4,375 unique situations (6.4 ± 1.3 statements per
example). We denote the situational statements
attached to (u, g, r1) by S1. Table 3 shows the dis-
tribution of situation categories in SUGAR. State-
ments about possession and environment appear
most frequently, which is reasonable because such
situational information often decides actions that
can be carried out (e.g., to drink coffee, coffee
must be available). The other categories are less
frequent, but 64% of examples have at least one
time or date information, and 69% have a statement
about behavior.

(7) Distractor Selection: The examples col-
lected in the previous steps only contain reference
responses r1 and supporting situational statements
S1. We added m − 1 response candidates along
with their relevant situational information as dis-
tractors so that all examples have m response can-
didates and l situational statements. We set m = 3
and l = 12. In this section, we describe the high-
level idea of our algorithm. Appendix B presents
technical details.

Distractors can be obtained by random sampling
as practiced in many studies (Henderson et al.,
2019) or by advanced methods such as adversar-
ial filtering (Li et al., 2019; Gupta et al., 2021).
However, such approaches may introduce off-topic
responses that are easy to rule out and false nega-
tives — acceptable responses treated as negative
examples, degrading system performance as well
as reliability of evaluation (Akama et al., 2020;
Hedayatnia et al., 2022).

To alleviate this problem, we combine lexical
matching and adversarial filtering (Zellers et al.,
2018; Sakaguchi et al., 2019; Bhagavatula et al.,
2020) to construct distractors and validate them
manually (see Step 8). We first created an ini-
tial dataset by a lightweight method based on sen-
tence embeddings and lexical matching. We then
performed J = 3 rounds of adversarial filtering.
In each round, we split the dataset into K = 10
folds, and for each split, we trained a binary lo-
gistic regression classifier that takes sentence em-
beddings of u, S1, and a response candidate. We
computed sentence embeddings by SentenceTrans-
formers (Reimers and Gurevych, 2019) with MP-
Net (Song et al., 2020). We used the trained clas-

(0, 0, 3)
(0, 1, 2)
(0, 2, 1)
(0, 3, 0)
(1, 0, 2)
(1, 1, 1)
(1, 2, 0)
(2, 0, 1)
(2, 1, 0)
(3, 0, 0)

0
40

236
0

85
684

0
715

0
0

#Bad
#Acce

ptable

#Best

Figure 4: Result of rating annotations (Step 8). The
labels denote (the number of Bad options, the number
of Acceptable options, the number of Best options). We
removed one example with three Acceptable responses
from the dataset.

sifier to identify easy distractors and replace them
with more confusing ones with respect to the score
function. We sampled two responses for each exam-
ple. All response candidates in the same example
have the same polarity. Finally, we expanded S1,
which only contains relevant information to u and
r1, to obtain a set of l = 12 situations S such that
some of them are related to distractors but do not
disqualify r1, and statements do not contradict with
each other. We again used sentence embeddings
to find topically related situational information and
avoid contradiction with keyword-based heuristics.

(8) Validation: There are usually multiple ap-
propriate responses in one conversational context,
and therefore, some of the challenging “distrac-
tors” picked in the previous step can be acceptable
or even more appropriate than the reference r1.
To avoid introducing false negatives, we rated all
response candidates on a three-point Likert scale
(Bad, Acceptable, or Best) by crowdsourcing. We
recruited three crowd workers per example with
the reward of $0.25/each and asked them to pick
an appropriate response candidate (Krippendorff’s
α (Krippendorff, 2006) of 0.484). We then ag-
gregated ratings by the statistical model proposed
by Zhou et al. (2014) to obtain the final rating Y .7

We discarded one example in this validation step
and obtained 1760 examples with all responses
rated. Figure 4 shows the annotation result. As we
expected, a fair number of examples (56%) have

7In the first run, all candidates were rated as equally good
or bad in 18 examples. We updated and re-annotated 17 exam-
ples.

3861



more than one Best or Acceptable responses. The
first author reviewed 61 examples (3.5%) where r1
was rated as Bad and fixed contradicting situational
statements. Examples without Best responses were
also reviewed and revised if necessary.

4 Experiments

We evaluate several baseline models on SUGAR
to explore two questions concerned with the na-
ture of the proposed task and dataset: (1) Is un-
derstanding of situational information required to
identify proactive responses in SUGAR? (2) Can
standard matching-based systems capture relevant
situational information and solve the task?

4.1 Baselines
We evaluate a lexical-matching approach and sev-
eral Transformer-based response selection systems.
A variety of neural networks have been proposed
for the task of response selection Tao et al. (2021),
but we opted to focus on the direct application
of pre-trained Transformers rather than equipping
them with extra modules/resources. Pre-trained
models have proven effective in conversation tasks
with minimal adaptation (Budzianowski and Vulić,
2019) and even achieves the best performance in a
response selection task (Han et al., 2021).

TF-IDF ranker: We used a lexical-matching
baseline system that ranks response candidates by
cosine similarity of TF-IDF vectors of context and
a response candidate (Lowe et al., 2015). While
this ranker is quite simple, it can outperform or per-
form on par with more complex supervised mod-
els in certain tasks (Thakur et al., 2021). We cal-
culated TF-IDF weights on a training split with
scikit-learn library.

Transformer ranker: We fine-tuned and evalu-
ated four variants of Transformer-based rankers:

1. BERT-FP (Han et al., 2021): This model
is an uncased BERTbasethat underwent addi-
tional training on the Ubuntu Dialogue Cor-
pus (Lowe et al., 2015). The training process
includes unsupervised post-training and su-
pervised fine-tuning. As of 2023, this model
is one of the leading systems on the Ubuntu
dataset.

2. BERT (Devlin et al., 2019): We also tested an
uncased BERTbasewithout the additional train-
ing of Han et al. to analyze its benefits in our
task. In the experiments of Hedayatnia et al.

(2022), the BERT ranker performed similarly
to BERT-FP.

3. RoBERTa (Liu et al., 2019): RoBERTa has
the same architecture as BERT as a backbone
but was trained using improved training con-
figurations, resulting in better performance
across multiple tasks and datasets. We used
the pre-trained base model (12 layers≈ 125M
parameters)

4. DeBERTa (He et al., 2021b,a): DeBERTa
is a model that improves upon BERT and
RoBERTa by using disentangled attention
mechanisms. In our experiments, we used the
base DeBERTa v3 model (12 layers ≈ 86M
parameters).

Following Han et al., we encoded a concate-
nation of input tokens, which will be explained
in the next section, and a response option using
these Transformer encoders. We then roduced a
score of the option by a logistic regression classifier
that takes the last hidden state of a special token,
[CLS], at the first position in the input. Model
parameters were optimized using Adam (Kingma
and Ba, 2015) to minimize the max-margin loss.

4.2 Experimental Setup
Input format: We concatenated context and a
response candidate for the Transformer rankers. To
address our questions, we experimented with three
variants of context:

1. u: Utterance (u)-only
2. u+ S1: Utterance (u) plus relevant situation

(S1)
3. u+ S: Utterance (u) plus relevant and irrele-

vant situation (S)

Training and Test: We performed five-fold
cross-validation (training:validation:test=6:2:2).8

For each round, we trained a Transformer ranker
for 10 epochs with a batch size of 32 and evaluated
the model by nDCG@3 on the validation split ev-
ery epoch. We then selected the best checkpoint for
evaluation. To stabilize training, we applied weight
decay of 0.05, set the maximum gradient norm to
5.0, and used a linear learning rate scheduler with
5% (≈ 20) warm-up steps. We further performed
light-weight grid-search for hyperparameter tuning
based on an average nDCG@3 score on validation

8We removed examples without Bad response options from
the validation and test splits
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System Input Precision@1 nDCG@3

TF-IDF u .5993±.0223 .8377±.0042

u+ S1 .7995±.0119 .9289±.0042

u+ S .5683±.0121 .8499±.0035

BERT-FP u .6455±.0254 .8799±.0076

u+ S1 .8386±.0280 .9461±.0084

u+ S .6631±.0273 .8869±.0094

BERT u .7292±.0256 .9102±.0071

u+ S1 .8637±.0109 .9563±.0030

u+ S .7266±.0158 .9110±.0038

RoBERTa u .7178±.0273 .9055±.0097

u+ S1 .8723±.0173 .9596±.0059

u+ S .6992±.0230 .9039±.0040

DeBERTa u .7787±.0265 .9305±.0074

u+ S1 .8981±.0112 .9686±.0041

u+ S .7850±.0286 .9314±.0084

Table 4: Average test scores over five-fold cross-
validation.

splits, with learning rate ∈ {5e − 5, 1e − 5}, and
margin for the max-margin loss ∈ {1.0, 0.5, 0.1}.
One epoch of training took 1-2m on GeForce GTX
TITAN X. We report the average Precision@1 and
nDCG@3 on the test splits.

4.3 Results
Table 4 shows the average test scores over a five-
fold cross-validation. Two general patterns can be
observed: (1) the Transformer-based models, ex-
cept for BERT-FP, outperformed the TF-IDF base-
line, and (2) the systems that were provided with
the request utterance u and relevant statements S1

outperformed their counterparts with different in-
put settings. In regard to the key questions, the
results reveal several interesting findings:

1. Comparison of two input settings u and u+S1

demonstrates that relevant situational informa-
tion leads to a clear performance boost as ex-
pected (e.g., +0.13 in Precision@1 and +0.05
in nDCG@3 with BERT).

2. The performance gain in u + S1 can be at-
tributed to the increased word overlaps be-
tween the context and the correct responses,
as indicated by the performance of the TF-IDF
baseline. However, with the addition of dis-
tractors in the u+ S setting, the performance
of the TF-IDF baseline dropped substantially
(-0.20 in Precision@1 and -0.09 in nDCG@3).
This result suggests that our dataset effectively
avoids superficial clues, highlighting the im-
portance of a higher-level understanding of
situational statements.

3. Interestingly, in the u+ S setting, the perfor-
mance of Transformer rankers also decreased
significantly to the same level as their cor-
responding systems without situational state-
ments in the input (the u setting).

4. Additional pre-training of BERT-FP was not
effective in our task, which is consistent with
the observation of Hedayatnia et al. (2022).
We speculate that this is due to a domain mis-
match of training corpora. BERT-FP is pre-
trained on technical topics related to Ubuntu,
whereas SUGAR concerns a wider range of
topics in daily life.

These findings provide valuable insights into
our research questions. First, the understanding
of relevant situational statements helps systems se-
lect proactive responses accurately, indicating that
SUGAR is an effective resource for the develop-
ment and evaluation of situated conversation sys-
tems. Secondly, it is challenging for Transformer
rankers to identify useful clues from a mixture of
relevant and irrelevant situational statements.

4.4 Robustness to Distractors
The results presented in the previous section in-
dicate that Transformer rankers can be misled by
irrelevant information. To explore this further, we
evaluated these rankers with varying numbers of
irrelevant situational statements (distractors).

In this experiment, we controlled the number of
distractors by creating instances with 5, 10, and 15
distractors. Situational statements were randomly
added as necessary. We trained and tested the same
response rankers following the same setup, with
the exception that we fixed the learning rate to
5e-5, which generally produced better results than
1e-5 in the main experiments. It is important to
note that the first 1-7 distractors were adversarially
selected (§3), while the remaining distractors were
added at random.

Figure 5 displays the precision@1 and nDCG@3
scores of the response rankers. The performance
of TF-IDF indicates that the addition of random
distractors slightly increased the word overlap rates
between input and distractor responses, but not sub-
stentially. However, as hypothesized, all systems
demonstrated decreasing scores as more distractors
were included. Interestingly, the performance of
the advanced models, RoBERTa and DeBERTa, de-
creased drastically as more distractors were added
(0.87 → 0.67 for RoBERTa and 0.90 → 0.61 for
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Figure 5: Average test scores over five-fold cross-validation with different numbers of distractors

DeBERTa in Precision@1). We speculate that these
models are powerful but also susceptible to over-
fitting spurious patterns between situational state-
ments and response options, resulting in low test
scores. In contrast, the BERT-based rankers were
more robust to distractors, but their absolute per-
formance remained low (Precision@1 of 0.73 and
nDCG@3 of 0.91 for BERT). This finding high-
lights the need for future work to develop models
that are more robust to the inclusion of irrelevant
situational context.

5 Conclusion and Future Work

We proposed a task of situated proactive response
selection for developing and evaluating conversa-
tional assistants that can help users proactively in
various help-seeking scenarios. We constructed a
dataset of 1.7k examples by crowdsourcing and
semi-automatic generation.

There are several interesting directions for fu-
ture research. First, as shown in our experiments,
it is challenging to pick up relevant situational in-
formation and use it to reason about user requests
and potential assistance. To achieve this, conversa-
tional systems will need to be equipped with world
knowledge to effectively align situation informa-
tion with an interaction. One promising approach
is knowledge-based response models such as graph
neural networks, which recently has shown to be
effective in various NLP tasks (Zhang et al., 2020;
Zhou et al., 2022; inter alia). Second, although we
leveraged implicit goals only for soliciting proac-
tive responses in data collection in this study, un-
derstanding of goals should be necessary for build-
ing better conversation engines as claimed in early
studies (Allen and Perrault, 1980; inter alia). We

believe SUGAR can facilitate future research in
this direction.

Limitations

Data size: SUGAR is relatively small compared
to recently published datasets. This is due to the
complexity of our problem setting and annotation
pipeline. We prioritized quality over quantity and
performed multiple steps of manual intervention
to reduce errors, false negatives, and annotation
artifacts. These problems have been reported in
various NLP tasks not limited to conversational
tasks (Gururangan et al., 2018; Akama et al., 2020;
Elazar et al., 2020). Nonetheless, our experiment
has shown that pre-trained Transformer models
can be trained to outperform a TF-IDF ranker by a
clear margin, which is encouraging. In addition, we
could automatically induce noisy but large-scale
training instances from existing resources, for ex-
ample, by harvesting event pairs that can be used
as u and r from event knowledge bases such as
ATOMIC20

20and generating situation statements us-
ing our generator (§3).

Representation of situation information: In
SUGAR, situation information is represented in tex-
tual expressions. In real-world applications, such
information could be collected via external APIs
(e.g., calendar and map) and sensors (e.g., cam-
era) and stored in non-textual forms. Our study is
a proof-of-concept that shows the understanding
of situational information is very important for re-
sponse selection. Future research should explore
ways to process situation information that is ex-
pressed in other forms of data (e.g., structured texts,
numbers, images). Even if the value is structured or
images, we could transform them into textual forms
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as done in data-to-text research (Shen et al., 2020;
Miura et al., 2021). Besides, we acknowledge that
situational information is often under-specified in
SUGAR because some information is considered
to be common-sense (e.g., a room has a door) or
presupposed (e.g., “Please open the door” presup-
poses that the door is closed.), and such information
was not explicitly stated by human annotators dur-
ing data collection. Therefore, response selection
systems should be equipped with a mechanism to
handle implicit knowledge to solve the task.

Ethical Considerations

Undesired bias and abusive content: A mul-
titude of sources have reported that data-driven
conversational systems can (re)produce undesired
bias or abusive language existing in language re-
sources used for development. To minimize such
a risk, we carefully curated conversation exam-
ples in SUGAR. Our target task is response se-
lection, where systems only produce language in
a pre-compiled response list, and therefore, it is
not likely that resulting systems yield harmful con-
tent. However, users of SUGAR should be cautious
when it is used for developing generation systems
in future work.

Human subjects: Crowd workers in Amazon
Mechanical Turk (MTurk) participated in our data
collection pipeline. Our annotation tasks were re-
viewed by the institutional review process before
being published in MTurk to avoid ethical issues.
We did not collect any personally identifiable infor-
mation of workers other than (anonymized) Turker
IDs. Task rewards were decided by several rounds
of trials so that workers can receive at least $6.50
hourly.

Use of external data and tools: We used exter-
nal datasets such as ATOMIC20

20and ConceptNet
and tools such as spaCy and Transformers library.
We have confirmed that the use of these resources
for our research does not violate usage restrictions.
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GPT-2 - how can i help you? Towards the use of pre-
trained language models for task-oriented dialogue
systems. In Proceedings of the 3rd Workshop on Neu-
ral Generation and Translation, pages 15–22, Hong
Kong. Association for Computational Linguistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - A
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A Manual Annotation

We recruited non-expert crowd workers in Ama-
zon Mechanical Turk in annotation steps (2-5). In
all steps, crowd workers were required to meet
the following qualification requirements: (i) Their
number of tasks approved ≥ 5k, (ii) the task ap-
proval rate ≥ 99%, (iii) their location is the US,
and (iv) they answer an exercise question correctly.
Figure 6 shows the annotation interface.

Two of the authors were involved in the anno-
tation steps (1), (4), (5), and (8). They are ESL
with a degree in computer science from a school
in the US (one holds a master’s degree, and the
other holds a Ph.D.). They all have backgrounds in
NLP/CL research.

B Distractor Selection

This section presents the technical details of the
distractor selection method (Step 7). Below, tun-
able parameters such as thresholds on scores and
the number of iterations were empirically selected
based on several pilot runs.

B.1 Response Selection
Our method selects distractor responses from all the
responses in the dataset in two steps: We first create
an initial dataset by a light-weight method (Algo-
rithm 1) and then perform adversarial filtering (Al-
gorithm 2).

First Step (Algorithm 1)
The objective of the first step is to avoid including
false-negative responses (Lines 3-6). We discard

responses that are too similar to r1 in terms of the
overlap coefficient of content words (noun, verb,
adjective, and adverb).

Overlap(x, y) =
|CW(x) ∩ CW(y)|

min (|CW(x)|, |CW(y)|) ,
(1)

where CW(x) is a set of content words in x. We
set the threshold of overlap coefficient to 0.75. We
use the same constraint on their goal texts. We also
measure their closeness by the cosine similarity of
their sentence embeddings (denoted as EmbSim)
and discard candidates whose similarity is 0.5 or
higher. We then sample m− 1 responses from this
filtered response pool one by one (Lines 11-15).
To diversify response options, we remove similar
responses to the picked one from the pool based on
overlap coefficient (Line 16-19).

Second Step (Algorithm 2)
We then perform J = 3 rounds of adversarial fil-
tering. Our method is a slightly modified version
of the algorithm used by Bhagavatula et al. (2020).
In each round, we split the dataset into K = 10
folds (Line 6), and for each split, we train a bi-
nary logistic regression classifier that takes sen-
tence embeddings of u, S1, and a response candi-
date r ∈ R (Line 8). We pre-compute their sen-
tence embeddings with the pre-trained Sentence-
Transformers (Reimers and Gurevych, 2019) with
MPNet (Song et al., 2020). Once the classifier is
trained, we score response candidates in each exam-
ple and identify distractors whose scores are lower
than that of the reference response r1 plus a margin
γ = 0.05. We replace these easy distractors with
more confusing ones (Line 14-16). In this way, we
repeatedly update the dataset (Line 17) and output
the final result (Line 18).

B.2 Situation Selection
Next, we update S1, which only contains relevant
information to u and r1, to include l statements in
total such that some of them are associated with
distractors or not directly related to the conversa-
tion. Otherwise, reference responses can be easily
identified by superficial clues. Having irrelevant
situational statements is also for simulating real use
cases, where a conversational system has access
to a wide range of sensory information or exter-
nal APIs, but most of them are unimportant for
addressing a user’s request.

It is required that (a) additional situational state-
ments do not disqualify the reference response,
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Algorithm 1 Create an initial dataset by light-weight filtering

Input: m, Dataset D = {(u(i), g(i), r(i)1 , S
(i)
1 )}i=1,··· ,N , ▷ N := num. of examples in the dataset.

Output: D′ = {(u(i), g(i), R(i), S
(i)
1 )}i=1,··· ,N ▷ R(i) := {r(i)1 , · · · , r(i)m } ▷ Initial dataset

1: function INITDATASET(m,D)
2: D′ ← ∅
3: for i : 1..N do
4: P ← {r(j)1 }j=i,··· ,i−1,i+1,··· ,N ▷ All the responses in D but r(i)1

5: # (1) Remove too similar responses

6: for j : 1..N do
7: if i=j then
8: continue
9: if Overlap(u(i), u(j)) ≥ 0.75 or Overlap(g(i), g(j)) ≥ 0.75

or EmbSim(u
(i)
1 , r

(j)
1 ) ≥ 0.5) then

10: Remove r
(j)
1 from P

11: # (2) Pick m− 1 similar responses

12: R(i) ← {r(i)1 }
13: for j : 1..m− 1 do
14: Sample r ∈ P
15: Add r to R(i)

16: # (3) Remove similar responses from the pool

17: for all r′ ∈ P do
18: if Overlap(r, r′) ≥ 0.75 then
19: Remove r′ from P
20: Add (u(i), g(i), R(i), S

(i)
1 ) to D′

21: return D′

and (b) they do not contradict others. To this end,
we again use sentence embeddings with keyword-
based heuristics. We first combine the statements
associated with distractor responses and create a
pool of candidates. Here, we drop statements that
are similar to the response candidates in terms of
the overlap coefficient of content words with a
threshold of 0.75. We also used manually defined
keywords to discard situational statements that tend
to contradict others (e.g., the time is midnight, the
user is injured, etc.). We then iterate over six cat-
egories and pick situational statements from the
pool one by one. We score statement s of category
c using the function below:

f(s;R,S′) = max
r∈R

EmbSim(s, r)

− max
s′∈S′

c

EmbSim(s, s′)

− 1

2
max

s′∈S′C\{c}
EmbSim(s, s′), (2)

where S′ is the current situational statements, S′
c ⊂

S′ represents the statements in S of category c,
and C denotes a set of situation categories. We

pick distractor statements until we exhaust all the
candidates in the pool or the maximum score does
not reach 0. We then draw statements from the
entire dataset in the same way until |S| reaches
l = 12. For time, date, behavior, and location
categories, we pick zero or one statement as those
categories are not likely to have more than one
value.

C Response Selection Example

Table 5 shows a conversation example included in
SUGAR.
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Algorithm 2 Adversarial filtering (AF) for R

Input: m, Dataset D = {(u(i), g(i), r(i)1 , S
(i)
1 )}i=1,··· ,N , ▷ N := number of examples in the dataset.

Output: D′ = {(u(i), g(i), R(i), S
(i)
1 )}i=1,··· ,N ▷ R(i) := {r(i)1 , · · · , r(i)m }

1: P ← {(r0)i} ▷ All responses in D
2: (1) Create an initial dataset D0

3: D0 ← INITDATASET(m,D) ▷ See Algorithm 1
4: (2) Run AF for J rounds

5: for j : 1..J do ▷ We set J = 3
6: Split Dj−1 into K-folds {(T k,Vk)}k=1,··· ,K ▷ We set K = 10
7: for k : 1..K do
8: Train a binary logistic regression classifierM on T k

9: for all (u, g,R, S1) ∈ Vk do
10: for all r ∈ R \ {r1} do
11: (f : M’s score function)

12: if f(r) + γ ≤ f(r1) then ▷ γ is a margin, which we set to 0.05.
13: Remove r from R
14: Pick r′ s.t. f(r′)− γ > f(r1)
15: Add r′ to R
16: Update Vk with the new R

17: Dj ←
⋃K

k=1 Vk
18: D′ ← DK ▷ End

Utterance Please turn on the TV.

Situations It is evening now.
[user] is home.
[user] is in the living room.
[user] is sitting on the couch.
[user] has a TV in the house.
[user] has an outfit on the bed.
[user] has drinks and snacks in the kitchen.
[user] has game cards on the shelf.
The TV is off.
[someone]’s birthday is today.
There are several sports games available to watch.
There is a basketball game scheduled.

Responses Sure. Would you like me to check today’s sports listings? (Best)
Sure. Shall I pour a drink and bring some snacks for the game? (Acceptable)
Sure, shall I select an outfit for you? (Bad)

Table 5: Response selection example in SUGAR. Each example has 12 situational statements, some of which are
distractors. [user] and [someone] are placeholders to denote person names.
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(a) Step 3 (Response Collection)

(b) Step 5 (Situation Collection II). The output of Step 2 is provided as an initial value.

(c) Exercise question. (This figure is for Step 3.)

Figure 6: Annotation interface for data creation. In addition to annotation guidelines, we provide one exercise
question per task to train crowd workers. We used exercise questions in all the crowdsourced annotation tasks in our
pipeline (c).
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