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Abstract

In this paper, we propose DIFFUSIONNER,
which formulates the named entity recognition
task as a boundary-denoising diffusion process
and thus generates named entities from noisy
spans. During training, DIFFUSIONNER grad-
ually adds noises to the golden entity bound-
aries by a fixed forward diffusion process and
learns a reverse diffusion process to recover
the entity boundaries. In inference, DIFFU-
SIONNER first randomly samples some noisy
spans from a standard Gaussian distribution
and then generates the named entities by de-
noising them with the learned reverse diffusion
process. The proposed boundary-denoising dif-
fusion process allows progressive refinement
and dynamic sampling of entities, empower-
ing DIFFUSIONNER with efficient and flexible
entity generation capability. Experiments on
multiple flat and nested NER datasets demon-
strate that DIFFUSIONNER achieves compara-
ble or even better performance than previous
state-of-the-art models1.

1 Introduction

Named Entity Recognition (NER) is a basic task
of information extraction (Tjong Kim Sang and
De Meulder, 2003), which aims to locate entity
mentions and label specific entity types such as
person, location, and organization. It is fundamen-
tal to many structured information extraction tasks,
such as relation extraction (Li and Ji, 2014; Miwa
and Bansal, 2016) and event extraction (McClosky
et al., 2011; Wadden et al., 2019).

Most traditional methods (Chiu and Nichols,
2016) formulate the NER task into a sequence la-
beling task by assigning a single label to each token.
To accommodate the nested structure between en-
tities, some methods (Ju et al., 2018; Wang et al.,
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Figure 1: Boundary diffusion in named entity recogni-
tion. The fixed forward diffusion process adds Gaussian
noise to the entity boundaries at each timestep, and the
noisy boundaries recover their original state by denois-
ing with the learnable reverse diffusion process. For
inference, the reverse diffusion process generates en-
tity boundaries and performs entity typing based on the
noisy spans sampled from the Gaussian distribution.

2020) further devise cascaded or stacked tagging
strategies. Another class of methods treat NER as a
classification task on text spans (Sohrab and Miwa,
2018; Eberts and Ulges, 2020), and assign labels
to word pairs (Yu et al., 2020; Li et al., 2022a)
or potential spans (Lin et al., 2019; Shen et al.,
2021a). In contrast to the above works, some pio-
neer works (Paolini et al., 2021; Yan et al., 2021b;
Lu et al., 2022) propose generative NER methods
that formulate NER as a sequence generation task
by translating structured entities into a linearized
text sequence. However, due to the autoregressive
manner, the generation-based methods suffer from
inefficient decoding. In addition, the discrepancy
between training and evaluation leads to exposure
bias that impairs the model performance.

We move to another powerful generative model
for NER, namely the diffusion model. As a class
of deep latent generative models, diffusion models
have achieved impressive results on image, audio
and text generation (Rombach et al., 2022; Ramesh
et al., 2022; Kong et al., 2021; Li et al., 2022b;
Gong et al., 2022). The core idea of diffusion mod-
els is to systematically perturb the data through
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a forward diffusion process, and then recover the
data by learning a reverse diffusion process.

Inspired by this, we present DIFFUSIONNER, a
new generative framework for named entity recog-
nition, which formulates NER as a denoising diffu-
sion process (Sohl-Dickstein et al., 2015; Ho et al.,
2020) on entity boundaries and generates entities
from noisy spans. As shown in Figure 1, during
training, we add Gaussian noise to the entity bound-
aries step by step in the forward diffusion process,
and the noisy spans are progressively denoised by
a reverse diffusion process to recover the original
entity boundaries. The forward process is fixed
and determined by the variance schedule of the
Gaussian Markov chains, while the reverse process
requires learning a denoising network that progres-
sively refines the entity boundaries. For inference,
we first sample noisy spans from a prior Gaussian
distribution and then generate entity boundaries
using the learned reverse diffusion process.

Empowered by the diffusion model, DIFFUSION-
NER presents three advantages. First, the itera-
tive denoising process of the diffusion model gives
DIFFUSIONNER the ability to progressively re-
fine the entity boundaries, thus improve perfor-
mance. Second, independent of the predefined
number of noisy spans in the training stage, DIF-
FUSIONNER can sample a different number of
noisy spans to decode entities during evaluation.
Such dynamic entity sampling makes more sense
in real scenarios where the number of entities is
arbitrary. Third, different from the autoregressive
manner in generation-based methods, DIFFUSION-
NER can generate all entities in parallel within
several denoising timesteps. In addition, the shared
encoder across timesteps can further speed up infer-
ence. We will further analyze these advantages of
DIFFUSIONNER in § 6.2. In summary, our main
contributions are as follows:

• DIFFUSIONNER is the first to use the diffu-
sion model for NER, an extractive task on
discrete text sequences. Our exploration pro-
vides a new perspective on diffusion models
in natural language understanding tasks.

• DIFFUSIONNER formulates named entity
recognition as a boundary denoising diffusion
process from the noisy spans. DIFFUSION-
NER is a novel generative NER method that
generates entities by progressive boundary re-
finement over the noisy spans.

• We conduct experiments on both nested and
flat NER to show the generality of DIFFU-
SIONNER. Experimental results show that our
model achieves better or competitive perfor-
mance against the previous SOTA models.

2 Related Work

2.1 Named Entity Recognition

Named entity recognition is a long-standing study
in natural language processing. Traditional meth-
ods can be divided into two folders: tagging-based
and span-based. For tagging-based methods (Chiu
and Nichols, 2016; Ju et al., 2018; Wang et al.,
2020), they usually perform sequence labeling at
the token level and then translate into predictions
at the span level. Meanwhile, the span-based meth-
ods (Sohrab and Miwa, 2018; Eberts and Ulges,
2020; Shen et al., 2021a,b; Li et al., 2022a) di-
rectly perform entity classification on potential
spans for prediction. Besides, some methods at-
tempt to formulate NER as sequence-to-set (Tan
et al., 2021, 2022; Wu et al., 2022) or reading
comprehension (Li et al., 2020; Shen et al., 2022)
tasks for prediction. In addition, autoregressive
generative NER works (Athiwaratkun et al., 2020;
De Cao et al., 2021; Yan et al., 2021b; Lu et al.,
2022) linearize structured named entities into a se-
quence, relying on sequence-to-sequence language
models (Lewis et al., 2020; Raffel et al., 2020)
to decode entities. These works designed various
translation schemas, including from word index
sequence to entities (Yan et al., 2021b) and from
label-enhanced sequence to entities (Paolini et al.,
2021), to unify NER to the text generation task
and achieved promising performance and general-
izability. Other works (Zhang et al., 2022) focus on
the disorder of the entities and mitigate incorrect
decoding bias from a causal inference perspective.

Different from previous works, our proposed
DIFFUSIONNER is the first one to explore the
utilization of the generative diffusion model on
NER, which enables progressive refinement and
dynamic sampling of entities. Furthermore, com-
pared with previous generation-based methods, our
DIFFUSIONNER can also decode entities in a non-
autoregressive manner, and thus result in a faster
inference speed with better performance.

2.2 Diffusion Model

Diffusion model is a deep latent generative model
proposed by (Sohl-Dickstein et al., 2015). With
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the development of recent work (Ho et al., 2020),
diffusion model has achieved impressive results on
image and audio generation (Rombach et al., 2022;
Ramesh et al., 2022; Kong et al., 2021). Diffu-
sion model consists of the forward diffusion pro-
cess and the reverse diffusion process. The for-
mer progressively disturbs the data distribution by
adding noise with a fixed variance schedule (Ho
et al., 2020), and the latter learns to recover the
data structure. Despite the success of the diffu-
sion model in continuous state spaces (image or
waveform), the application to natural language still
remains some open challenges due to the discrete
nature of text (Austin et al., 2021; Hoogeboom
et al., 2022; Strudel et al., 2022; He et al., 2022).
Diffusion-LM (Li et al., 2022b) models discrete
text in continuous space through embedding and
rounding operations and proposes an extra classifier
as a guidance to impose constraints on controllable
text generation. DiffuSeq (Gong et al., 2022) and
SeqDiffuSeq (Yuan et al., 2022a) extend diffusion-
based text generation to a more generalized setting.
They propose classifier-free sequence-to-sequence
diffusion frameworks based on encoder-only and
encoder-decoder architectures, respectively.

Although diffusion models have shown their gen-
erative capability on images and audio, its potential
on discriminative tasks has not been explored thor-
oughly. Several pioneer works (Amit et al., 2021;
Baranchuk et al., 2022; Chen et al., 2022) have
made some attempts on diffusion models for ob-
ject detection and semantic segmentation. Our pro-
posed DIFFUSIONNER aims to solve an extractive
task on discrete text sequences.

3 Preliminary

In diffusion models, both the forward and reverse
processes can be considered a Markov chain with
progressive Gaussian transitions. Formally, given
a data distribution x0 ∼ q (x0) and a predefined
variance schedule {β1, . . . , βT }, the forward pro-
cess q gradually adds Gaussian noise with variance
βt ∈ (0, 1) at timestep t to produce latent variables
x1,x2, . . . ,xT as follows:

q (x1, . . . ,xT | x0) =
T∏

t=1

q (xt | xt−1) (1)

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
(2)

An important property of the forward process is
that we can sample the noisy latents at an arbitrary

timestep conditioned on the data x0. With the nota-
tion αt := 1− βt and ᾱt :=

∏t
s=0 αs, we have:

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
(3)

As ᾱT approximates 0, xT follows the standard
Gaussian distribution: p (xT ) ≈ N (xT ;0, I). Un-
like the fixed forward process, the reverse pro-
cess pθ (x0:T ) is defined as a Markov chain with
learnable Gaussian transitions starting at a prior
p (xT ) = N (xT ;0, I):

pθ (x0:T ) = p (xT )
T∏

t=1

pθ (xt−1 | xt)

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t))

where θ denotes the parameters of the model and
µθ and Σθ are the predicted covariance and mean
of q (xt−1 | xt). We set Σθ (xt, t) = σ2

t I and build
a neural network fθ to predict the data x0, denoted
as x̂0 = fθ (xt, t). Then we have µθ (xt, t) =
µ̃t (xt, x̂0) = µ̃t (xt, fθ (xt, t)), where µ̃t denotes
the mean of posterior q (xt−1 | xt, x̂0). The re-
verse process is trained by optimizing a variational
upper bound of − log (pθ (x0)). According to the
derivation in Ho et al. (2020), we can simplify the
training objective of the diffusion model by training
the model fθ(·) to predict the data x0.

4 Method

In this section, we first present the formulation of
diffusion model for NER (i.e., the boundary denois-
ing diffusion process) in § 4.1. Then, we detail the
architecture of the denoising network for boundary
reverse process in § 4.2. Finally, we describe the
inference procedure of DIFFUSIONNER in § 4.3.

4.1 Boundary Denoising Diffusion Model

Given a sentence S with length M , the named
entity recognition task is to extract the entities
E = {(li, ri, ti)}Ni=0 contained in the sentence,
where N is the number of entities and li, ri, ti de-
note the left and right boundary indices and type of
the i-th entity. We formulate NER as a boundary
denoising diffusion process, as shown in Figure 2.
We regard entity boundaries as data samples, then
the boundary forward diffusion is to add Gaussian
noise to the entity boundaries while the reverse
diffusion process is to progressively recover the
original entity boundaries from the noisy spans.
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Figure 2: Overview of DIFFUSIONNER. Boundary denoising diffusion process for NER with a denoising network.

Boundary Forward Diffusion Boundary for-
ward diffusion is the process of adding noise to
the entity boundary in a stepwise manner. In order
to align the number of entities in different instances,
we first expand the entity set to a fixed number K
(> N ). There are two ways to expand the entities,
repetition strategy and random strategy, which add
K −N entities by duplicating entities or sampling
random spans from a Gaussian distribution2. For
convenience, we use B ∈ RK×2 to denote the
boundaries of the K expanded entities, with all of
them normalized by the sentence length M and
scaled to (−λ, λ) interval.

Formally, given the entity boundaries as data
samples x0 = B, we can obtain the noisy spans
at timestep t using the forward diffusion process.
According to Equation (3), we have:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (4)

where ϵ ∼ N (0, I) is the noise sampled from
the standard Gaussian. At each timestep, the
noisy spans have the same shape as x0, i.e.,
x1,x2, . . . ,xT ∈ RK×2.

Boundary Reverse Diffusion Starting from the
noisy spans xT sampled from the Gaussian distri-
bution, boundary reverse diffusion adopts a non-
Markovian denoising practice used in DDIM (Song
et al., 2021) to recover entities boundaries. Assum-
ing τ is an arithmetic subsequence of the com-
plete timestep sequence [1, . . . , T ] of length γ with
τγ = T . Then we refine the noisy spans xτi to

2 We will discuss these two practices in § 6.3.

xτi−1 as follows:

x̂0 = fθ(xτi , S, τi) (5)

ϵ̂τi =
xτi −

√
ατi x̂0√

1− ατi

(6)

xτi−1 =
√
ατi−1 x̂0 +

√
1− ατi−1 ϵ̂τi (7)

where x̂0 and ϵ̂τi are the predicted entity boundary
and noise at timestep τi. fθ(xt, S, t) is a learnable
denoising network and we will cover the network
architecture in the next section (§ 4.2). After γ iter-
ations of DDIM, the noisy spans are progressively
refined to the entity boundaries.

4.2 Network Architecture

Denoising network fθ(xt, S, t) accepts the noisy
spans xt and the sentence S as inputs and predicts
the corresponding entity boundaries x̂0. As shown
in Figure 2, we parameterize the denoising network
with a sentence encoder and an entity decoder.

Sentence Encoder consists of a BERT (Devlin
et al., 2019) plus a stacked bi-directional LSTM.
The whole span encoder takes the sentence S as
input and outputs the sentence encoding HS ∈
RM×h. The sentence encoding HS will be calcu-
lated only once and reused across all timesteps to
save computations.

Entity Decoder uses the sentence encoding HS

to first compute the representations of K noisy
spans xt and then predicts the corresponding entity
boundaries. Specifically, we discretize the noisy
spans into word indexes by rescaling, multiplying
and rounding3, then perform mean pooling over the

3 First scaled with 1
λ

, then multiplied by M , and finally
rounded to integers.

3878



Algorithm 1: Training
1 repeat
2 Sample a sentence S with entities E from D
3 Expand E and get entity boundaries B
4 x0 = B ∈ RK×2

5 t ∼ Uniform ({1, . . . , T})
6 ϵ ∼ N (0, I)

7 xt =
√
ᾱtx0 +

√
1− ᾱtϵ

8 Compute Pl, Pr and Pc by running fθ(xt, S, t)
9 Take gradient descent step by optimize

−∑K
i=1

(
logPc

i (π
c(i)) +

∑
δ∈l,r logP

δ
i (π

δ(i))
)

10 until converged;

inner-span tokens. The extracted span representa-
tions can be denoted as HX ∈ RK×h. To further
encode the spans, we design a span encoder that
consists of a self-attention and a cross-attention
layer. The former enhances the interaction between
spans with key, query, and value as HX . And the
latter fuses the sentence encoding to the span rep-
resentation with key, value as HS , and query as
HX . We further add the sinusoidal embedding Et

(Vaswani et al., 2017) of timestep t to the span rep-
resentations. Thus the new representations H̄X of
the noisy spans can be computed:

H̄X = SpanEncoder(HS ,HX) +Et,

Then we use two boundary pointers to predict
the entity boundaries. For boundary δ ∈ {l, r},
we compute the fusion representation Hδ

SX ∈
RK×M×h of the noisy spans and the words, and
then the probability of the word as the left or right
boundaries Pδ ∈ RK×M can be computed as:

Hδ
SX = HSW

δ
S + H̄XWδ

X

Pδ = sigmoid(MLP(Hδ
SX))

where Wδ
S ,W

δ
X ∈ Rh×h are two learnable ma-

trixes and MLP is a two-layer perceptron. Based
on the boundary probabilities, we can predict the
boundary indices of the K noisy spans. If the cur-
rent step is not the last denoising step, we compute
x̂0 by normalizing the indices with sentence length
M and scaling to (−λ, λ) intervals. Then we con-
duct the next iteration of the reverse diffusion pro-
cess according to Equations (5) to (7).

It is worth noting that we should not only lo-
cate entities but also classify them in named entity
recognition. Therefore, we use an entity classi-
fier to classify the noisy spans. The classification
probability Pc ∈ RK×C is calculated as follows:

Pc = Classifier(H̄X)

Algorithm 2: Inference
1 xT ∼ N (0, I) ∈ RKeval×2

2 τ is an arithmetic sequence of length γ with τγ = T
3 for i = γ, . . . , 1 do
4 Compute x̂0, Pl, Pr and Pc via fθ(xt, S, t)
5 xτi−1 =

√
ατi−1 x̂0 +

√
1− ατi−1 · xτi

−√
ατi

x̂0√
1−ατi

6 end
7 Decode entities (li, ri, ci)Keval

i=0 , where
δi = argmaxPδ

i , δ ∈ {l, r, c}
8 Perform post-processing on (li, ri, ci)

Keval
i=0

9 return final entities

where C is the number of entity types and Classifier
is a two-layer perceptron with a softmax layer.

Training Objective With K entities predicted
from the noisy spans and N ground-truth entities,
we first use the Hungarian algorithm (Kuhn, 1955)
to solve the optimal matching π̂ between the two
sets4 as in Carion et al. (2020). π̂(i) denotes the
ground-truth entity corresponding to the i-th noisy
span. Then, we train the boundary reverse process
by maximizing the likelihood of the prediction:

L = −
K∑

i=1

∑

δ∈{l,r,c}
logPδ

i

(
π̂δ(i)

)

where π̂l(i), π̂r(i) and π̂c(i) denote the left and
right boundary indexes and type of the π̂(i) entity.
Overall, Algorithm 1 displays the whole training
procedure of our model for an explanation.

4.3 Inference

During inference, DIFFUSIONNER first samples
Keval noisy spans from a Gaussian distribution,
then performs iterative denoising with the learned
boundary reverse diffusion process based on the
denoising timestep sequence τ . Then with the pre-
dicted probabilities on the boundaries and type, we
can decode Keval candidate entities (li, ri, ci)

Keval
i=0 ,

where δi = argmaxPδ
i , δ ∈ {l, r, c}. After that,

we employ two simple post-processing operations
on these candidates: de-duplication and filtering.
For spans with identical boundaries, we keep the
one with the maximum type probability. For spans
with the sum of prediction probabilities less than
the threshold φ, we discard them. The inference
procedure is shown in Algorithm 2.

4 See Appendix A for the solution of the optimal match π̂.

3879



Model ACE04 ACE05 GENIA Agerage
F1-scorePr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

Tagging-based
Straková et al. (2019) - - 81.48 - - 80.82 - - 77.80 80.03
Ju et al. (2018) - - - 74.20 70.30 72.20 78.50 71.30 74.70 -
Wang et al. (2020) 86.08 86.48 86.28 83.95 85.39 84.66 79.45 78.94 79.19 83.57

Generation-based
Straková et al. (2019) - - 84.40 - - 84.33 - - 78.31 82.35
Yan et al. (2021b) 87.27 86.41 86.84 83.16 86.38 84.74 78.87 79.60 79.23 83.60
Tan et al. (2021) 88.46 86.10 87.26 87.48 86.63 87.05 82.31 78.66 80.44 84.91
Lu et al. (2022) - - 86.89 - - 85.78 - - - -

Span-based
Yu et al. (2020) 87.30 86.00 86.70 85.20 85.60 85.40 81.80 79.30 80.50 84.20
Li et al. (2020) 85.05 86.32 85.98 87.16 86.59 86.88 81.14 76.82 78.92 83.92
Shen et al. (2021a) 87.44 87.38 87.41 86.09 87.27 86.67 80.19 80.89 80.54 84.87
Wan et al. (2022) 86.70 85.93 86.31 84.37 85.87 85.11 77.92 80.74 79.30 83.57
Lou et al. (2022) 87.39 88.40 87.90 85.97 87.87 86.91 - - - -
Zhu and Li (2022) 88.43 87.53 87.98 86.25 88.07 87.15 - - - -
Yuan et al. (2022b) 87.13 87.68 87.40 86.70 86.94 86.82 80.42 82.06 81.23 85.14
Li et al. (2022a) 87.33 87.71 87.52 85.03 88.62 86.79 83.10 79.76 81.39 85.23

DIFFUSIONNER 88.11 88.66 88.39 86.15 87.72 86.93 82.10 80.97 81.53 85.62

Table 1: Results on nested NER datasets.

5 Experimental Settings

5.1 Datasets
For nested NER, we choose three widely used
datasets for evaluation: ACE04 (Doddington et al.,
2004), ACE05 (Walker et al., 2006), and GE-
NIA (Ohta et al., 2002). ACE04 and ACE05 belong
to the news domain and GENIA is in the biologi-
cal domain. For flat NER, we use three common
datasets to validate: CoNLL03 (Tjong Kim Sang
and De Meulder, 2003), OntoNotes (Pradhan et al.,
2013), and MSRA (Levow, 2006). More details
about datasets can be found in Appendix B.

5.2 Baselines
We choose a variety of recent advanced methods
as our baseline, which include: 1) Tagging-based
methods (Straková et al., 2019; Ju et al., 2018;
Wang et al., 2020); 2) Span-based methods (Yu
et al., 2020; Li et al., 2020; Wan et al., 2022; Lou
et al., 2022; Zhu and Li, 2022; Yuan et al., 2022b);
3) Generation-based methods (Tan et al., 2021; Yan
et al., 2021b; Lu et al., 2022). More details about
baselines can be found in Appendix D.

5.3 Implementation Details
For a fair comparison, we use bert-large (Devlin
et al., 2019) on ACE04, ACE05, CoNLL03 and
OntoNotes, biobert-large (Chiu et al., 2016) on
GENIA and chinese-bert-wwm (Cui et al., 2020)
on MSRA. We adopt the Adam (Kingma and Ba,

2015) as the default optimizer with a linear warmup
and linear decay learning rate schedule. The peak
learning rate is set as 2e− 5 and the batch size is 8.
For diffusion model, the number of noisy spans K
(Keval) is set as 60, the timestep T is 1000, and the
sampling timestep γ is 5 with a filtering threshold
φ = 2.5. The scale factor λ for noisy spans is 1.0.
Please see Appendix C for more details.

6 Results and Analysis

6.1 Performance

Table 1 illustrates the performance of DIFFUSION-
NER as well as baselines on the nested NER
datasets. Our results in Table 1 demonstrate that
DIFFUSIONNER is a competitive NER method,
achieving comparable or superior performance
compared to state-of-the-art models on the nested
NER. Specifically, on ACE04 and GENIA datasets,
DIFFUSIONNER achieves F1 scores of 88.39%
and 81.53% respectively, with an improvement of
+0.77% and +0.41%. And on ACE05, our method
achieves comparable results. Meanwhile, DIFFU-
SIONNER also shows excellent performance on flat
NER, just as shown in Table 2. We find that DIFFU-
SIONNER outperforms the baselines on OntoNotes
with +0.16% improvement achieves a comparable
F1-score on both the English CoNLL03 and Chi-
nese MSRA. These improvements demonstrate that
our DIFFUSIONNER can locate entities more ac-
curately due to the benefits of progressive bound-
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Model CoNLL03

Pr. Rec. F1

Lu et al. (2022) - - 92.99
Shen et al. (2021a) 92.13 93.73 92.94
Li et al. (2020)† 92.33 94.61 93.04
Yan et al. (2021b) 92.56 93.56 93.05
Li et al. (2022a)† 92.71 93.44 93.07

DIFFUSIONNER 92.99 92.56 92.78

Model OntoNotes

Pr. Rec. F1

Yan et al. (2019) - - 89.78
Yan et al. (2021b) 89.62 90.92 90.27
Li et al. (2020)† 90.14 89.95 90.02
Li et al. (2022a)† 90.03 90.97 90.50

DIFFUSIONNER 90.31 91.02 90.66

Model MSRA

Pr. Rec. F1

Yan et al. (2019) - - 92.74
Shen et al. (2021a) 92.20 90.72 91.46
Li et al. (2020)† 91.98 93.29 92.63
Li et al. (2022a)† 94.88 95.06 94.97

DIFFUSIONNER 95.71 94.11 94.91

Table 2: Results on flat NER datasets. † means that we
reproduce the results under the same setting.

ary refinement, and thus obtain better performance.
The results also validate that our DIFFUSIONNER
can recover entity boundaries from noisy spans via
boundary denoising diffusion.

6.2 Analysis

Inference Efficiency To further validate whether
our DIFFUSIONNER requires more inference com-
putations, we also conduct experiments to compare
the inference efficiency between DIFFUSIONNER
and other generation-based models (Lu et al., 2022;
Yan et al., 2021a). Just as shown in Table 3, we find
that DIFFUSIONNER could achieve better perfor-
mance while maintaining a faster inference speed
with minimal parameter scale. Even with a denois-
ing timestep of γ = 10, DIFFUSIONNER is 18×
and 3× faster than them. This is because DIFFU-
SIONNER generates all entities in parallel within
several denoising timesteps, which avoids generat-
ing the linearized entity sequence in an autoregres-
sive manner. In addition, DIFFUSIONNER shares
sentence encoder across timesteps, which further
accelerates inference speed.

Denoising Timesteps We also conduct experi-
ments to analyze the effect of different denois-
ing timesteps on model performance and inference

Model # P F1 Sents/s SpeedUp

Lu et al. (2022) 849M 86.89 1.98 1.00×
Yan et al. (2021a) 408M 86.84 13.75 6.94×

DIFFUSIONNER[τ=1] 381M 88.40 82.44 41.64×
DIFFUSIONNER[τ=5] 381M 88.53 57.08 28.83×
DIFFUSIONNER[τ=10] 381M 88.57 37.10 18.74×

Table 3: Comparison with generation-based methods in
terms of parameters, performance, and inference speed.
# P means the number of parameters. All experiments
are conducted on a single GeForce RTX 3090 with the
same setting. The results are reported on ACE04.

speed of DIFFUSIONNER under various numbers
of noisy spans. Just as shown in Figure 3, we
find that, with an increase of denoising steps, the
model obtains incremental performance improve-
ment while sacrificing inference speed. Consid-
ering the trade-off between performance and ef-
ficiency, we set γ = 5 as the default setting. In
addition, when the noisy spans are smaller, the
improvement brought by increasing the denoising
timesteps is more obvious. This study indicates that
our DiffusionNER can effectively counterbalance
the negative impact of undersampling noise spans
on performance by utilizing additional timesteps.

SpeedF1-score 

Figure 3: Analysis of denoising timestep γ on ACE04.
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Figure 4: Analysis of #sampled noisy spans on ACE04.

Sampling Number As a generative latent model,
DIFFUSIONNER can decouple training and eval-
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uation, and dynamically sample noisy spans dur-
ing evaluation. To manifest this advantage, we
train DIFFUSIONNER on ACE04 with K = 60
noisy spans and evaluate it with different sam-
pling numbers Keval. The results are shown in
Figure 4. Overall, the model performance becomes
better as the sampling number of noisy spans in-
creases. Specifically, we find that DIFFUSIONNER
performs worse when Keval < 30. We guess this is
because fewer noisy spans may not cover all poten-
tial entities. When sampling number Keval > 60,
we find it could also slightly improve model per-
formance. Overall, the dynamic sampling of noisy
spans in DIFFUSIONNER has the following advan-
tages: 1) we can improve model performance by
controlling it to sample more noisy spans; 2) dy-
namic sampling strategy also allows the model to
predict an arbitrary number of entities in any real-
world application, avoiding the limitations of the
sampling number at the training stage.

6.3 Ablation Study

Network Architecture As shown in Table 4, we
conduct experiments to investigate the network ar-
chitecture of the boundary reverse diffusion pro-
cess. We found that DIFFUSIONNER performs
better with a stronger pre-trained language model
(PLM), as evidenced by an improvement of +0.53%
on ACE04 and +0.11% on CoNLL03 when us-
ing roberta-large. Additionally, for the span en-
coder, we find that directly removing self-attention
between noisy spans or cross-attention of spans
to the sentence can significantly impair perfor-
mance. When both are ablated, model performance
decreases by 1.37% and 1.15% on ACE04 and
CoNLL03. These results indicate that the inter-
action between the spans or noisy spans and the
sentence is necessary.

Setting ACE04 CoNLL03

PL
M

RoBERTa-Large 88.99 92.89
BERT-Large 88.39 92.78
BERT-Base 86.93 92.02

M
od

ul
e DEFAULT 88.39 92.78

w/o self-attention 87.94 92.25
w/o cross-attention 87.22 91.40
w/o span encoder 87.09 91.63

Table 4: Ablation study of network architecture.

Variance Scheduler The variance scheduler
plays a crucial role in controlling the intensity of

Scheduler Timesteps (T ) ACE04 CoNLL03

cosine
T = 1000 88.39 91.56
T = 1500 87.49 92.04
T = 2000 88.33 91.79

linear
T = 1000 88.38 92.78
T = 1500 87.83 92.87
T = 2000 88.17 92.56

Table 5: Ablation study of variance scheduler.

Strategy # Noisy Spans ACE04 CoNLL03

Repetition
K = 60 88.15 92.66
K = 120 88.49 92.54
K = 150 88.19 92.71

Random
K = 60 88.46 92.78
K = 120 88.53 92.79
K = 150 88.11 92.60

Table 6: Ablation study of expansion strategy.

the added noise at each timestep during boundary
forward diffusion process. Therefore, we analyze
the performance of DIFFUSIONNER on different
variance schedulers with different noise timesteps
T . The results on ACE04 and CoNLL03 are shown
in Table 5. We find that the cosine scheduler gen-
erally yields superior results on the ACE04, while
the linear scheduler proves to be more effective on
CoNLL03. In addition, the performance of DIFFU-
SIONNER varies with the choice of noise timestep,
with the best performance achieved at T = 1000
for ACE04 and T = 1500 for CoNLL03.

Expansion Stratagy The expansion stratagy of
the entity set can make the number of K noisy
spans consistent across instances during training.
We conduct experiments to analyze the perfor-
mance of DIFFUSIONNER for different expansion
strategies with various numbers of noisy spans. The
experimental results are shown in Table 6. Gener-
ally, we find that the random strategy could achieve
similar or better performance than the repetitive
strategy. In addition, Table 6 shows that DIFFU-
SIONNER is insensitive to the number of noisy
spans during training. Considering that using more
noisy spans brings more computation and memory
usage, we set K = 60 as the default setting.

7 Conclusion

In this paper, we present DIFFUSIONNER, a novel
generative approach for NER that converts the task
into a boundary denoising diffusion process. Our
evaluations on six nested and flat NER datasets
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show that DIFFUSIONNER achieves comparable
or better performance compared to previous state-
of-the-art models. Additionally, our additional anal-
yses reveal the advantages of DIFFUSIONNER in
terms of inference speed, progressive boundary re-
finement, and dynamic entity sampling. Overall,
this study is a pioneering effort of diffusion models
for extractive tasks on discrete text sequences, and
we hope it may serve as a catalyst for more research
about the potential of diffusion models in natural
language understanding tasks.

Limitations

We discuss here the limitations of the proposed DIF-
FUSIONNER. First, as a latent generative model,
DIFFUSIONNER relies on sampling from a Gaus-
sian distribution to produce noisy spans, which
leads to a random characteristic of entity genera-
tion. Second, DIFFUSIONNER converges slowly
due to the denoising training and matching-based
loss over a large noise timestep. Finally, since
discontinuous named entities often contain multi-
ple fragments, DIFFUSIONNER currently lacks the
ability to generate such entities. We can design a
simple classifier on top of DIFFUSIONNER, which
is used to combine entity fragments and thus solve
the problem of discontinuous NER.

Acknowledgments

This work is supported by the Key Research and
Development Program of Zhejiang Province, China
(No. 2023C01152), the Fundamental Research
Funds for the Central Universities (No. 226-2023-
00060), and MOE Engineering Research Center of
Digital Library.

References
Tomer Amit, Eliya Nachmani, Tal Shaharbany, and Lior

Wolf. 2021. Segdiff: Image segmentation with diffu-
sion probabilistic models. ArXiv, abs/2112.00390.

Ben Athiwaratkun, Cicero Nogueira dos Santos, Jason
Krone, and Bing Xiang. 2020. Augmented natu-
ral language for generative sequence labeling. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 375–385, Online. Association for Computa-
tional Linguistics.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel
Tarlow, and Rianne van den Berg. 2021. Structured
denoising diffusion models in discrete state-spaces.

In Advances in Neural Information Processing Sys-
tems, volume 34, pages 17981–17993. Curran Asso-
ciates, Inc.

Dmitry Baranchuk, Andrey Voynov, Ivan Rubachev,
Valentin Khrulkov, and Artem Babenko. 2022. Label-
efficient semantic segmentation with diffusion mod-
els. In International Conference on Learning Repre-
sentations.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In Computer Vision – ECCV 2020,
pages 213–229, Cham. Springer International Pub-
lishing.

Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo.
2022. Diffusiondet: Diffusion model for object de-
tection. arXiv preprint arXiv:2211.09788.

Billy Chiu, Gamal Crichton, Anna Korhonen, and
Sampo Pyysalo. 2016. How to train good word em-
beddings for biomedical NLP. In Proceedings of
the 15th Workshop on Biomedical Natural Language
Processing, pages 166–174, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Jason P.C. Chiu and Eric Nichols. 2016. Named Entity
Recognition with Bidirectional LSTM-CNNs. Trans-
actions of the Association for Computational Linguis-
tics, 4:357–370.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for Chinese natural language processing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 657–668, Online. As-
sociation for Computational Linguistics.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

George Doddington, Alexis Mitchell, Mark Przybocki,
Lance Ramshaw, Stephanie Strassel, and Ralph
Weischedel. 2004. The automatic content extrac-
tion (ACE) program – tasks, data, and evaluation. In
Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC’04),
Lisbon, Portugal. European Language Resources As-
sociation (ELRA).

3883

https://arxiv.org/abs/2112.00390
https://arxiv.org/abs/2112.00390
https://doi.org/10.18653/v1/2020.emnlp-main.27
https://doi.org/10.18653/v1/2020.emnlp-main.27
https://proceedings.neurips.cc/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://openreview.net/forum?id=SlxSY2UZQT
https://openreview.net/forum?id=SlxSY2UZQT
https://openreview.net/forum?id=SlxSY2UZQT
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2211.09788
https://arxiv.org/abs/2211.09788
https://doi.org/10.18653/v1/W16-2922
https://doi.org/10.18653/v1/W16-2922
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf


Markus Eberts and Adrian Ulges. 2020. Span-based
joint entity and relation extraction with transformer
pre-training. In Proceedings of the 24th European
Conference on Artificial Intelligence, Santiago de
Compostela, Spain.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and Lingpeng Kong. 2022. Diffuseq: Sequence to se-
quence text generation with diffusion models. arXiv
preprint arXiv:2210.08933.

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuan-
jing Huang, and Xipeng Qiu. 2022. Diffusionbert:
Improving generative masked language models with
diffusion models. arXiv preprint arXiv:2211.15029.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020.
Denoising diffusion probabilistic models. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 6840–6851. Curran Associates,
Inc.

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bast-
ings, Ben Poole, Rianne van den Berg, and Tim Sal-
imans. 2022. Autoregressive diffusion models. In
International Conference on Learning Representa-
tions.

Xin Huang, Ashish Khetan, Rene Bidart, and Zohar
Karnin. 2022. Pyramid-BERT: Reducing complex-
ity via successive core-set based token selection. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 8798–8817, Dublin, Ireland. As-
sociation for Computational Linguistics.

Meizhi Ju, Makoto Miwa, and Sophia Ananiadou. 2018.
A neural layered model for nested named entity recog-
nition. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 1446–1459,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Arzoo Katiyar and Claire Cardie. 2018. Nested named
entity recognition revisited. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 861–871, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3th Inter-
national Conference on Learning Representations,
ICLR 2021.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. 2021. Diffwave: A versatile dif-
fusion model for audio synthesis. In International
Conference on Learning Representations.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Gina-Anne Levow. 2006. The third international Chi-
nese language processing bakeoff: Word segmenta-
tion and named entity recognition. In Proceedings of
the Fifth SIGHAN Workshop on Chinese Language
Processing, pages 108–117, Sydney, Australia. Asso-
ciation for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Jingye Li, Hao Fei, Jiang Liu, Shengqiong Wu, Meishan
Zhang, Chong Teng, Donghong Ji, and Fei Li. 2022a.
Unified named entity recognition as word-word rela-
tion classification. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages
10965–10973.

Qi Li and Heng Ji. 2014. Incremental joint extraction
of entity mentions and relations. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 402–412, Baltimore, Maryland. Association
for Computational Linguistics.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy
Liang, and Tatsunori Hashimoto. 2022b. Diffusion-
lm improves controllable text generation. ArXiv,
abs/2205.14217.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2020. A unified MRC
framework for named entity recognition. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5849–5859, On-
line. Association for Computational Linguistics.

Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun. 2019.
Sequence-to-nuggets: Nested entity mention detec-
tion via anchor-region networks. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5182–5192, Florence,
Italy. Association for Computational Linguistics.

Chao Lou, Songlin Yang, and Kewei Tu. 2022. Nested
named entity recognition as latent lexicalized con-
stituency parsing. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6183–6198,
Dublin, Ireland. Association for Computational Lin-
guistics.

Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu
Lin, Xianpei Han, Le Sun, and Hua Wu. 2022. Uni-
fied structure generation for universal information
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5755–5772, Dublin,
Ireland. Association for Computational Linguistics.

3884

https://ecai2020.eu/papers/1283_paper.pdf
https://ecai2020.eu/papers/1283_paper.pdf
https://ecai2020.eu/papers/1283_paper.pdf
https://arxiv.org/abs/2210.08933
https://arxiv.org/abs/2210.08933
https://arxiv.org/abs/2211.15029
https://arxiv.org/abs/2211.15029
https://arxiv.org/abs/2211.15029
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://openreview.net/forum?id=Lm8T39vLDTE
https://doi.org/10.18653/v1/2022.acl-long.602
https://doi.org/10.18653/v1/2022.acl-long.602
https://doi.org/10.18653/v1/N18-1131
https://doi.org/10.18653/v1/N18-1131
https://doi.org/10.18653/v1/N18-1079
https://doi.org/10.18653/v1/N18-1079
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=a-xFK8Ymz5J
https://openreview.net/forum?id=a-xFK8Ymz5J
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://aclanthology.org/W06-0115
https://aclanthology.org/W06-0115
https://aclanthology.org/W06-0115
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.3115/v1/P14-1038
https://doi.org/10.3115/v1/P14-1038
https://arxiv.org/pdf/2205.14217.pdf
https://arxiv.org/pdf/2205.14217.pdf
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/2022.acl-long.395


David McClosky, Mihai Surdeanu, and Christopher
Manning. 2011. Event extraction as dependency
parsing. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 1626–1635,
Portland, Oregon, USA. Association for Computa-
tional Linguistics.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using LSTMs on sequences and tree
structures. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1105–1116, Berlin,
Germany. Association for Computational Linguistics.

Tomoko Ohta, Yuka Tateisi, and Jin-Dong Kim. 2002.
The genia corpus: An annotated research abstract
corpus in molecular biology domain. In Proceedings
of the Second International Conference on Human
Language Technology Research, page 82–86, San
Francisco, USA. Morgan Kaufmann Publishers Inc.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie
Ma, Alessandro Achille, RISHITA ANUBHAI, Ci-
cero Nogueira dos Santos, Bing Xiang, and Stefano
Soatto. 2021. Structured prediction as translation be-
tween augmented natural languages. In International
Conference on Learning Representations.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Proceed-
ings of the Seventeenth Conference on Computational
Natural Language Learning, pages 143–152, Sofia,
Bulgaria. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. 2022. Hierarchical text-
conditional image generation with clip latents.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10674–
10685.

Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang,
Wen Wang, and Weiming Lu. 2021a. Locate and
label: A two-stage identifier for nested named en-
tity recognition. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2782–2794, Online. Association for
Computational Linguistics.

Yongliang Shen, Xinyin Ma, Yechun Tang, and Weim-
ing Lu. 2021b. A trigger-sense memory flow frame-
work for joint entity and relation extraction. In Pro-
ceedings of the Web Conference 2021, WWW ’21,
page 1704–1715, New York, NY, USA. ACM.

Yongliang Shen, Xiaobin Wang, Zeqi Tan, Guangwei
Xu, Pengjun Xie, Fei Huang, Weiming Lu, and Yuet-
ing Zhuang. 2022. Parallel instance query network
for named entity recognition. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
947–961, Dublin, Ireland. Association for Computa-
tional Linguistics.

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep un-
supervised learning using nonequilibrium thermody-
namics. In Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Pro-
ceedings of Machine Learning Research, pages 2256–
2265, Lille, France. PMLR.

Mohammad Golam Sohrab and Makoto Miwa. 2018.
Deep exhaustive model for nested named entity
recognition. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2843–2849, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021.
Denoising diffusion implicit models. In International
Conference on Learning Representations.

Jana Straková, Milan Straka, and Jan Hajic. 2019. Neu-
ral architectures for nested NER through lineariza-
tion. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
5326–5331, Florence, Italy. Association for Compu-
tational Linguistics.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun
Du, Yaroslav Ganin, Arthur Mensch, Will Grathwohl,
Nikolay Savinov, Sander Dieleman, Laurent Sifre,
et al. 2022. Self-conditioned embedding diffusion for
text generation. arXiv preprint arXiv:2211.04236.

Zeqi Tan, Yongliang Shen, Xuming Hu, Wenqi Zhang,
Xiaoxia Cheng, Weiming Lu, and Yueting Zhuang.
2022. Query-based instance discrimination network
for relational triple extraction. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 7677–7690, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Zeqi Tan, Yongliang Shen, Shuai Zhang, Weiming Lu,
and Yueting Zhuang. 2021. A sequence-to-set net-
work for nested named entity recognition. In Pro-
ceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence, IJCAI-21, pages 3936–
3942. International Joint Conferences on Artificial
Intelligence Organization. Main Track.

3885

https://aclanthology.org/P11-1163
https://aclanthology.org/P11-1163
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.18653/v1/P16-1105
https://dl.acm.org/doi/10.5555/1289189.1289260
https://dl.acm.org/doi/10.5555/1289189.1289260
https://openreview.net/forum?id=US-TP-xnXI
https://openreview.net/forum?id=US-TP-xnXI
https://aclanthology.org/W13-3516
https://aclanthology.org/W13-3516
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.1145/3442381.3449895
https://doi.org/10.1145/3442381.3449895
https://doi.org/10.18653/v1/2022.acl-long.67
https://doi.org/10.18653/v1/2022.acl-long.67
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://doi.org/10.18653/v1/D18-1309
https://doi.org/10.18653/v1/D18-1309
https://openreview.net/forum?id=St1giarCHLP
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.18653/v1/P19-1527
https://aclanthology.org/2022.emnlp-main.523
https://aclanthology.org/2022.emnlp-main.523
https://doi.org/10.24963/ijcai.2021/542
https://doi.org/10.24963/ijcai.2021/542


Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Christopher Walker, Stephanie Strassel, and Kazuaki
Maeda. 2006. Ace 2005 multilingual training corpus.
linguistic. In Linguistic Data Consortium, Philadel-
phia 57.

Juncheng Wan, Dongyu Ru, Weinan Zhang, and Yong
Yu. 2022. Nested named entity recognition with span-
level graphs. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 892–903, Dublin,
Ireland. Association for Computational Linguistics.

Jue Wang, Lidan Shou, Ke Chen, and Gang Chen. 2020.
Pyramid: A layered model for nested named entity
recognition. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5918–5928, Online. Association for Computa-
tional Linguistics.

Shuhui Wu, Yongliang Shen, Zeqi Tan, and Weiming Lu.
2022. Propose-and-refine: A two-stage set prediction
network for nested named entity recognition. In Pro-
ceedings of the Thirty-First International Joint Con-
ference on Artificial Intelligence, IJCAI-22, pages
4418–4424. International Joint Conferences on Arti-
ficial Intelligence Organization. Main Track.

Hang Yan, Junqi Dai, Tuo Ji, Xipeng Qiu, and Zheng
Zhang. 2021a. A unified generative framework for
aspect-based sentiment analysis. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2416–2429, Online.
Association for Computational Linguistics.

Hang Yan, Bocao Deng, Xiaonan Li, and Xipeng
Qiu. 2019. Tener: adapting transformer encoder
for named entity recognition. arXiv preprint
arXiv:1911.04474.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021b. A unified generative
framework for various NER subtasks. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5808–5822, Online.
Association for Computational Linguistics.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021c. A unified generative
framework for various NER subtasks. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics, pages 5808–5822, Online.
Association for Computational Linguistics.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476, Online. Association for Computational Lin-
guistics.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang,
and Songfang Huang. 2022a. Seqdiffuseq: Text dif-
fusion with encoder-decoder transformers. ArXiv,
abs/2212.10325.

Zheng Yuan, Chuanqi Tan, Songfang Huang, and Fei
Huang. 2022b. Fusing heterogeneous factors with
triaffine mechanism for nested named entity recog-
nition. In Findings of the Association for Compu-
tational Linguistics: ACL 2022, pages 3174–3186,
Dublin, Ireland. Association for Computational Lin-
guistics.

Shuai Zhang, Yongliang Shen, Zeqi Tan, Yiquan Wu,
and Weiming Lu. 2022. De-bias for generative ex-
traction in unified NER task. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
808–818, Dublin, Ireland. Association for Computa-
tional Linguistics.

Enwei Zhu and Jinpeng Li. 2022. Boundary smooth-
ing for named entity recognition. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7096–7108, Dublin, Ireland. Association for
Computational Linguistics.

3886

https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
https://doi.org/10.18653/v1/2022.acl-long.63
https://doi.org/10.18653/v1/2022.acl-long.63
https://doi.org/10.18653/v1/2020.acl-main.525
https://doi.org/10.18653/v1/2020.acl-main.525
https://doi.org/10.24963/ijcai.2022/613
https://doi.org/10.24963/ijcai.2022/613
https://doi.org/10.18653/v1/2021.acl-long.188
https://doi.org/10.18653/v1/2021.acl-long.188
https://arxiv.org/abs/1911.04474
https://arxiv.org/abs/1911.04474
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2020.acl-main.577
https://arxiv.org/abs/2212.10325
https://arxiv.org/abs/2212.10325
https://doi.org/10.18653/v1/2022.findings-acl.250
https://doi.org/10.18653/v1/2022.findings-acl.250
https://doi.org/10.18653/v1/2022.findings-acl.250
https://doi.org/10.18653/v1/2022.acl-long.59
https://doi.org/10.18653/v1/2022.acl-long.59
https://doi.org/10.18653/v1/2022.acl-long.490
https://doi.org/10.18653/v1/2022.acl-long.490


A Optimal Matching π̂

Given a fixed-size set of K noisy spans, DIFFU-
SIONNER infers K predictions, where K is larger
than the number of N entities in a sentence. One
of the main difficulties of training is to assign the
ground truth to the prediction. Thus we first pro-
duce an optimal bipartite matching between pre-
dicted and ground truth entities and then optimize
the likelihood-based loss.

Assuming that Ŷ = {Ŷi}Ki=1 are the set of K
predictions, where Ŷi =

(
Pl

i,P
r
i ,P

c
i

)
. We de-

note the ground truth set of N entities as Y =
{(li, ri, ci)}Ni=1, where li, ri, ci are the boundary
indices and type for the i-th entity. Since K is
larger than the number of N entities, we pad Y
with ∅ (no entity). To find a bipartite matching
between these two sets we search for a permutation
of K elements π ∈ S(K) with the lowest cost:

π̂ = argmin
π∈S(K)

K∑

i

Lmatch

(
Ŷi, Yπ(i)

)

where Lmatch

(
Ŷi, Yπ(i)

)
is a pair-wise matching

cost between the prediction Ŷi and ground truth
Yπ(i) with index π(i). We define it as −1(Yπ(i) ̸=
∅)

∑
σ∈{l,r,c}P

σ
i

(
Y σ
π(i)

)
, where 1(·) denotes an

indicator function. Finally, the optimal assignment
π̂ can be computed with the Hungarian algorithm.

B Datasets

We conduct experiments on six widely used NER
datasets, including three nested and three flat
datasets. Table 7 reports detailed statistics about
the datasets.

ACE04 and ACE05 (Doddington et al., 2004;
Walker et al., 2006) are two nested NER datasets
and contain 7 entity categories, including PER, ORG,
LOC, GPE, WEA, FAC and VEH categories. We fol-
low the same setup as previous works Katiyar and
Cardie (2018); Lin et al. (2019).

GENIA (Ohta et al., 2002) is a biology nested
NER dataset and contains 5 entity types, including
DNA, RNA, protein, cell line and cell type
categories. Follow Huang et al. (2022); Shen et al.
(2021a), we train the model on the concatenation
of the train and dev sets.

CoNLL03 (Tjong Kim Sang and De Meulder,
2003) is a flat dataset with 4 types of named entities:

LOC, ORG, PER and MISC. Follow Yu et al. (2020);
Yan et al. (2021c); Shen et al. (2021a), we train our
model on the combination of the train and dev sets.

OntoNotes (Pradhan et al., 2013) is a flat dataset
with 18 types of named entities, including 11 entity
types and 7 value types. We use the same train,
development, and test splits as Li et al. (2020);
Shen et al. (2022).

MSRA (Levow, 2006) is a Chinese flat dataset
with 3 entity types, including ORG, PER, LOC. We
keep the same dataset splits and pre-processing
with Li et al. (2022a); Shen et al. (2021a).

C Detailed Parameter Settings

Entity boundaries are predicted at the word level,
and we use max-pooling to aggregate subwords
into word representations. We use the multi-headed
attention with 8 heads in the span encoder, and add
a feedforward network layer after the self-attention
and cross-attention layer. During training, we first
fix the parameters of BERT and train the model
for 5 epochs to warm up the parameters of the
entity decoder. We tune the learning rate from
{1e− 5, 2e− 5, 3e− 5} and the threshold φ from
range [2.5, 2.7] with a step 0.05, and select the
best hyperparameter setting according to the per-
formance of the development set. The detailed
parameter settings are shown in Table 8.

D Baselines

We use the following models as baselines:

• LinearedCRF (Straková et al., 2019) concate-
nates the nested entity multiple labels into one
multilabel, and uses CRF-based tagger to de-
code flat or nested entities.

• CascadedCRF (Ju et al., 2018) stacks the flat
NER layers and identifies nested entities in an
inside-to-outside way.

• Pyramid (Wang et al., 2020) constructs the
representations of mentions from the bottom
up by stacking flat NER layers in a pyramid,
and allows bidirectional interaction between
layers by an inverse pyramid.

• Seq2seq (Straková et al., 2019) converts the
labels of nested entities into a sequence and
then uses a seq2seq model to decode entities.
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ACE04 ACE05 GENIA

Train Dev Test Train Dev Test Train Test

number of sentences 6200 745 812 7194 969 1047 16692 1854
- with nested entities 2712 294 388 2691 338 320 3522 446

number of entities 22204 2514 3035 24441 3200 2993 50509 5506
- nested entities 10149 1092 1417 9389 1112 1118 9064 1199
- nesting ratio (%) 45.71 46.69 45.61 38.41 34.75 37.35 17.95 21.78

average sentence length 22.50 23.02 23.05 19.21 18.93 17.2 25.35 25.99
maximum number of entities 28 22 20 27 23 17 25 14
average number of entities 3.58 3.37 3.73 3.39 3.30 2.86 3.03 2.97

CoNLL03 OntoNotes Chinese MSRA

Train Dev Test Train Dev Test Train Dev Test

number of sentences 14041 3250 3453 49706 13900 10348 41728 4636 4365
number of entities 23499 5942 5648 128738 20354 12586 70446 4257 6181
average sentence length 14.50 15.80 13.45 24.94 20.11 19.74 46.87 46.17 39.54
maximum number of entities 20 20 31 32 71 21 125 18 461
average number of entities 1.67 1.83 1.64 2.59 1.46 1.22 1.69 0.92 1.42

Table 7: Statistics of the nested and flat datasets used in our experiments.

Hyperparameter ACE04 ACE05 GENIA
learning rate 2e-5 3e-5 2e-5
weight decay 0.1 0.1 0.1
lr warmup 0.1 0.1 0.1
batch size 8 8 8
epoch 100 50 50
hidden size h 1024 1024 1024
threshold φ 2.55 2.65 2.50
scale factor λ 1.0 1.0 2.0

Hyperparameter CoNLL03 Ontonotes MSRA
learning rate 2e-5 2e-5 5e-6
weight decay 0.1 0.1 0.1
lr warmup 0.1 0.1 0.1
batch size 8 8 16
epoch 100 50 100
hidden size h 1024 1024 768
threshold φ 2.50 2.55 2.60
scale factor λ 1.0 2.0 1.0

Table 8: Detailed Hyperparameter Settings

• BARTNER (Yan et al., 2021b) is also a
sequence-to-sequence framework that trans-
forms entity labels into word index sequences
and decodes entities in a word-pointer manner.

• Seq2Set (Tan et al., 2021)treats NER as a
sequence-to-set task and constructs learnable
entity queries to generate entities.

• UIE (Lu et al., 2022) designs a special schema
for the conversion of structured information to
sequences, and adopts a generative model to
generate linearized sequences to unify various

information extraction tasks.

• Biaffine (Yu et al., 2020) reformulates NER
as a structured prediction task and adopts a
dependency parsing approach for NER.

• MRC (Li et al., 2020) reformulates NER as
a reading comprehension task and extracts
entities to answer the type-specific questions.

• Locate&label (Shen et al., 2021a) is a two-
stage method that first regresses boundaries to
locate entities and then performs entity typing.

• SpanGraph (Wan et al., 2022) utilizes a
retrieval-based span-level graph to improve
the span representation, which can connect
spans and entities in the training data.

• LLCP (Lou et al., 2022) treat NER as latent
lexicalized constituency parsing and resort to
constituency trees to model nested entities.

• BoundarySmooth (Zhu and Li, 2022), in-
spired by label smoothing, proposes boundary
smoothing for span-based NER methods.

• Triffine (Yuan et al., 2022b) proposes a tri-
affine mechanism to integrate heterogeneous
factors to enhance the span representation, in-
cluding inside tokens, boundaries, labels, and
related spans.

• Word2Word (Li et al., 2022a) treats NER
as word-word relation classification and uses
multi-granularity 2D convolutions to con-
struct the 2D word-word grid representations.
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