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Abstract

Although large language models demonstrate
remarkable question-answering performances,
revealing the intermediate reasoning steps that
the models faithfully follow remains challeng-
ing. In this paper, we propose FAME (FAithful
question answering with MontE-carlo plan-
ning) to answer questions based on faithful rea-
soning steps. The reasoning steps are organized
as a structured entailment tree, which shows
how premises are used to produce intermediate
conclusions that can prove the correctness of
the answer. We formulate the task as a discrete
decision-making problem and solve it through
the interaction of a reasoning environment and
a controller. The environment is modular and
contains several basic task-oriented modules,
while the controller proposes actions to assem-
ble the modules. Since the search space could
be large, we introduce a Monte-Carlo planning
algorithm to do a look-ahead search and se-
lect actions that will eventually lead to high-
quality steps. FAME achieves advanced per-
formance on the standard benchmark. It can
produce valid and faithful reasoning steps com-
pared with large language models with a much
smaller model size.

1 Introduction

Enabling machines to reason and answer questions
is a long-term pursuit in the AI community (Mc-
Carthy et al., 1960). In the field of question-
answering (QA), large language models (LLMs)
have achieved strong performances (Bommasani
et al., 2021; Brown et al., 2020; Kojima et al., 2022).
However, the intermediate reasoning steps from the
known premises to the answer are often implicit
and invisible. While some approaches encourage
LLMs to produce the reasoning steps explicitly
before generating the answer (Wei et al., 2022b),
the answer may not faithfully follow the intermedi-
ate steps, i.e., the model could generate irrelevant
or invalid steps while still resulting in the correct
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Figure 1: Given a question, FAME performs reasoning
through the iterative interaction of a controller with
a reasoning environment. It produces the reasoning
steps (in the form of an entailment tree) and the answer
faithfully following from the steps. The entailment tree
contains the basic fact (sent∗) and novel intermediate
conclusions (int∗) connected by entailment steps.

answer (Wei et al., 2022b; Zelikman et al., 2022;
Creswell et al., 2022). Such a lack of faithfulness
makes it difficult for users to trust the answers and
debug the wrong answers, diminishing the overall
trustworthiness of the QA systems.

To tackle this issue, the recently proposed faith-
ful question-answering (FQA) task (Tafjord et al.,
2022; Creswell and Shanahan, 2022) asks the sys-
tem to provide the reasoning steps that the answer
faithfully follows, as demonstrated in Figure 1(a)
and (c). The reasoning steps are organized as an
entailment tree (Dalvi et al., 2021), where each non-
leaf node indicates an intermediate entailment step.
The provision of the faithful steps allows users to
inspect and debug the system’s reasoning process,
potentially enabling the construction of interactive
and teachable QA systems (Dalvi et al., 2022).

Existing FQA methods typically adopt a step-
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wise approach to generate an entailment step at a
time (Tafjord et al., 2022; Creswell and Shanahan,
2022). When determining which step to generate
next, they produce several candidate steps and se-
lect one based on the validity of the step. However,
they do not explicitly consider whether the selected
step will ultimately result in a high-quality tree that
supports the answer. For complex questions that
require multiple reasoning steps, such a lack of
foresight might lead to the irreversible miss of the
optimal step in a huge search space. Furthermore,
existing methods are based on either the model’s
internal beliefs or a small number of given facts,
which limits their ability to ground to the external
world and update their known facts.

In this paper, we propose FAME, a novel FQA
method integrating Monte-Carlo planning. We for-
mulate the task as a discrete decision-making prob-
lem and solve it through the interaction of a rea-
soning environment and a controller, as shown in
Figure 1. The reasoning environment is modular.
We decompose the reasoning into several basic task-
oriented modules, such as a retriever for updating
known facts and a single-step entailment module
for combining several premises to obtain a novel
intermediate conclusion. To assemble these mod-
ules, we leverage a controller (implemented with a
generative language model) to observe the state of
the environment and propose the next actions. The
final answer is derived based on the validity and
faithfulness of the generated entailment tree.

To select actions foresightedly, we introduce
a Monte-Carlo planning algorithm (Kocsis and
Szepesvári, 2006) to do the look-ahead search.
Specifically, we assign an action value to each can-
didate action, which is iteratively updated based on
the quality of its successor states after the action
is explicitly executed. With these values, we could
make more informed decisions and select the ac-
tions that will eventually lead to a high-quality tree.
In addition, we design a verifier-guided iterative
training technique to train the controller.

Experiments on the standard benchmark Entail-
mentBankQA (Creswell and Shanahan, 2022) show
that FAME outperforms previous best FQA meth-
ods by a large margin. Manual evaluation results
demonstrate that FAME could produce valid and
faithful reasoning steps compared with LLMs (i.e.,
GPT-3 and ChatGPT). Further ablation results il-
lustrate the advantages of Monte-Carlo planning
compared to other planning methods.

2 Related Work

Explicit Reasoning with Language Models.
LLMs can achieve strong QA performances, even
in few-shot and zero-shot settings (Bommasani
et al., 2021; Brown et al., 2020; Kojima et al.,
2022). Recent approaches that explicitly generate
the reasoning steps to derive the final answer (Ze-
likman et al., 2022; Wang et al., 2022; Zhou et al.,
2022a; Lampinen et al., 2022) have shown signif-
icant improvement for many tasks (Suzgun et al.,
2022). For example, Chain-of-Thought (Wei et al.,
2022b) encourages LLMs to generate several steps
via few-shot prompting. However, the generated
steps could be unfaithful (Wei et al., 2022b; Zelik-
man et al., 2022; Creswell et al., 2022). To tackle
this issue, faithful question-answering (FQA) pro-
poses to answer questions based on the faithful
reasoning steps (Tafjord et al., 2022; Creswell and
Shanahan, 2022; Weir and Durme, 2022; Bostrom
et al., 2022), where each step is a valid entail-
ment and the intermediate conclusions support the
answer. Existing FQA methods typically adopt
a step-wise approach. To decide the next step,
their strategy (e.g., overgenerate-and-filter of En-
tailer (Tafjord et al., 2022) and beam search of
Selection-Inference (SI) (Creswell and Shanahan,
2022)) might lack foresight and could be inade-
quate for complex questions. Our work explic-
itly does the look-ahead search to make more
foresighted decisions. In addition, Entailer gener-
ates facts using the model’s internal representation,
which may hallucinate possibly incorrect facts to
support its answer (Tafjord et al., 2022). SI requires
a complete set of supporting facts for the question
and can not update facts. Our method is based on a
deterministic corpus to prevent hallucination and
could adaptively update facts using a retriever.

Our modular design is related to the approaches
that break down the questions into smaller mod-
ules (Khot et al., 2022; Zhou et al., 2022b; Sanyal
et al., 2022; Kazemi et al., 2022). In this paper, we
compare against SI (Creswell and Shanahan, 2022),
which is the representative modular FQA approach.

Explanation for Question Answering. Great
efforts have been devoted to improving the explain-
ability of QA systems (Wiegreffe and Marasovic,
2021; Thayaparan et al., 2020; Lamm et al., 2021;
Rosenthal et al., 2021; Huang et al., 2022). Re-
cently, EntailmentBank (Dalvi et al., 2021) pro-
poses to formulate the reasoning steps of QA sys-
tems as multi-step textual entailments, which pro-
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Action Effect Example

Retrieve: <query> Call a retriever to retrieve facts by <query> from the fact corpus C and update candidate
premises X . The query can be selected from {H} ∪X adaptively.

Retrieve: int1

Entail: <premises> Call an entailment module to generate a conclusion given the selected <premises> as
input. Add a new step formed by the <premises> and the generated conclusion to Tp.

Entail: sent1 & sent2

End: <is_proved> End reasoning and return whether the controller considers H is proved. <is_proved> ∈
{“proved”, “unproved”}.

End: proved

Table 1: Action space for the controller. If the controller generates other text, it is treated as an invalid action.

vides the most detailed and informative explanation.
A series of methods are developed to reconstruct
such a tree-structured explanation for the correct
answer (Dalvi et al., 2021; Hong et al., 2022; Yang
et al., 2022; Ribeiro et al., 2022; Liu et al., 2022).
Our work is based on EntailmentBank but focuses
on QA instead of post-hoc explanations.

Monte-Carlo Planning for Language. Despite
remarkable successes in games (Silver et al., 2017;
Schrittwieser et al., 2020), few works attempt to
apply Monte-Carlo planning (MCP) to language.
Previous works use MCP for decoding during lan-
guage generation (Kumagai et al., 2016, 2018;
Leblond et al., 2021; Chaffin et al., 2022), but how
to use MCP for QA is still underexplored. Our
work formulates QA as a decision-making problem
and explores the utilization of MCP.

3 Task Definition

Faithful question-answering (Tafjord et al., 2022;
Creswell and Shanahan, 2022) requires to answer
the question and provide the valid reasoning steps
that the answer faithfully follows. The inputs in-
clude a question Q and candidate options O =
{o1, o2, . . . , o|O|)}.1 The desired outputs are valid
reasoning steps T in the form of the entailment
tree and an answer oa ∈ O, which follows T . The
entailment tree T consists of multi-premise entail-
ment steps, whose leaf nodes (sent∗) are facts se-
lected from a fact corpus C, intermediate nodes
(int∗) are novel intermediate conclusions. A tree
is considered valid if each non-leaf node is a valid
entailment of its immediate children, and is consid-
ered faithful if its conclusion of the root node can
support the option oa.

4 Our Approach: FAME

Given a question Q and options O, following pre-
vious works (Tafjord et al., 2022; Weir and Durme,

1For open-ended questions, we follow Tafjord et al. (2022)
to collect candidate options using an external source (e.g.,
Macaw (Tafjord and Clark, 2021))

2022), we first convert them into declarative hy-
potheses {H1, . . . , H|O|}.2 We then try to generate
an entailment tree for each hypothesis in a forward
chaining manner and select the most plausible op-
tion based on the validity and faithfulness of trees.

We propose to formulate the task as a discrete
decision-making problem. The reasoning is done
through several interactions between a reasoning
environment and a controller. In each interaction,
the controller observes a state from the environ-
ment and predicts the next action. Then the envi-
ronment executes the action and updates its state.3

Since the search space could be large, we intro-
duce a Monte-Carlo planning algorithm to select
the optimal action. We introduce details about the
environment, controller, and Monte-Carlo planning
in Sec 4.1, 4.2, and 4.3, respectively.

4.1 Reasoning Environment

State. A reasoning state s = {H,Tp, X} consists
of three parts: a target hypothesis H , a partial tree
Tp, and candidate premises X . Tp contains the
entailment steps so far. X is the set of sentences
that can be selected as premises for the next entail-
ment step. Sentences in X are either facts retrieved
from the corpus (sent∗) or conclusions generated
by previous steps (int∗). The maximum size of X
is restricted to 25 to fit the input length limitation
of common language models (Dalvi et al., 2021).
Action. We consider three types of action a ∈ A(s)
for a state s, as shown in Table 1. The entailment
module is a seq2seq generation model to perform
single-step entailment reasoning. Implementation
details of the environment can be found in Sec 5.2.

4.2 Reasoning Controller

The controller is a sequence generation model
whose input is a linearized state and whose outputs

2We follow Tafjord et al. (2022) to use a generation model
whose input is q + oi and output is Hi. Specifically, we use a
T5-large (Raffel et al., 2020) trained on EntailmentBank.

3Illustrations of the reasoning process are in Appendix B.
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sent1 sent2

sent3int1

int2

H
Hypothesis
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(Are current steps valid?)

(Does H follow int2?)

Figure 2: The step verifier V scores a state based on its
step validity and hypothesis faithfulness. The hypothe-
sis H is the declarative form of the question and option.

are actions. The input sequence is the concatena-
tion of H , Tp, and X . The linearized Tp is a series
of steps, where the step premises are connected
with “&” and the step conclusion comes after “→.”
For each state, the controller predicts multiple can-
didate actions and their likelihood scores.

4.3 Monte-Carlo Planning

To select the optimal actions, solely using the con-
troller’s likelihood scores could be insufficient. We
propose to select actions based on the qualities of
the successor states after the execution of actions.
Specifically, we first introduce a state verifier to
estimate the scores of states (Sec. 4.3.1). Each can-
didate action is assigned an action value Q, which
is updated iteratively by the planning algorithm.
Our algorithm is based on the Monte-Carlo tree
search with an upper confidence bound. The up-
per confidence bound helps to balance between
exploiting the currently best actions to obtain pre-
cise estimates and exploring sub-optimal actions
to ensure that no good actions are missed. Given
the sufficient computational cost, this method can
converge asymptotically to the optimal actions in
the single agent problem (Kocsis and Szepesvári,
2006; Rosin, 2011; Schrittwieser et al., 2020).

4.3.1 State Verifier

A state is considered valuable if its Tp is valid and
Tp can support the hypothesis H . Thus, we intro-
duce a state verifier V to estimate the score of a
state from two perspectives, as illustrated in Fig-
ure 2. (1) Step Validity. Is Tp valid? We use a
step verifier Vs to check the validity of a single step.
The step verifier takes the premises and the con-
clusion as input and predicts a continuous score in
[0, 1] indicating how likely the conclusion is to be
entailed by the premises. Then the step scores are

aggregated to produce the validity score of Tp,

Valid(Tp) =
1

|Tp|
∑

step∈Tp

Vs(step). (1)

(2) Hypothesis Faithfulness. Does H faithfully
follow Tp? To check this, we extract the highest
conclusion inth in Tp (e.g., int2 in Figure 2) and
verify if inth can support H . Following Dalvi et al.
(2021), we use BLEURT (Sellam et al., 2020) as
the scorer Vh to estimate the sentence similarity
between inth and H . In addition, we check whether
H is entailed by inth with the step verifier Vs.
Faithful(Tp, H) = (Vh(inth, H) + Vs(inth → H))/2.

(2)

If more than one inth exists, we take their maxi-
mum faithfulness score. The overall state score is
composed of its validity and faithfulness scores,

V (s) = (Valid(Tp) + Faithful(Tp, H))/2. (3)

If there is no step yet (Tp = ∅), then V (s) = 0.

4.3.2 Planning Algorithm
Figure 3 illustrates our planning algorithm. We
construct a planning tree where each node in the
planning tree is correlated with a state s. For
each action a of s, we store a set of statistics
{P (s, a), Q(s, a), N(s, a), Tra(s, a)}, where P is
the prior score (i.e., the likelihood score from the
controller), Q is the action value, N is the visit
count, and Tra is the deterministic state transition.
Q(s, a) can be viewed as the a posteriori score,
which considers the future impact of a. The plan-
ning algorithm ends after a fixed budget of simula-
tions. Each simulation consists of three stages.
• Selection. The selection stage starts from the
initial state s0 (root node of the planning tree) and
finishes when it reaches an unexpanded leaf node
sm. For each k = 1, . . . ,m + 1, an action ak is
selected based on the statistics of sk−1 to maximize
an upper confidence bound (Silver et al., 2017),

ak = arg max
a∈A(s)

[
Q(s, a) + cpP (s, a)

√∑
N(s, ·)

1 +N(s, a)

]
,

(4)

where
∑

N(s, ·) is the total visit counts of s and cp
is a constant controlling the influence of the prior
P (s, a) over Q(s, a). With the upper confidence
bound, the selection strategy initially favors actions
with high prior scores and low visit counts (the
second part) and gradually prefers actions with
high action values (the first part). The next states
are looked up through the state transition Tra.
• Expansion. For the leaf node sm and the se-
lected action am+1, we execute am+1 and get the
next state sm+1. A new node correlated with sm+1
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Selection Expansion Back-propagation

𝑉 s2Controller(𝑠2) update 𝑄(𝑠1, 𝑎2)
update 𝑄(𝑠0, 𝑎1)𝑠0

𝑠1 𝑎1= argmaxUCB𝑎2= argmaxUCB 𝑠2
Figure 3: The illustration of Monte-Carlo planning. We construct a planning tree where each node is a state s.
Selection: In each simulation, we traverse the planning tree from s0 by selecting actions with the maximum upper
confidence bound (UCB, equation (4)). Expansion: We expand a new node and evaluate the new state with the state
verifier V . The candidate actions of the new state are predicted by the controller and stored. Back-propagation:
Action values Q are updated based on the scores of successor states after the action is executed. For simplicity, here
we assume that there are only two candidate actions for each state.

is added to the planning tree. We record the tran-
sition Tra(sm, am+1) = sm+1 and the state score
V (sm+1). We then use the controller to predict the
candidate actions a and their prior scores pa. Each
action is initialized with {P (s, a)= pa,Q(s, a)=
0,N(s, a)=0}. Note that during each simulation,
we only execute one action and call the controller,
environment, and state verifier at most once.
• Back-propagation. The statistics along the tra-
jectory (s0, a1, . . . , sm, am+1) are updated. For
the final action, we set Q(sm, am+1) = V (sm+1).
For k = m,. . ., 1, we update Q(sk−1, ak) by in-
tegrating information from its next state sk. We
consider Q(sk−1, ak) as the probability that ak can
correctly solve the task. Given that ak can solve
the task only requires one action of sk can solve
the task, the value of ak should be the disjunction
of all actions of sk. We use the maximization oper-
ator to soften the disjunction4 and obtain the value
estimation G in this simulation,

G(sk−1, ak) =
∨

a∈A(sk)

Q(sk, a) = max
a∈A(sk)

Q(sk, a). (5)

We update the statistics as follows,

Q(sk−1, ak)← N(sk−1, ak) ·Q(sk−1, ak) +G(sk−1, ak)

N(sk−1, ak) + 1
,

N(sk−1, ak)← N(sk−1, ak) + 1.
(6)

4.3.3 Option Selection
At the end of the planning, an extra selection stage
is run to get the best state sbest using equation (4).
We score the option o corresponding to H by aggre-
gating the verifier’s and controller’s judgments,
Score(o) = (V (sbest) + P (sbest,End: proved))/2, (7)

4We follow the T-conorm of Gödel fuzzy logic (Caicedo
and Rodríguez, 2010; Gupta and Qi, 1991).

where P (sbest,End: proved) is the action likeli-
hood score from the controller. With all options
scored, we eventually select the option with the
highest score as the answer.

4.4 Controller Training

Given a correct trajectory (s0, a1, . . . , sm, am+1),
the controller is trained to maximize the likelihood
of the correct actions P (sk−1, ak). We first train
the controller with behavior cloning (Nakano et al.,
2021) to imitate an oracle strategy. Then, we itera-
tively use the controller to generate trajectories and
fine-tune the controller with high-quality trajecto-
ries selected by the verifier.
Behavior Cloning. Given a state, the oracle strat-
egy gives an action based on the gold entailment
tree: (1) If the hypothesis H is already in X ,
return End: proved; (2) Otherwise, if X con-
tains all premises of the next step, return Entail:
<premises>; (3) Otherwise, select a query from
{H}∪X such that the updated X contains as many
leaf facts of the gold tree as possible, and return
Retrieve: <query>.
Verifier-Guided Iterative Training. Training with
behavior cloning alone may have two problems.
First, since the entailment trees are annotated only
for the correct options, we do not have training
trajectories for the wrong options. Second, the tra-
jectory for the correct option may not be unique.
To tackle these problems, we propose an iterative
training process. Step 1: We train a controller us-
ing behavior cloning on the correct options. Step 2:
We use the controller to generate trajectories for all
training options. For the correct option, we check
the quality of the trajectory with the state verifier.
If the state score of the final state is greater than a
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threshold, we add the trajectory to the training data.
In this way, we could find some potentially correct
trajectories, which may not be the same as the an-
notated ones but can still produce valid and faithful
entailment trees. For the wrong option, we modify
each (sk−1, ak) to (sk−1,End :unproved) and add
them to the training data. Step 3: We fine-tune the
controller with the updated training data and go to
Step 2 until the performance is saturated.

5 Experiments

5.1 Dataset

We conduct experiments based on Entailment-
Bank (Dalvi et al., 2021). It consists of 1,840
expert-annotated entailment trees, each of which
corresponds to a hypothesis derived from a ques-
tion+correct option from the ARC (Clark et al.,
2018) dataset. The leaf facts of trees are selected
from the WorldTreeV2 corpus (Xie et al., 2020).

Since EntailmentBank is originally designed for
post-hoc tree reconstruction instead of QA, we fol-
low Creswell and Shanahan (2022) to convert it
to EntailmentBankQA by adding back the 4-way
multiple options from the ARC dataset. Summary
statistics are shown in Table 2. Answering these
questions requires retrieving from a large fact cor-
pus and complex multi-hop reasoning (each tree
contains 7.6 nodes and 3.2 steps on average).

5.2 Implementation Details

Retriever. The retriever is based on the Siamese
Network encoder provided by Sentence Transform-
ers (Reimers and Gurevych, 2019). We fine-tune
the all-mpnet-base-v2 encoder via a contrastive
loss (van den Oord et al., 2018) to maximize the co-
sine similarity between the hypothesis and its leaf
facts of the tree from the EntailmentBank training
split. We use the fact corpus provided by Entail-
mentBank following previous works.
Entailment Module. The entailment module is
a T5-large model which takes the premises as in-
put and generates the conclusion. Following Met-
Gen (Hong et al., 2022), we divide the single-step
entailment reasoning into a set of basic logical rea-
soning (i.e., substitution, conjunction, and if-then).
Special prefixes are used to specify the reasoning
type the model should perform. We train the mod-
ule with entailment steps from the EntailmentBank
training split. Given premises, we generate con-
clusions using all types of modules and select the
conclusion with the highest step verifier score.

Train Dev Test All

Questions 1,313 187 340 1,840
Easy 920 128 234 1,282
Chal (Challenge) 393 59 106 558

Entailment Steps 4,175 597 1,109 5,881

Table 2: EntailmentBankQA Statistics.

Step Verifier Vs. We fine-tune a DeBERTa-large
model (He et al., 2021) to classify if a step is valid.
We use the human-labeled data provided by Tafjord
et al. (2022), which contains 1,827 valid steps and
1,564 invalid steps. We also include 4,175 valid
steps from the EntailmentBank training split.

Controller. The controller is implemented with a
T5-large model. For each state, we use the beam
search to generate five candidate actions and then
exclude the ill-formed and invalid actions (e.g.,
Retrieve: int2, but int2 is not yet available in
X). For iterative training, we use a threshold of
0.98 to select high-quality trajectories. Model per-
formance is typically saturated after five iterations.

Planning Algorithm. We select the hyperparam-
eters with dev split (Appendix C.1). cp in equa-
tion (4) is 0.2. The simulation/action budget is 30.
Note that we execute only one action in each simu-
lation. We run our method three times and report
the mean and standard deviation. More implemen-
tation details can be found in Appendix A.

5.3 Baselines

We compare with recent SOTA FQA methods. En-
tailer (Tafjord et al., 2022) uses the model’s inter-
nal beliefs to produce trees and answers. For each
hypothesis, it generates six candidate steps and se-
lects the best one with a verifier. NELLIE (Weir
and Durme, 2022) is a backward-chaining infer-
ence engine based on a semi-structured fact base
and extra labeled inference templates. Selection-
Inference (SI) (Creswell and Shanahan, 2022) it-
eratively generates trees by a selection model and
an inference model, and produces answers with a
halter model. For Entailer, we use its open-source
T5-large model and default parameters.5 Since it
also needs hypothesis conversion, we use the same
conversion results as ours for a fair comparison.

5https://allenai.org/data/entailer
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Method All Easy Chal

NELLIE † 43.7 45.5 39.6
Entailer 53.1 56.4 46.2

FAME (Ours) 67.1±0.6 70.8±0.4 59.1±1.2

Table 3: Answer accuracy (%) on the Entailment-
BankQA test split. † indicates results from the pub-
lished paper. All methods are based on T5-large.

Method Task 1 Task 2

SI+Halter † 72.4 55.9
SI+Halter+Search † 83.2 72.9

FAME (Ours) 91.5±0.8 78.2±0.9

Table 4: Task 1 and Task 2 accuracy (%) on the Entail-
mentBankQA test split. † indicates results from SI. SI
is based on Chinchilla-7B (Hoffmann et al., 2022).

6 Result Analysis

6.1 Faithful Question Answering

EntailmentBankQA. As shown in Table 3, FAME

outperforms baseline methods by a large margin,
improving the accuracy from 53.1% to 67.1%. We
also experiment in the settings of Creswell and
Shanahan (2022), where a small set of facts is pro-
vided. Task 1 provides exactly the leaf facts of
the gold tree for the correct option, while Task 2
additionally includes several distractors. Since re-
trieval is prohibited and not required, we remove
the retrieval from the action space. Table 4 shows
the results. FAME could be adapted to these set-
tings and achieve higher accuracy than SI, which
is based on larger language models. The errors in
FAME are traceable. The most frequent cause of
errors is the mistakes in the intermediate steps (See
the error analysis in Appendix C.4).

Cross-Dataset Performance. To evaluate the gen-
eralization capability of our method, we conduct ex-
periments on WorldTreeQA (Xie et al., 2020) and
OBQA (Mihaylov et al., 2018) following previous
works (Weir and Durme, 2022; Tafjord et al., 2022).
We evaluate on the test split of WorldTreeQA
(1,177 easy and 487 challenge questions, no over-
lap with EntailmentBankQA) and OBQA (500
questions) without further fine-tuning on their train-
ing split. We use the fact corpus that is included
with the dataset. As shown in Table 5, FAME

achieves better cross-dataset performances.

Method WorldTreeQA OBQA
All Easy Chal

NELLIE † 38.3 40.8 32.3 -
Entailer 50.7 54.4 41.9 45.6

FAME (Ours) 61.5±0.4 65.1±0.4 52.6±0.3 46.6±0.4

Table 5: Cross-dataset results on the WorldTreeQA and
OBQA test split.

6.2 Reasoning Step Quality
Automatic Evaluation on EntailmentBank. To
investigate whether our method can generate a valid
entailment tree, we first perform the automatic eval-
uation on EntailmentBank, where we generate trees
for correct options. The validity of the generated
tree is evaluated by comparing its leaves, step struc-
tures, and intermediate conclusions against the gold
one. The F1 score is computed, and the AllCor-
rect score is 1 if F1=1, otherwise 0. The Overall
AllCorrect metric measures whether the generated
tree and the gold tree are identical.6 Please refer
to Appendix E for more evaluation details. We
use the controller trained with behavior cloning on
the correct options. We compare with the SOTA
methods that are specifically designed for tree re-
construction. As shown in Table 6, FAME achieves
competitive performances in all metrics, indicating
that it could generate valid and high-quality trees.
Manual Evaluation on EntailmentBankQA. To
make a more accurate investigation, we manually
evaluate the quality of trees for the options selected
by models. We evaluate along three dimensions.
Fact Validity (FV): Are the leaf facts correct in the
real world? Step Validity (SV): Are the interme-
diate steps valid entailments? A step is considered
invalid if its conclusion does not follow from the
premises or trivially repeats one of the premises.
Hypothesis Faithfulness (HF): Can the conclusion
support the selected answer (even if the answer is
not the correct option)? Overall: The overall score
is 1 if all the facts and steps are valid and the conclu-
sion supports the answer. We invite three students
as experts, and the inter-annotation agreement (Co-
hen’s κ) for FV/SV/HF is 0.726/0.704/0.811.

We also investigate whether FQA can be solved
by very large language models, such as GPT-
3 (Brown et al., 2020) and ChatGPT(Schulman
et al., 2022). For GPT-3, we use Chain-of-Thought

6As discussed by Yang et al. (2022) and Hong et al. (2022),
these automatic metrics do not account for the existence of
multiple valid trees. And the Overall AllCorrect score is a
very harsh metric, but it is the fairest metric we could use.
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Method Leaves Step Structures Intermediates Overall
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

EntailmentWriter (Dalvi et al., 2021) † 35.7 2.9 6.1 2.4 33.4 7.7 2.4
MetGen (Hong et al., 2022) † 34.8 8.7 9.8 8.6 36.6 20.4 8.6
NLProofs (Yang et al., 2022) † 43.2 8.2 11.2 6.9 42.9 17.3 6.9
RLET (Liu et al., 2022) † 38.3 9.1 11.5 7.1 34.2 12.1 6.9
IRGR (Ribeiro et al., 2022) † 45.6 11.8 16.1 11.4 38.8 20.9 11.5

FAME (Ours) 43.4±0.3 13.8±0.6 16.6±0.1 12.4±0.4 40.6±0.3 19.9±1.2 11.9±0.4

Table 6: The results of entailment tree generation on EntailmentBank test split. † indicates results from the published
paper. RLET is based on DeBERTa-large, and all other methods are based on T5-large.

Method FV SV HF Overall

GPT-3 w/ CoT 100.0 23.2 72.0 4.0
ChatGPT 100.0 38.3 52.0 14.0
Entailer 72.8 48.0 82.0 24.0

FAME (Ours) 100.0 66.0 82.0 46.0

Table 7: Manual evaluation results on 50 questions ran-
domly sampled from the test split. FV/SV/HF denotes
fact validity/step validity/hypothesis faithfulness. GPT-
3 and ChatGPT have 175B parameters. Entailer and
FAME are based on T5-large (770M).

Algorithm All Easy Chal

Greedy 59.1 62.9 50.8
Overgenerate-and-filter 62.0 66.4 52.5
Beam search 64.2 67.4 57.1
Monte-Carlo planning 67.7 69.5 63.8

Table 8: Ablation results of the planning algorithm on
the dev split. All algorithms use the same action budget.

prompting (CoT) by treating the entailment tree as
the thought. For ChatGPT, we describe the task in
detail. Discussion and examples of prompts are in
Appendix D. GPT-3/ChatGPT achieves an answer
accuracy of 86%/92%, showing that our prompts
could appropriately elicit the model’s reasoning
ability.7

Table 7 shows the results. We can make the
following observations. (1) While achieving high
accuracy rates, LLMs struggle to produce valid and
faithful steps, e.g., only 38.3% of ChatGPT’s steps
are valid. (2) Entailer achieves a high HF score
but a low FV score since it is not grounded in a
fact corpus and may hallucinate possibly incorrect
facts to support its answer. (3) FAME can answer
questions faithfully (HF=82.0%) based on valid
reasoning steps (SV=66.0%) and human-confirmed
facts, achieving the highest overall score.

7We use the text-davinci-003 model for GPT-3 and
Dec 15 Version for ChatGPT.

State Verifier Answer Accuracy
Valid Faithful All Easy Chal

(a) Vs Vs+Vh 67.7 69.5 63.8
(b) Vs 52.9 55.1 48.3
(c) Vs+Vh 61.0 62.5 57.6
(d) Vs Vh 62.6 65.2 56.8
(e) Vs Vs 64.2 67.2 57.6

Table 9: Ablation results of the state verifier (equa-
tion (3)) on the EntailmentBankQA dev split. Vs is the
step verifier and Vh is the sentence similarity scorer.
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Figure 4: Ablation results of the iterative training.

6.3 Ablation Study

Planning Algorithm. To investigate the effective-
ness of MCP, we design three comparison algo-
rithms. Greedy algorithm selects the action with
the maximum prior likelihood score for each state.
Overgenerate-and-filter (Tafjord et al., 2022) gen-
erates K = 5 candidate actions, executes the ac-
tions to get the next states, and selects the one with
the highest state score. Beam search (Creswell
and Shanahan, 2022) maintains the best B states.
At each time step, it generates K actions for each
state, executes the actions, and keeps the top-B
best states for further reasoning.8 We set an action
budget of 30 for all algorithms. The algorithms
stop when the action budget is used up. Results
in Table 8 show that MCP improves performance
over the comparison algorithms, especially for the
challenge questions (from 57.1% to 63.8%).9 MCP

8We set the beam size B to 3, which achieves the best result.
Appendix C.2 includes more discussion of the parameters.

9We also discuss the performance broken down by the
length of gold steps in Appendix C.3.
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could do the look-ahead search efficiently and se-
lect actions foresightedly, so as to perform better.
State Verifier. As shown in Table 9, verifying
both the step validity and hypothesis faithfulness
is necessary (comparing (a), (b), and (c)). We also
find that the ensemble of Vs and Vh yields a more
accurate faithfulness score and thus improves per-
formance (comparing (a), (d), and (e)).
Iterative training. Figure 4 shows that the per-
formance improves with the increasing number of
verifier-guided training iterations. We randomly
sample 100 reasoning trajectories selected by the
verifier and find that 61% of them obtain the same
trees as the gold ones, 30% obtain different but still
valid trees, and 9% obtain invalid trees, demonstrat-
ing the effectiveness of iterative training.

7 Conclusion

We propose FAME for faithful question answering.
It formulates the task as a discrete decision-making
problem and tackles it with a modular reasoning en-
vironment and a controller. FAME uses the Monte-
Carlo planning to make more informed and fore-
sighted decisions. Experiments show that FAME

can answer questions based on valid and faithful
steps and achieve advanced performance.
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Limitations

Despite outperforming previous best methods, our
method still has several limitations and substantial
room for future improvement.

First, the variety of modules is limited in the
current reasoning environment. It would be inter-
esting to introduce a wider variety of modules (e.g.,
a numerical calculator) to make our method more
general.

Second, our method currently retrieves facts
from a fixed corpus. While this is efficient for
the specific domain, it may not be sufficient for
questions not covered by the fact corpus. It would
be more powerful if we retrieve up-to-date informa-
tion using a modern search engine as our retriever.

Third, in our experiments, we try our best to
select the appropriate prompts to motivate GPT-
3 and ChatGPT to generate reasoning steps and
answers. With our prompts, GPT-3 and ChatGPT
can achieve high answer accuracy. But it is hard
to guarantee that our prompts are the best ones to
elicit the model’s capabilities completely.

Finally, although scaling up the size of the lan-
guage models may lead to emergent abilities (Wei
et al., 2022a), in this paper, we do not experiment
with larger language models (e.g., T5-11B) due to
the computational constraints.

To the best of our knowledge, our work is foun-
dational research, and we do not find obvious risks
related to malicious harmful effects, environmental
impact, fairness considerations, or privacy consid-
erations.
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A Implementation Details

• Retriever. Given a positive pair (q, k+), we train
the retriever to maximize the cosine similarity be-
tween the query q and the positive fact k+ in the
embedding space. For an entailment tree in the En-
tailmentBank training split, we use the hypothesis
as q and the leaf facts as k+. The contrastive loss
function we used is

L = − log
exp(cos (q, k+)/τ)∑bs
i=0 exp(cos (q, ki)/τ)

, (8)

where bs is the batch size, ki is the fact for the i
pair in this batch, and τ is the temperature factor.
We set τ to 0.02. The retriever is trained with a
learning rate of 1e-5 and a batch size of 40 for
10k steps. For each retrieval, we return the top 25
facts. To update the premise set X , we keep all the
intermediate conclusions int∗ and replace all other
sentences sent∗ with the newly retrieved sentences.
The query sentence is also added to X if it is not in
X . If a query is retrieved consecutively, we scroll
down the retrieval results and return the next 25
facts.

• Entailment Module. We follow Hong et al.
(2022) to implement the entailment module in a
prefixed manner. All types of modules are imple-
mented with a single T5-large model (Raffel et al.,
2020). A type-specific prefix (e.g., "deductive sub-
stitution:") is added to specify which type of rea-
soning the model should perform. The model is
trained on the entailment steps of the Entailment-
Bank training split. The reason type labels of steps
are provided by Hong et al. (2022). Following Yang
et al. (2022), we take the hypothesis as additional
input to encourage the module to generate a more
relevant conclusion. The module is trained with a
learning rate of 3e-5 and a batch size of 20 follow-
ing Hong et al. (2022).

• Controller. For each iteration of the verifier-
guided iterative training, we train the controller
with a learning rate of 1e-5 and a batch size of
20 for ten epochs. We use the Adafactor opti-
mizer (Shazeer and Stern, 2018). The input se-
quence of the controller is the concatenation of the
hypothesis H , partial proof tree Tp, and context fact
set X . The question and option are also included
in the input. An example input is as follows:

$question$ Which will most likely cause a decrease in preda-
tor populations? $option$ a decrease in prey populations.
$hypothesis$ a decrease of prey populations will decrease
predator populations. $proof$ sent1 & sent2 -> int1 $context$
int1: a decrease of food has a negative impact on organisms.
sent3: if an organism eats something then that something is
a source of frood to that organism. sent4: negative impacts
on organisms / species will decrease the population of the or-
ganisms / the species. . . . sent25: an adaptation has a positive
impact on a living thing ’s survival.

The action likelihood score is calculated by
exp( 1

N

∑
i logit(xi|xk<i)), where xi is the i-th to-

ken of the action sequence and N is the number of
tokens in the action sequence.
• Step Verifier Vs. The human-labeled data pro-
vided by Tafjord et al. (2022) contains 1,827 valid
steps and 1,564 invalid steps. We also use the 4,175
valid steps extracted from the gold trees in the En-
tailmentBank training split. For each valid step, we
perturb it to make an invalid step by substituting
one premise with a random distractor from the cor-
pus. The step data is randomly divided into training
and development splits in the ratio of 9:1. We train
the step verifier with a learning rate of 1e-5 and a
batch size of 16 for ten epochs. An example input
of step verifier is as follows:
premises: a mushroom is a kind of fungus. in the food chain
process fungi have the role of decomposer. conclusion: in the
food chain process mushrooms have the role of decomposer.

In addition, for the sentence similarity scorer Vh

in the state verifier, we use BLEURT-Large-512
following Dalvi et al. (2021).
• Entailment Tree Construction. During reason-
ing, if adding a step makes the current tree not
acyclic, then we consider this step invalid. For the
final state, if the steps form a forest (containing
multiple entailment trees), then we pick the tree
with the highest hypothesis faithfulness score and
discard the other trees.
• Total Number of Learnable Parameters. In
our FAME, the numbers of learnable parameters
of the controller, the retriever, the entailment mod-
ule, and the step verifier are 770M, 109M, 770M,
and 435M, respectively. In total, the number of
learnable parameters of FAME is about 2,084M.
• Experiment Environments. We deploy all
models on a server with four RTX 3090 GPUs.
Each RTX 3090 GPU has 24G of memory. Our
code mainly depends on python 3.8.0 and PyTorch
1.10.0. We use the pre-trained language models
from HuggingFace Transformers10.

10https://github.com/huggingface/
transformers
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Figure 5: Results of Monte-Carlo planning algorithm
with different parameters on EntailmentBankQA dev
split.

• Running time. In our experiment environ-
ment, the average running time for each option is
30.77±5.93 seconds. This running time is accept-
able. While not directly comparable, the running
time for each option is about 90 seconds for NEL-
LIE (Weir and Durme, 2022) and 20∼60 seconds
for Entailer-11B (Tafjord et al., 2022), as reported
in their papers.

B FAME Illustrations and Case Study

Given a question and candidate options, we first
try to prove each option by generating an entail-
ment tree (Figure 7). Then, we score each option
and select the option with the highest score (Fig-
ure 8). Figure 9 shows some entailment trees and
answers generated by our method on the Entail-
mentBankQA test split.

C Additional Experiment Results

C.1 Planning Algorithm Hyperparameter
Analysis

The hyperparameters are selected using the dev
split, as shown in Figure 5. We select an action
budget of 30 and cp = 0.2. We can also find that,
as the action budget increases, the performance
remains basically unchanged on easy questions but
improves on challenge questions.

Beam size Action budget All Easy Chal

2 30 63.6 66.4 57.6
3 30 64.2 67.4 57.1
5 30 62.8 65.2 57.6

3 50 65.1 68.2 58.2
3 100 65.0 68.2 58.1

Table 10: Results of beam searches with different pa-
rameters on EntailmentBankQA dev split.
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Figure 6: Dev results of different planning algorithms
broken down by the length of the steps in the gold trees.

C.2 Beam Search Hyperparameter Analysis

Table 10 shows the beam search performances with
different beam sizes and action budgets. In the
case of an action budget of 30 (the same as other
algorithms), a beam size of 3 achieves the highest
answer accuracy. We also find that simply increas-
ing the action budget brings limited performance
gains, especially for the challenge questions.

C.3 Performances Breakdown

Figure 6 shows the performances of different plan-
ning algorithms on the EntailmentBankQA devel-
opment split. We break down the results by the
length of steps in the gold trees of the correct
options. The results show that the questions be-
come increasingly difficult as the length of steps
increases. The Monte-Carlo planning algorithm
achieves better results than other algorithms at all
lengths.

C.4 Error Analysis

We randomly sample 50 questions that FAME an-
swers incorrectly. We find the following three types
of errors.

(1) Declarativization Error (32%). Our gen-
eration model that converts the question+option
to the declarative hypothesis is not free from con-
version errors. The conversion result might lack
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some key information and thus not match the origi-
nal question+option. For example, while the ques-
tion+option is The most likely reason sound travels
faster in saltwater than in freshwater is that salt-
water+is more elastic, the generated hypothesis is
saltwater is likely to travel faster than freshwater.
Given the mistaken hypothesis, it is difficult for the
controller to reason correctly.

(2) Invalid Reasoning Step (40%). One of the
reasoning steps is invalid, leading to the incorrect
conclusion. A step is invalid if its conclusion does
not follow from the premises, e.g., the conclusion
is in conflict with or irrelevant to the premises. An
example of an invalid step is planting trees has a
positive impact on an environment & negative im-
pact is the opposite of positive impact -> planting
a tree has a negative impact on the environment.

(3) Unsupported Option (28%). The final con-
clusion of the reasoning steps is not relevant to the
selected option or does not contain enough infor-
mation to support the selected option, even if the
reasoning steps are valid. For example, the hypoth-
esis is granite can be used to study the history of
organisms, while the final conclusion of the reason-
ing steps is granite can be used to study the history
of rocks on earth.

D Prompts for GPT-3 and ChatGPT

Figure 10 shows an example prompt for GPT-3.
We randomly sample six examples (to fit the max-
imum input of GPT-3) from the training split of
EntailmentBank (Task 2). We use the Chain-of-
Thought prompting (Wei et al., 2022b) by using the
entailment tree as the intermediate thought. For the
test example, we retrieve 25 facts from the corpus
using the question as the query. We use the same
retriever as our method.

Figure 11 shows a dialogue with ChatGPT. We
introduce the definition of the task in detail and
guide the model to respond in the desired form. We
manually try several kinds of prompts and chose the
best one. For example, we try to include several
in-context examples in the prompt as we do for
GPT-3, but it doesn’t seem to yield better results.

E Automatic Evaluation Metrics on
EntailmentBank

For the entailment tree generation task, we evaluate
on EntailmentBank using their automatic evalua-
tion metrics (Dalvi et al., 2021). Denote the pre-
dicted entailment tree as T̂ and the gold one as T .

First, a tree alignment algorithm is performed to
align nodes of T̂ to nodes of T . Leaf nodes are
aligned based on their texts. Each non-leaf node of
T̂ is aligned to the first non-leaf node of T which
has the largest Jaccard similarity of the leaf node.
Then, we evaluate T̂ with the following metrics:
• Leaves. The leaf nodes of T̂ and T are compared
to compute F1 score. The AllCorrect score is 1 if
F1 is 1, 0 otherwise.
• Step Structures. To evaluate whether the steps
of T̂ are structurally correct, the steps of T̂ and
T are compared to compute the F1 score. A pre-
dicted step (corresponding to a non-leaf node of
T̂ ) is structurally correct if its children nodes per-
fectly match the gold ones. AllCorrect=1 if F1=1,
0 otherwise.
• Intermediates. To evaluate the predicted inter-
mediate conclusions, the intermediate F1 score is
computed by comparing the aligned intermediate
conclusions. A predicted intermediate conclusion
is considered correct if the BLEURT-Large-512
score of the aligned conclusion pair is larger than
0.28. AllCorrect=1 if F1=1, 0 otherwise.
• Overall AllCorrect. Based on the above scores,
the Overall AllCorrect score is 1 if and only if the
AllCorrect scores of Leaves, Step Structures, and
Intermediates are all 1.

Please refer to the EntailmentBank paper for
more details.
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sent1:  a chloroplast contains chlorophyll

sent2:  photosynthesis is a kind of chemical process

sent3:  photosynthesis is a kind of process

sent4:  leaves contain chlorophyll

sent5:  chlorophyll is used for absorbing light energy by plants

sent6:  photosynthesis makes food for the plant by converting carbon dioxide, water, and 

sunlight into carbohydrates

sent7:  chlorophyll is a kind of pigment

sent8:  photosynthesis is a source of / makes food / energy for the plant by converting carbon 

dioxide, water, and sunlight into carbohydrates

sent9:  photosynthesis is a source of food for the plant by converting carbon dioxide, water, 

and sunlight into carbohydrates

sent10:  carbohydrates are made of sugars

sent11:  photosynthesis makes energy for the plant by converting carbon dioxide, water, and 

sunlight into carbohydrates

sent12:  photosynthesis means producers / green plants convert from carbon dioxide and 

water 

and solar energy into carbohydrates and food and oxygen for themselves

sent13:  a plant cell contains chloroplasts

sent14:  chlorophyll is green in color

sent15:  sugar is a kind of food

sent16:  green plants perform photosynthesis to provide food for themselves

sent17:  a producer is a source of sugar in an ecosystem

sent18:  photosynthesis is a source of energy for the plant by converting carbon dioxide, 

water, and sunlight into carbohydrates

sent19:  photosynthesis means green plants convert carbon dioxide and water and solar 

energy into carbohydrates and food and oxygen for themselves

sent20:  green plant is a kind of plant

sent21:  photosynthesis means green plants convert from carbon dioxide and water and solar 

energy into carbohydrates and food and oxygen for themselves

sent22:  plants perform photosynthesis

sent23:  green plants are a kind of plant

sent24:  chlorophyll is a part of chloroplasts

sent25: a plant is a kind of organsim

𝑎2: Entail: sent6 & sent10

int1:  photosynthesis converts carbon dioxide, water, and sunlight into sugar for the plant

sent1: photosynthesis makes energy for the plant by converting carbon dioxide, water, and 

sunlight into carbohydrates

sent2: a leaf converts carbon dioxide, water, and sunlight into carbohydrates

sent3: chlorophyll is a part of a plant used to perform photosynthesis

sent4: photosynthesis means green plants convert carbon dioxide and water and solar energy 

into carbohydrates and food and oxygen for themselves

sent5: photosynthesis means green plants convert from carbon dioxide and water and solar 

energy into carbohydrates and food and oxygen for themselves

sent7: photosynthesis is a kind of chemical process

sent8: photosynthesis is a kind of process

sent9: sugar is a kind of simple carbohydrate

sent11: photosynthesis makes food for the plant

sent12: photosynthesis means producers / green plants convert from carbon dioxide and 

water and solar energy into carbohydrates and food and oxygen for themselves

sent13: photosynthesis is a source of energy for the plant by converting carbon dioxide, 

water, and sunlight into carbohydrates

sent14: sugar is a kind of food

sent15: photosynthesis means green plants convert from solar energy into carbohydrates and 

food and oxygen

sent16: photosynthesis is a source of / makes food / energy for the plant by converting carbon 

dioxide, water, and sunlight into carbohydrates

sent17: photosynthesis is a source of food for the plant by converting carbon dioxide, water, 

and sunlight into carbohydrates

sent18: sugar is made of carbon, hydrogen, oxygen

sent19: sugar is a kind of pure substance

sent20: table sugar is a kind of sugar

sent21: a plant requires sunlight for photosynthesis

sent22: plants perform photosynthesis

sent23: photosynthesis is a kind of chemical reaction

sent24: sugar is made of sugar crystals

sent25: sugars are transported from the leaves to the roots of a plant

𝑎3: Retrieve: int1

Question: In photosynthesis, plants use chlorophyll to produce

Option: sugar

Hypothesis 𝐻: plants use chlorophyll to produce sugar in photosynthesis

𝑠1: 𝐻; 𝑇𝑝= ∅; 𝑋 = {

int1:  photosynthesis converts carbon dioxide, water, and sunlight into sugar for the plant

sent1:  a chloroplast contains chlorophyll

……
sent5:  chlorophyll is used for absorbing light energy by plants

sent7:  chlorophyll is a kind of pigment

sent8:  photosynthesis is a source of / makes food / energy for the plant by converting carbon 

dioxide, water, and sunlight into carbohydrates

sent9:  photosynthesis is a source of food for the plant by converting carbon dioxide, water, 

and sunlight into carbohydrates

sent11:  photosynthesis makes energy for the plant by converting carbon dioxide, water, and 

sunlight into carbohydrates

……
sent25: a plant is a kind of organsim

int2: plants use chlorophyll to produce sugar in photosynthesis

sent1: photosynthesis makes energy for the plant by converting carbon dioxide, water, and 

sunlight into carbohydrates

sent2: a leaf converts carbon dioxide, water, and sunlight into carbohydrates

sent3: chlorophyll is a part of a plant used to perform photosynthesis

sent4: photosynthesis means green plants convert carbon dioxide and water and solar 

……
sent25: sugars are transported from the leaves to the roots of a plant

𝑎4: Entail: int1 & sent3

𝑠0: 𝐻; 𝑇𝑝 = ∅; 𝑋 = ∅𝑎1: Retrieve: H

𝑠2: 𝐻; 𝑇𝑝 = sent6 & sent10 → int1 ; 𝑋 = {
}

𝑠3: 𝐻; 𝑇𝑝 = sent6 & sent10 → int1 ; 𝑋 = {

𝑎5: End: proved

}

}
𝑠4: 𝐻; 𝑇𝑝 = sent6 & sent10 → int1; int1 & sent3 → int2 ; 𝑋 = {

}
Figure 7: An illustration of the reasoning process of FAME. For a question and the option that we want to prove, we
first convert the question+option to a hypothesis H . We start from the initial reasoning state where the partial tree
Tp = ∅ and the candidate premises X = ∅. In each interaction, we execute an action and update the reasoning state.
For the action Retrieve, we sent the query to the retriever and update X with the retrieval results. For the action
Entail, we sent the selected premises to the entailment modules. The novel conclusion is added to X and the
novel step is added to Tp. For the action End, we end the reasoning process.
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Question: About how long does it take for the Moon to complete one 

revolution around Earth?

Options: (A) 7 days (B) 30 days (C) 90 days (D) 365 days

𝑉(𝑠) = (Valid(𝑇𝑝) + Faithful (𝑇𝑝, 𝐻))/2𝑃 𝑠 = 𝑃(𝑠,End:proved)𝑠𝑐𝑜𝑟𝑒(𝑜) = (𝑉(𝑠) + 𝑃(𝑠))/2

𝑉 𝑠 = 0.0009 + 1.0000 /2 = 0.5005𝑃(𝑠) = 0.0084𝑠𝑐𝑜𝑟𝑒(𝑜1) = 0.2544

Option 𝑜4: 365 days 

Hypothesis 𝐻4: a complete revolution of the moon around the earth takes 365 days

Entailment Tree:

Option 𝑜3: 90 days 

Hypothesis 𝐻3: a complete revolution of the moon around the earth takes 90 days

Entailment Tree:

Option 𝑜2: 30 days 

Hypothesis 𝐻2: a complete revolution of the moon around the earth takes 30 days

Entailment Tree:

Option 𝑜1: 7 days 

Hypothesis 𝐻1: a complete revolution of the moon around the earth takes 7 days

Entailment Tree:

𝑉 𝑠 = 0.9884 + 1.0000 /2 = 0.9942𝑃(𝑠) = 0.9347𝑠𝑐𝑜𝑟𝑒(𝑜2) = 0.9645

𝑉 𝑠 = 0.7107 + 0.1792 /2 = 0.4450𝑃(𝑠) = 0.0070𝑠𝑐𝑜𝑟𝑒(𝑜3) = 0.2260

𝑉 𝑠 = 0.3532 + 0.7930 /2 = 0.5731𝑃(𝑠) = 0.0076𝑠𝑐𝑜𝑟𝑒(𝑜4) = 0.2904

Figure 8: An example of the option selection. For each option, we try to generate an entailment tree to prove the
option. We select the option based on the state verifier score V (s) and the controller score P (s).
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Question: Planets in the solar system are in constant motion. What factor has the greatest effect on the orbits of the 

planets?

Options: (A) the size of the planets (B) gravitational pull of the Sun (C) the composition of the planets (D) electromagnetic 

radiation from the Sun

Entailment Tree:

Answer: gravitational pull of the Sun

Question: Which is a mineral that forms through evaporative processes?

Options: (A) halite (B) silver (C) gold (D) quartz

Entailment Tree:

Answer: halite

Question: When compared to the Sun, red dwarf stars are

Options: (A) older. (B) cooler. (C) lower density. (D) larger diameter.

Entailment Tree:

Answer: cooler 

Question: Some sinkholes and caves are created when water dissolves certain rocks and minerals below ground. Which two 

parts of the water cycle are most directly responsible for the formation of sinkholes and caves?

Options: (A) evaporation and infiltration (B) evaporation and transpiration (C) precipitation and infiltration (D) precipitation 

and transpiration

Entailment Tree:

Answer: precipitation and transpiration

(a)

(b)

(c)

(d)

red dwarf stars are cooler than the sun.

red dwarf stars are cooler in
temperature than yellow dwarf stars

the sun is a kind of yellow dwarf

halite is a kind of mineral that forms
through evaporative processes.

halite is formed through evaporative
processes.

halite is a kind of mineral

halite is formed by a body of salt water
evaporating

evaporation is a kind of process

gravity causes the planets in the solar
system to orbit the sun.

planets in the solar system orbit the
sun

gravity causes planets to orbit the sun.

gravity causes planets to orbit stars . the sun is a kind of star

gravity causes orbits planets orbit stars

the water cycle processes precipitation
and transpiration to form sinkholes and

caves.

infiltration is a stage in the water
cycle process that forms sinkholes and

caves.

precipitation and transpiration are
stages in the water cycle process.

ft
sinkholes / caves are formed by
precipitation and infiltration.

infiltration is a stage in the water
cycle process

transpiration is a stage in the water
cycle process

precipitation is a stage in the water
cycle process

sinkholes and caves are formed by
precipitation and infiltration

sinkholes / caves are formed by
precipitation / infiltration

Figure 9: Reasoning steps and answers generated by FAME. The correct options are indicated by underlining. In
cases (a), (b), and (c), FAME can generate valid entailment trees and eventually select the correct options. In case
(d), FAME selects the wrong option. The causes of the selection errors are traceable. Some steps in the entailment
tree are invalid, leading to the wrong reasoning and the wrong option.
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Question: New vaccines for diseases are being developed all the time. How do vaccines most likely help people? 

Options: (A) Vaccines help prevent illnesses. (B) Vaccines keep the environment cleaner. (C) Vaccines help cure people who are sick. (D) Vaccines 

kill bacteria that cause infections. 

Context:

sent1: something is used for that something 's purpose 

…
sent25: as the amount of a source of something decreases , the amount of that something will decrease

Steps: sent17 & sent19 -> int1: decreasing illness has a positive impact on an organism's health; int1 & sent7 -> int2: preventing illness has a 

positive impact on an organism's health; int2 & sent10 -> int3: vaccines have a positive impact on an organism's health by helping to prevent illness; 

int3 & sent3 -> hypothesis: vaccines help organisms by helping to prevent illness; 

Answer: (A)

Question: When the Northern Hemisphere is tilted toward the Sun, what season is occurring in Australia? 

Options: (A) fall (B) winter (C) spring (D) summer 

Context:

sent1: being in the sun is synonymous with being in the sunlight 

…
sent25: distance is a property of space and includes ordered values of close / far

Steps: sent21 & sent4 -> int1: the northern hemisphere is in summer; int1 & sent11 -> int2: the southern hemisphere is in winter; int2 & sent17 -> 

hypothesis: australia is in winter; 

Answer: (B)

Question: Grooves running down the sides of a riverbank are most likely caused by 

Options: (A) wind. (B) rocks. (C) leaves. (D) rainwater. 

Context:

sent1: weathering occurs at the the surface of the earth 

..

sent25: damp means a large amount of water

Steps: sent20 & sent5 -> int1: soil erosion caused by water will cause grooves in soil; int1 & sent22 -> int2: rainwater can cause grooves in soil; int2 

& sent24 -> hypothesis: rainwater can cause grooves in a riverbank; 

Answer: (D)

Question: When hunting by humans causes a species to become extinct, this may produce damaging effects throughout the ecosystem of the extinct 

species. What is the cause of this damage? 

Options: (A) alteration of a food web (B) degradation of a habitat (C) modification of a climate (D) reversal of a flow of energy 

Context:

sent1: if a living thing dies then that living thing is dead 

…
sent25: an ecosystem is a kind of habitat

Steps: sent12 & sent15 -> hypothesis: extinctions of organisms can cause damage to an ecosystem by changing the food web; 

Answer: (A)

Question: Which of the following activities is the best example of instinctive behavior in an animal? 

Options: (A) A dog sits when told to sit by its owner. (B) A bird avoids an insect that has a bad taste. (C) A newly hatched sea turtle walks toward 

the ocean. (D) A chimpanzee uses a stick to pull termites from a tree stump. 

Context:

sent1: an organism is a living thing 

…
sent25: actions mean behavior

Steps: sent2 & sent24 & sent4 -> int1: a sea turtle is an animal that walks toward the ocean after it is born; int1 & sent15 -> hypothesis: walking 

toward the ocean is sea turtles' instinctive behavior; 

Answer: (C)

Question: Which of the following would most likely happen if grasses and shrubs were removed from a rural Massachusetts ecosystem? 

Options: (A) There would be an increase in consumers in the ecosystem. (B) There would be an increase of photosynthesis in the ecosystem. (C) 

There would be a decrease in food energy produced by the ecosystem. (D) There would be a decrease of carbon dioxide available to the ecosystem. 

Context:

sent1: soil contains nutrients for plants 

…
sent25: energy flows in an ecosystem through food chains

Steps: sent2 & sent8 -> int1: grass and shrubs are kinds of plants; int1 & sent11 -> int2: grass and shrubs are kinds of producers; sent22 & sent7 -> 

int3: if a source of something is eliminated then the amount of that something that is produced decreases; int3 & sent17 -> int4: if a producer is 

eliminated then the amount of food energy produced in an ecosystem decreases; int2 & int4 -> int5: if grass and shrubs are eliminated then the 

amount of food energy produced in that ecosystem decreases; int5 & sent9 -> hypothesis: if grass and shrubs are removed then the amount of food 

energy produced in that ecosystem decreases; 

Answer: (C)

Question: About how long does it take Earth to make one revolution around the Sun? 

Options: (A) a day (B) a week (C) a month (D) a year 

Context: 

sent1: a complete revolution / orbit of the earth around the sun takes one year 

…
sent25: the sun transfers energy from itself to the earth through sunlight

Steps: 

Figure 10: A Chain-of-Thought prompt for GPT-3. The prompt consists of six in-context examples (with entailment
trees and correct answers) and the test example (without the entailment tree and correct answer). For simplicity, we
show only two facts for each example.
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I want you to act as a QA system. I will give you a question, several options, and the 
context. I want you to answer the question and show the reasoning steps. A 
reasoning step uses sentences from the context as premises and obtains a new 
conclusion. The conclusion should be a valid entailment of the premises. The final 
answer should faithfully follow the reasoning steps.

An example of the context is
"sent1: dead organisms are the source of nutrients for decomposers
sent2: dead organisms rot
sent3: a mushroom is a kind of living thing
sent4: decomposers perform decomposition
sent5: in the food chain process mushrooms have the role of decomposer"
Here, sent1 etc. are the sentence id from the context.

Your response should be in the following format.
"Steps: sent1 & sent2 -> int1: rotting organisms are a source of nutrients for 
decomposers; int1 & sent5 -> hypothesis: rotting organisms are a source of food for 
mushrooms;
Answer: (A)"
Here,  int1 is the intermediate conclusion.  hypothesis is the final conclusion that can 
support the answer. The premises consist of at least two sentences. You don't need 
to use all the sentences in the context. 

Now answer the following question.
Question: Melinda learned that days in some seasons have more daylight hours than 
in other seasons. Which season receives the most hours of sunlight in the Northern 
Hemisphere? 
Options: (A) fall (B) spring (C) summer (D) winter 
Context:
sent1: when a hemisphere is tilted towards the sun , that hemisphere receives more 
direct sunlight 
sent2: the equator receives the most amount of direct sunlight throughout the year 
sent3: when a hemisphere is tilted away from the sun , that hemisphere receives less 
direct sunlight 
sent4: if a place is in summer, then it will have the most sunlight 
sent5: a hemisphere is a part of earth 
sent6: the northern hemisphere is a kind of hemisphere of earth 
sent7: if something receives sunlight, it will absorb the sunlight 
sent8: to receive sunlight means to absorb sunlight 
sent9: summer has the most sunlight 
sent10: the equator receives more sunlight than the poles on earth 
sent11: the earth being tilted on its axis causes one side of the earth / one 
hemisphere to receive less energy from the sun than the other side 
sent12: the poles receives the least amount of direct sunlight throughout the year 
sent13: a hemisphere of earth is a kind of place 
sent14: if something is outside during the day then that something will receive 
sunlight 
sent15: if something receives sunlight, then it will increase in temperature 
sent16: inheriting is when an inherited characteristic is passed down from parent to 
offspring by genetics / dna 
sent17: the amount of daylight is greatest in the summer 
sent18: different seasons occur during different times of the year 
sent19: if something receives sunlight, it will increase in temperature 
sent20: when sunlight strikes something , that something receives sunlight 
sent21: a hemisphere is a kind of place 
sent22: a learned characteristic is a kind of acquired characteristic 
sent23: objects that are more exposed to sunlight are ideal for absorbing sunlight 
sent24: when the season changes , the amount of daylight will change 
sent25: the southern hemisphere is a kind of hemisphere of earth 

Steps: sent1 & sent6 -> int1: the Northern Hemisphere is tilted towards the sun and 

receives more direct sunlight; int1 & sent4 -> hypothesis: the Northern Hemisphere 

receives the most sunlight during summer;

Answer: (C)

I want you to act as a QA system. I will give you a question, seveal options, and the 
context. I want you to answer the question and show the reasoning steps. A 
reasoning step uses sentences from the context as premises and obtains a new 
conclusion. The conclusion should be a valid entailment of the premises. The final 
answer should faithfully follow the reasoning steps.

An example of the context is
"sent1: dead organisms are the source of nutrients for decomposers
sent2: dead organisms rot
sent3: a mushroom is a kind of living thing
sent4: decomposers perform decomposition
sent5: in the food chain process mushrooms have the role of decomposer"
Here, sent1 etc. are the sentence id from the context.

Your response should be in the following format.
"Steps: sent1 & sent2 -> int1: rotting organisms are a source of nutrients for 
decomposers; int1 & sent5 -> hypothesis: rotting organisms are a source of food for 
mushrooms;
Answer: (A)"
Here,  int1 is the intermediate conclusion.  hypothesis is the final conclusion that can 
support the answer. The premises consist of at least two sentences. You don't need 
to use all the sentences in the context. 

Now answer the following question.
Question: About how long does it take Earth to make one revolution around the 
Sun? 
Options: (A) a day (B) a week (C) a month (D) a year 
Context:
sent1: a complete revolution / orbit of the earth around the sun takes one year 
sent2: a complete revolution / orbit of the earth around the sun takes 1 / one year / 
solar year / earth year 
sent3: a complete revolution / orbit of a planet around its star takes 1 / one 
planetary year 
sent4: the earth revolves around the sun 
sent5: the sun is a kind of star 
sent6: earth is a kind of planet 
sent7: a complete revolution / orbit of the moon around the earth takes 1 / one 
month 
sent8: astronomical unit is a measure of distance between earth and the sun 
sent9: a complete rotation of the earth on earth 's axis / itself takes 1 / one day 
sent10: earth's revolution is a kind of cycle 
sent11: planets orbit stars 
sent12: earth is a kind of celestial object 
sent13: 1 year is equal to 365 days 
sent14: a revolution occurs when something revolves around something else 
sent15: the sun is the star that is closest to earth 
sent16: the sun is a kind of yellow dwarf 
sent17: 1 year is equal to 12 months 
sent18: a complete revolution / orbit of phobos around mars takes 8 / eight hours 
sent19: 1 month is equal to 27-31 days 
sent20: a satellite orbits a planet 
sent21: one mercury year is about 88 earth days 
sent22: 1 month is equal to 28-31 days 
sent23: planets in the solar system orbit the sun 
sent24: as the distance of a planet from the star it orbits increases , the length of a 
planetary year on that planet will increase 
sent25: the sun transfers energy from itself to the earth through sunlight 

Steps: sent1 & sent2 -> int1: a complete revolution of Earth around the Sun takes 

one year;

Answer: (D)

I want you to act as a QA system. I will give you a question, seveal options, and the 
context. I want you to answer the question and show the reasoning steps. A 
reasoning step uses sentences from the context as premises and obtains a new 
conclusion. The conclusion should be a valid entailment of the premises. The final 
answer should faithfully follow the reasoning steps.

An example of the context is
"sent1: dead organisms are the source of nutrients for decomposers
sent2: dead organisms rot
sent3: a mushroom is a kind of living thing
sent4: decomposers perform decomposition
sent5: in the food chain process mushrooms have the role of decomposer"
Here, sent1 etc. are the sentence id from the context.

Your response should be in the following format.
"Steps: sent1 & sent2 -> int1: rotting organisms are a source of nutrients for 
decomposers; int1 & sent5 -> hypothesis: rotting organisms are a source of food for 
mushrooms;
Answer: (A)"
Here,  int1 is the intermediate conclusion.  hypothesis is the final conclusion that can 
support the answer. The premises consist of at least two sentences. You don't need 
to use all the sentences in the context. 

Now answer the following question.
Question: About how long does it take for the Moon to complete one revolution 
around Earth? 
Options: (A) 7 days (B) 30 days (C) 90 days (D) 365 days 
Context:
sent1: a complete revolution / orbit of the moon around the earth takes 1 / one 
month 
sent2: a complete revolution / orbit of the earth around the sun takes one year 
sent3: a complete revolution / orbit of a planet around its star takes 1 / one 
planetary year 
sent4: a complete revolution / orbit of the earth around the sun takes 1 / one year / 
solar year / earth year 
sent5: the moon orbits the earth 
sent6: the moon is earth's moon 
sent7: 1 month is equal to 28-31 days 
sent8: earth's revolution is a kind of cycle 
sent9: 1 month is equal to 27-31 days 
sent10: the moon completes a lunar cycle over a period of 29 days 
sent11: a complete rotation of the moon takes 1 / one month 
sent12: the moon revolving around / orbiting the earth causes the phases of the 
moon 
sent13: the moon is a kind of moon 
sent14: a complete rotation of the earth on earth 's axis / itself takes 1 / one day 
sent15: earth is a kind of planet 
sent16: a celestial body travelling around another celestial body means that celestial 
body completes a cycle around that other celestial body 
sent17: a moon is a kind of celestial object 
sent18: 1 year is equal to 365 days
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Figure 11: A dialogue example with ChatGPT. We introduce the task in detail. ChatGPT can respond in the desired
form.
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