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Abstract
This paper focuses on the task of cross do-
main few-shot named entity recognition (NER),
which aims to adapt the knowledge learned
from source domain to recognize named en-
tities in target domain with only a few labeled
examples. To address this challenging task,
we propose MANNER, a variational memory-
augmented few-shot NER model. Specifically,
MANNER uses a memory module to store in-
formation from the source domain and then re-
trieve relevant information from the memory to
augment few-shot tasks in the target domain. In
order to effectively utilize the information from
memory, MANNER uses optimal transport to
retrieve and process information from memory,
which can explicitly adapt the retrieved infor-
mation from source domain to target domain
and improve the performance in the cross do-
main few-shot setting. We conduct experiments
on both English and Chinese cross domain few-
shot NER datasets, and the experimental results
demonstrate that MANNER can achieve supe-
rior performance 1.

1 Introduction

Named Entity Recognition (NER) is a fundamental
NLP task that aims at classifying mention spans
into entity types. Previous works mainly study
the NER task in a supervised setting (Chiu and
Nichols, 2016; Devlin et al., 2019; Yamada et al.,
2020). However, supervised learning requires large-
scale annotated datasets, which can be difficult to
obtain in some scenarios (e.g., annotating biomedi-
cal named entities always requires domain exper-
tise (Ogren et al., 2008)). In this paper, we focus
on a more practical and challenging setting in real-
world applications, namely cross domain few-shot
NER — given a source domain with sufficient la-
beled data and a target domain with a few labeled

∗Work done when interning at Alibaba DAMO Academy.
†Yong Jiang is the corresponding author.

1 Our code is publicly available at: https://github.
com/Alibaba-NLP/MANNER
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Figure 1: Illustration of the cross domain few-shot NER
task, where the NER model is first pretrained on a set of
tasks (each task has a support set, e.g., Ss and a query
set, e.g., Qs) in source domain and then adapted to a
few-shot task in target domain with a few labeled data.

data, the goal is to correctly recognize named enti-
ties in the target domain (Hou et al., 2020). This is
achieved by adapting the knowledge learned from
the source domain to the target domain based on
few-shot examples available in the target domain.
Figure 1 provides an illustration of the cross do-
main few-shot NER task.

Recent work demonstrated that learning proto-
type representations for each label class could be
effective to address few-shot tasks (Snell et al.,
2017), and this idea has also been applied to few-
shot NER tasks (Fritzler et al., 2019; Huang et al.,
2021; Ma et al., 2022). Specifically, when dealing
with a few-shot task in the target domain, these
models learn prototypes for each entity type based
on a few labeled data available in the support set
and then assign labels to tokens in the query set by
measuring their distances to the prototypes. How-
ever, since there are only a few labeled examples
for each entity type in the support set, the proto-
types obtained from the support set only may not be
accurate and representative, leading to the subopti-
mal and unstable performance of prototype-based
few-shot NER models (Huang et al., 2020).

To this end, we propose a variational Memory-
AugmeNted cross domain few-shot NER model,
abbreviated as MANNER. It introduces an external
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memory module that utilizes information from the
source domain to augment the support set in the
target domain, so as to learn more accurate proto-
types. The basic idea of introducing the memory
module is that the entity type information from
the source domain can provide additional back-
ground knowledge for learning prototypes in the
target domain (Zhen et al., 2020). For example, in
Figure 1, the information of the entity type “Per-
son” in the source domain can provide guidance
for recognizing the entity type “Scientist” in the
target domain. Specifically, MANNER stores token
representations of entity types from the source do-
main in a memory module. For each entity type
in the target domain, MANNER first retrieves the
most similar entity types from the memory and
then leverages the retrieved information to learn
prototype for the entity type.

One critical issue when using the memory mod-
ule is how to utilize the information from the mem-
ory to augment few-shot tasks in the target domain.
Recent research indicates that the performance of
memory-augmented methods which directly use
neural networks to fuse information from the mem-
ory and the task (He et al., 2020; Zhen et al., 2020),
is suboptimal when dealing with cross domain tasks
(Du et al., 2022), such as our cross domain few-
shot NER task. This is because the knowledge
(i.e., entity type information) of the source domain
stored in the memory can be inconsistent with that
of the target domain. Therefore, in cross domain
few-shot NER tasks where the entity types of the
source domain and target domain are disjoint, di-
rectly utilizing the information retrieved from the
memory may be suboptimal. Actually, we empiri-
cally found that this could degrade the model per-
formance (see § 4.2). To address this problem, we
take inspiration from domain adaption and lever-
age optimal transport (Villani, 2009) to retrieve and
process information from the memory. One benefit
of using optimal transport is that we can adapt the
retrieved information from the source domain to the
target domain via the optimal transport plan. This
adaption process helps alleviate the inconsistency
problem between the two domains.

Our contributions can be summarized as follows:
(1) We propose MANNER, a novel cross domain
few-shot NER model, which uses a memory mod-
ule to utilize the information from the source do-
main to augment few-shot NER tasks in the target
domain. (2) We leverage optimal transport to re-

trieve and process information from the memory,
which is conducive to improve the performance
of MANNER in the cross domain setting. (3) Ex-
perimental results on English and Chinese cross
domain few-shot NER datasets demonstrate that
MANNER can achieve superior performance com-
pared with existing few-shot NER models.

2 Preliminaries

In this section, we formalize the cross domain few-
shot NER task, and provide a brief introduction to
optimal transport, which serves as the foundation
of our model.

Task Formulation. NER is a sequence labeling
task, where each token in the sequence is assigned
a label representing an entity class or “O” (not an
entity). In this paper, we focus on a practical setting
of NER, namely corss domain few-shot NER (Hou
et al., 2020; Yang and Katiyar, 2020), where the
NER model is first pretrained on data-sufficient
source domain(s) Ds and then tranferred to target
domain(s) Dt with only a few labeled examples.

Formally, we denote a sentence and its labels as
x = {x1, x2, . . . , xn} and y = {y1, y2, . . . , yn},
respectively. Following previous works (Hou et al.,
2020; Ma et al., 2022), we adopt the episode learn-
ing paradigm in this paper, where we first pretrain
the model on a set of tasks Ds = {(Ss,Qs)} from
the source domain and then adapt the model to
another set of tasks Dt = {(St,Qt)} from the tar-
get domain. Each task consists of a support set
S = {(x(i),y(i))}N×K

i=1 for task adaption, and a
query set Q = {(x(j),y(j))}N×K′

j=1 for evaluation,
where N denotes the number of entity types in a
task, K and K ′ denote the number of few-shot
samples that belong to each entity type in the sup-
port set and the query set, respectively. Given a
task in the target domain, the goal of our model is
to predict the labels of sentences in the query set
after adapting the model to the task with its sup-
port set (i.e., finetuning the model with the support
set). Figure 1 provides an illustration of the cross
domain few-shot NER task.

Optimal Transport. Cross domain few-shot
NER task can be considered as a domain adap-
tion task. Optimal transport (OT) is a widely used
method to solve the domain adaption tasks in the
field of computer vision (Courty et al., 2017a,b;
Damodaran et al., 2018; Fatras et al., 2021). Specif-
ically, OT is a metric that measures the distance
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Figure 2: Overall framework of the proposed MANNER. For a few-shot task, MANNER first uses representations
in the support set and the memory to infer prototype distributions, which are then leveraged in the entity typing
module to predict the entity types of a sentence in the query set. MANNER also use a span detection module to
predict the position tags of the query sentence. The predicted entity types and position tags are combined to obtain
the final label.

between two probability distributions. In this pa-
per, we focus on the discrete OT for two discrete
empirical distributions, i.e., νs and νt:

W(νs,νt) = min
T∈Σ(νs,νt)

⟨C,T⟩ , (1)

where Σ(νs,νt) = {T ∈ Rn×m
+ : T1m =

νs,T
⊤1n = νt} is a set of joint probabilities, 1m

and 1n denote m-dimensional and n-dimensional
vectors of ones respectively, ⟨·, ·⟩ is the Frobenius
dot product, and C = [cij ] ∈ Rn×m

+ is a cost ma-
trix with each element representing the distance
between the i-th data point of νs and the j-th one
of νt. The optimal solution of T is called optimal
transport plan, denoted as T∗, which can be effi-
ciently obtained through the Sinkhorn algorithm
(Cuturi, 2013) by solving an entropy regularized
version of Equation (1) (see Appendix A).

3 Methodology

The overall framework of our MANNER is shown
in Figure 2. In this section, we first introduce the
details of MANNER in §3.1, and then introduce the
pretraining of MANNER on the source domain in
§3.2. We finally introduce how to adapt the model
to the target domain in §3.3.

3.1 The MANNER Model
Following previous prototype-based NER models
(Fritzler et al., 2019; Wang et al., 2021c), we learn
a prototype for each entity type, which is the mean
of representations of tokens that belong to this type
in the support set. However, compared with vanilla
prototype-based methods which model prototypes

as deterministic vectors, we employ a probabilistic
framework by modeling prototypes as stochastic
variables, which is conducive to learn more infor-
mative prototypes and improve the robustness of
few-shot models by capturing the uncertainties of
prototypes (Allen et al., 2019; Zhen et al., 2020).

Moreover, following previous two-stage few-
shot NER models (Wang et al., 2021b; Ma et al.,
2022), we decompose the label prediction of NER
into two sub-tasks: span detection which aims to
predict the position tags of tokens, such as “B”
and “I”, and entity typing which aims to predict
the entity types of tokens. Accordingly, for each
sentence, we additionally introduce two types of
labels, namely position tags a = {a1, a2, . . . , an}
and entity types e = {e1, e2, . . . , en}. We adopt
the BIOES tagging scheme in this paper. Therefore,
for a few-shot task τ = {S,Q}2, the position tags
are chosen from {O,B, I, E, S}, while the entity
types are chosen from the entity set E in the task,
such as {Person, Location, ... }. We define the joint
probability distribution of our model as:

pθ(y,a, e,Z | x,S,M)

= pθ(y,a, e, | x,Z) pθ(Z | S,M) , (2)

pθ(y,a, e, | x,Z)
= pθ(y | a, e) pθ(a | x) pθ(e | x,Z) (3)

where Z ∈ R|E|×D denotes prototypes of all en-
tity types in the task, which are obtained from the
support set S and a memory module M (detailed
below), i.e., pθ(Z | S,M). These prototypes are

2As the model applies to both source and target domain,
we drop subscripts s and t in this section for clarity.
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Figure 3: Probabilistic graphical model of our MANNER,
where M is the external memory module, o = {e,a,y}
denotes a set of labels, S(k) denotes samples of entity
type k in the support set, Q is the query set, and |E| is
the number of entity types in the task.

then used to predict the entity types of tokens, i.e.,
pθ(e | x,Z), which is further combined with the
predicted position tags, i.e., pθ(a | x), to obtain
the distribution over labels, i.e., pθ(y | a, e). Fig-
ure 3 illustrates the probabilistic graphical model
of MANNER. In what follows, we will introduce
the details of the joint probability distribution.

Memory-Augmented Prototypes pθ(Z | S,M):
Since there are only a few labeled data in the sup-
port set, the prototypes that are obtained from the
support set may not be accurate and representative.
Therefore, we leverage an external memory module
to store entity type information from the source do-
main to augment the support sets of few-shot tasks
in the target domain. Specifically, we denote the
memory as M, which contains key-value pairs that
correspond to different entity types in the source
domain. The keys are different entity types and
the values are representations of tokens that belong
to the corresponding entity types. For efficient re-
trieval from memory, we limit the number of token
representations of each entity type to be m, which
is referred to as the memory size.

In order to adapt the retrieved information (i.e.,
token representations) from the source domain to
the target domain, we leverage optimal transport to
retrieve and process information from the memory.
Specifically, for an entity type k in a few-shot task
τ , we first retrieve its most similar entity types k∗

in the memory based on the OT distance:

k∗ = argmin
k′∈E

W(Mk′ ,Hk)

= argmin
k′∈E

min
T∈Σ( 1

m
1m, 1

nk
1nk

)
⟨C,T⟩ , (4)

where Hk = fθ(S(k)), S(k) = {xk,1, . . . , xk,nk
},

is the contextualized representations of tokens that

belong to entity type k in the support set, fθ is a
token encoder such as BERT (Devlin et al., 2019),
Mk′ denotes the token representations of entity
type k′ stored in the memory, and C is a cost matrix
with each element computed as: c(Mk′,i,Hk,j) =
||Mk′,i − Hk,j ||22. We denote the retrieved infor-
mation for entity type k as Mk∗ , and the optimal
transport plan between token representations Hk

and Mk∗ as T∗
k, which is obtained through the

Sinkhorn algorithm (Cuturi, 2013) in this paper.
We next follow previous works (Courty et al.,

2017a,b) to adapt the retrieved information from
the source domain, i.e., Mk∗ , to the domain of task
τ through the following barycentric mapping:

ĥi = arg min
h∈RD

∑

j

T∗
k(i, j) · c(h,Hk,j), (5)

for all i = 1, . . . ,m, where ĥi denotes the pro-
jected representation of the i-th item in Mk∗ , and
T∗

k(i, j) represents an element of the optimal trans-
port plan T∗

k. It has been shown that when the
cost function is squared Euclidean norm, the solu-
tion to above barycenter mapping corresponds to
a weighted average of Hk (Courty et al., 2017b),
which is given by:

Ĥk = diag(T∗
k1nk

)−1T∗
kHk, (6)

where diag(·) is a diagonal matrix.
After obtaining the adapted memory, i.e., Ĥk,

we combine it with token representations in the
support set to get the prototype distributions:

pθ(Z | S,M) =
∏

k∈E
pθ

(
zk | S(k),Mk∗

)

=
∏

k∈E
N

(
zk | gθ(Ĥk,Hk), σ

2
1I
)
, (7)

where we model the distributions over prototypes
as Gaussian distributions, whose mean is obtained
through a mean function gθ and the covariance is
given by σ2

1I. We define the mean function as:

gθ(Ĥk,Hk) =γ ·Neural([r̂k, rk])

+ (1− γ) · rk , (8)

where r̂k = 1
m

∑
i Ĥk,i and rk = 1

nk

∑
j Hk,j are

the mean of token representations in the memory
and the support set respectively, [·, ·] is the concate-
nation operation, and Neural(·) is a feed-forward
neural network with Relu activation function. We
introduce a hyperparameter γ to interpolate the in-
formation from the memory and the support set.
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Span Detection pθ(a | x): We formulate span
detection as a sequence labeling task, i.e., predict-
ing the position tags of tokens. Note that we use
an encoder function fθ, e.g., BERT, to obtain the
contextualized representations of tokens when com-
puting prototypes. Based on these token represen-
tations, we use a linear classifier to compute the
probability distributions of position tags. Specifi-
cally, for a sentence x, its distribution of position
tags is:

pθ(a | x) = Softmax(fθ(x)W + b) , (9)

where W ∈ RD×5 and b are model parameters.

Entity Typing pθ(e | x,Z): We follow the prin-
ciple of prototypical networks (Snell et al., 2017)
to compute the probability distributions of entity
types. Specifically, for a sentence x, we compute
its distribution of entity types as:

pθ(e | x,Z) = Softmax(fθ(x)Z
⊤) , (10)

where Z is the sampled prototypes from prototype
distribution defined in Equation (7).

Label Prediction pθ(y | a, e): Finally, we com-
bine the results of span detection and entity typing
to get the label distributions of a sentence x, i.e.,
pθ(y | a, e) =

∏n
i=1 pθ(yi | ai, ei), where the

predicted label distribution of each token is:

pθ(yi | ai, ei) ∝ pθ(ai | x) · pθ(ei | x,Z). (11)

For example, for a token xi with label “B-Person”,
the probability of the token being classified as “B-
Person” is proportional to the product of pθ(ai =
B | x) and pθ(ei = Person | x,Z).

3.2 Learning in Source Domain
We next introduce how to learn our model on source
domain. The goal of learning is to maximize the
likelihood of observations in source domain3:

pθ(Ds | M) =

∫
pθ(Ds | Zs)pθ(Zs | Ss,M)dZs

where Ds = {Ss,Qs} = {(x,y,a, e)} represents
the set of observed variables in both support set and
query set. The learning of such probabilistic mod-
els requires inferring the posterior distributions of
stochastic variables, i.e., inferring the distribution
of prototypes after seeing both the support set and

3We use a subscript s and t to denote variables in the
source domain and the target domain respectively.

the query set in our case. However, exact inference
is intractable due to the non-Gaussian likelihood
function in our model. Therefore, we resort to vari-
ational inference to approximate the posteriors and
learn the model (Kingma and Welling, 2014).

Specifically, we approximate posteriors of proto-
types with the following variational distributions:

qθ(Zs | Ss,Qs) =
∏

k∈E
qθ

(
zs,k | S(k)

s ,Q(k)
s

)

=
∏

k∈E
N

(
zs,k | gθ

(
fθ(Q(k)

s ), fθ(S(k)
s )

)
, σ2

2I
)
,

where Q(k)
s represents tokens that belong to entity

type k in the query set, and σ2
2I is the covariance.

For parameter efficiency, we use the same inference
network gθ in Equation (7) to infer the posteriors
of prototypes. However, the variational distribu-
tions are different from Equation (7), which can
be regarded as prior distributions, in that the vari-
ational distributions are obtained based on both
support and query sets while the prior distributions
are obtained based on support set and the memory.

With the above variational distributions, we can
derive the Evidence Lower BOund (ELBO) of log-
likelihood function of our model as:

LELBO =

−DKL [qθ(Zs | Ss,Qs) || pθ(Zs | Ss,M)]

+
∑

o∈Ds

Eqθ(Zs|Ss,Qs) [log pθ(y,a, e, | x,Zs)]

+ const. , (12)

where o = (x,y,a, e) and DKL[·||·] is the Kull-
back–Leibler (KL) divergence. Please refer to
Appendix B for the detailed derivation of ELBO.
We learn the model parameters θ by maximizing
the ELBO defined in Equation (12), where KL di-
vergence has a closed-form solution while the ex-
pectation term is approximated with Monte Carlo
method by sampling from the variational distribu-
tions. At each training iteration, in order to remain
the accuracy of the memory, we use the token rep-
resentations, which is obtained through fθ, in both
the support and query sets to update the informa-
tion in the memory. Specifically, for each entity
type in a task, we randomly select m representa-
tions of tokens that belong to this entity type to
update token representations stored in the memory.
We leave the exploration of selecting representative
token representations as our further research.
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Models 1-shot 5-shot

Ontonotes WNUT GUM CoNLL Ontonotes WNUT GUM CoNLL

TransferBERT† 03.46 ± 0.54 02.71 ± 0.72 00.57 ± 0.32 04.75 ± 1.42 35.49 ± 7.60 11.08 ± 0.57 03.62 ± 0.57 15.36 ± 2.81

SimBERT† 13.99 ± 0.00 05.18 ± 0.00 06.91 ± 0.00 19.22 ± 0.00 21.12 ± 0.00 08.20 ± 0.00 10.63 ± 0.00 32.01 ± 0.00

Matching Network† 15.06 ± 1.61 17.23 ± 2.75 04.73 ± 0.16 19.50 ± 0.35 08.08 ± 0.47 06.61 ± 1.75 05.58 ± 0.23 19.85 ± 0.74

ProtoBERT† 06.67 ± 0.46 10.68 ± 1.40 03.89 ± 0.24 32.49 ± 2.01 13.59 ± 1.61 17.26 ± 2.65 09.54 ± 0.44 50.06 ± 1.57

CONTaiNER 32.96 ± 0.91 16.45 ± 0.92 10.81 ± 0.45 34.09 ± 0.94 48.62 ± 0.64 27.50 ± 0.58 24.31 ± 0.66 58.63 ± 1.56

L-TapNet+CDT† 15.17 ± 1.25 20.80 ± 1.06 12.04 ± 0.65 44.30 ± 3.15 20.95 ± 2.81 23.30 ± 2.80 11.65 ± 2.34 45.35 ± 2.67

DecomposedMetaNER‡ 34.13 ± 0.92 25.14 ± 0.24 17.54 ± 0.98 46.09 ± 0.44 45.55 ± 0.90 31.02 ± 0.91 31.36 ± 0.91 58.18 ± 0.87

MANNER 43.61 ± 0.48 28.54 ± 0.69 23.17 ± 0.20 49.06 ± 1.37 58.37 ± 0.62 35.86 ± 1.42 40.86 ± 0.96 64.84 ± 0.51

Table 1: Overall performance (F1 scores %) of MANNER and baselines on Cross-Dataset, where † and ‡ denote the
results reported in (Hou et al., 2020) and (Ma et al., 2022), respectively.

Models 1-shot 5-shot

Address Medical Weibo Cluener Address Medical Weibo Cluener

NNShot 35.87 ± 1.21 11.33 ± 0.87 27.22 ± 1.78 23.41 ± 0.91 44.45 ± 1.25 16.65 ± 0.59 34.80 ± 0.43 27.49 ± 0.89

StructShot 43.83 ± 0.93 14.45 ± 0.78 26.73 ± 1.81 26.20 ± 0.41 51.14 ± 1.38 23.43 ± 0.86 31.56 ± 2.22 31.67 ± 0.87

ProtoBERT 47.54 ± 1.73 18.12 ± 0.86 23.68 ± 0.79 19.01 ± 1.61 65.37 ± 0.28 38.60 ± 0.49 42.41 ± 1.78 37.20 ± 1.24

CONTaiNER 53.18 ± 1.95 18.11 ± 0.98 33.92 ± 2.18 23.83 ± 1.89 68.00 ± 1.17 34.00 ± 1.06 47.43 ± 1.49 39.59 ± 0.47

DecomposedMetaNER 55.38 ± 0.54 26.64 ± 0.76 34.92 ± 2.74 38.08 ± 1.35 60.83 ± 0.50 38.95 ± 4.74 41.02 ± 2.32 47.57 ± 0.95

MANNER 68.47 ± 0.87 31.43 ± 0.60 42.64 ± 0.63 39.07 ± 1.01 78.58 ± 0.31 44.61 ± 0.47 53.36 ± 0.62 54.90 ± 0.53

Table 2: Overall performance (F1 scores %) of MANNER and baselines on Chinese Cross-Dataset.

3.3 Adaption in Target Domain

Finally, we introduce how to adapt our model to
the target domain. Similar to previous work (Ma
et al., 2022), we finetune the model with few-shot
examples in the target domain. However, since we
do not have access to the query set in the target do-
main, we can not use the ELBO in Equation (12) to
finetune our model. Therefore, we propose to adapt
our model to the target domain by maximizing the
likelihood function of the support set in the target
domain. Formally, the objective function is:

min
θ

Epθ(Zt|St,M) [log pθ(St | Zt)] . (13)

After adapting our model to the target domain, we
make prediction for a sentence x in the query set
with pθ(y,a, e | x, Z̃t), where Z̃t represents the
mean of prototype distributions. The pseudo code
of the training and adaption process of our model
is provided in Appendix C.

4 Experiments

4.1 Experimental Setups

Datasets. We conduct experiments on two groups
of datasets: (1) Cross-Dataset (Hou et al., 2020):
It is an English cross domain few-shot NER dataset
constructed from four datasets: Ontonotes (Prad-
han et al., 2013), WNUT-2017 (Derczynski et al.,

2017), GUM (Zeldes, 2017), CoNLL-2003 (Sang
and De Meulder, 2002). For fair comparison, we
use the same sampled episodes and dataset splits as
in (Hou et al., 2020), where two of the four datasets
are used for training, one for validation and the
other for test. For example, to evaluate the perfor-
mance on Ontonotes, we take WNUT and GUM as
the training sets and CoNLL as the validation set.
(2) Chinese Cross-Dataset: We also construct a
Chinese cross domain few-shot NER dataset using
five publicly available datasets: CCKS4, Address5,
Medical (Zhang et al., 2022), Weibo (Peng and
Dredze, 2015) and Cluener (Xu et al., 2020). Fol-
lowing the settings in (Yang and Katiyar, 2020), we
first train few-shot models on the training set of the
CCKS dataset and then evaluate their performance
on the other four datasets. For each test dataset,
we sample K-shot data from their training set as
the support set and use the whole test set as the
query set to construct a test episode. We repeat the
sampling process for five times and obtain five test
episodes for each dataset. We compare the average
performance on the five test episodes. More details
about our datasets are provided in Appendix D.1.

4https://www.biendata.xyz/competition/ccks_
2020_el/

5https://tianchi.aliyun.com/dataset/109339
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Models 1-shot 5-shot

Ontonotes WNUT GUM CONLL Ontonotes WNUT GUM CONLL

MANNER 43.61 ± 0.48 28.54 ± 0.69 23.17 ± 0.20 49.06 ± 1.37 58.37 ± 0.62 35.86 ± 1.42 40.86 ± 0.96 64.84 ± 0.51
w/o Memory 41.49 ± 1.02 26.15 ± 0.43 20.85 ± 0.50 48.58 ± 0.88 54.40 ± 1.13 33.84 ± 0.73 36.10 ± 1.01 63.58 ± 0.94

w/o OT 38.17 ± 1.13 25.27 ± 0.66 20.06 ± 0.77 47.78 ± 1.41 52.33 ± 0.91 33.13 ± 0.41 35.71 ± 1.02 62.21 ± 1.65

Deterministic 42.62 ± 1.31 28.21 ± 0.63 22.52 ± 0.32 48.50 ± 0.77 57.59 ± 1.03 35.79 ± 1.63 39.56 ± 0.40 64.51 ± 0.79

Table 3: Ablation study. F1 scores (%) on Cross-Dataset are reported.

Baselines. On Cross-Dataset, we take the fol-
lowing models as our baselines: Decomposed-
MetaNER (Ma et al., 2022), CONTaiNER (Das
et al., 2022), L-TapNet+CDT (Hou et al., 2020)
and those baselines used in (Hou et al., 2020),
such as TransferBERT, SimBERT, Matching Net-
work, and ProtoBERT (Fritzler et al., 2019). On
Chinese Cross-Dataset, we compare against some
strong few-shot NER models such as Decomposed-
MetaNER, CONTaiNER, ProtoBERT, NNShot and
StructShot (Yang and Katiyar, 2020).

Evaluation. We employ the episode evaluation
as in (Hou et al., 2020) where we calculate micro
F1 score within each test episode and then average
over all test episodes. We repeat each experiment
for 5 times with different seeds and report average
micro F1 scores with their standard deviations.

Settings. Following previous works (Hou et al.,
2020; Ma et al., 2022), we use bert-base-uncased
(Devlin et al., 2019) to obtain contextualized token
representations for Cross-Dataset. Similarly, bert-
base-chinese is utilized for Chinese Cross-Dataset.
We instantiate the mean function of the inference
network, i.e., gθ, with a two-layered feed-forward
neural network with the ReLU activation function
and set the number of hidden units as 128. More-
over, to effectively optimize the ELBO, we follow
previous works (Osawa et al., 2019; Zhang et al.,
2021) to introduce an additional hyperparameter λ
to down-weight the KL-divergence in the ELBO.
Throughout the experiments, we set λ as 1e−3, and
sample 5 times from the variational distributions to
approximate the expectation term in the ELBO.

We set the maximum sequence length of the
BERT models as 128 and the hyperparameter
γ as 0.5. To optimize the parameters, we use
AdamW (Loshchilov and Hutter, 2019) with a 1%
linearly scheduled warmup as the optimizer and
freeze the embedding layers of bert during opti-
mization. Moreover, we perform grid search to
select hyperparameters. Additional details about
hyperparameter settings are in Appendix D.2.

4.2 Results and Analysis

Overall Performance. The performance of
MANNER and baselines on Cross-Dataset and Chi-
nese Cross-Dataset are reported in Table 1 and Ta-
ble 2, respectively. The results show that MANNER

performs better than all the baselines on F1 score
in all settings and surpass the second best models
by a large margin in most cases. Particularly, on
Cross-Dataset, MANNER achieves an average per-
formance improvement of 5.37% and 7.58% in 1-
shot and 5-shot settings respectively compared with
the best baselines. Similarly, on Chinese Cross-
Dataset, the average performance improvement of
MANNER is 6.65% (1-shot) and 7.38% (5-shot).
The experimental results well demonstrate the ef-
fectiveness of MANNER in handling both English
and Chinese few-shot NER tasks. Moreover, com-
pared with DecomposedMetaNER, a strong base-
line, MANNER achieves performance improvement
up to 9.48% (Ontonotes 1-shot) on Cross-Dataset
and 13.09% (Address 1-shot) on Chinese Cross-
Dataset, which suggests that MANNER can achieve
superior performance even with very few labeled
data (e.g., 1-shot).

Ablation Studies. We conduct ablation studies to
investigate the effect of different components, i.e.,
memory module, optimal transport and probabilis-
tic framework, in our model. We introduce three
variants of MANNER for the ablation study: (1)
MANNER w/o Memory, where the memory mod-
ule is removed and the prototype distributions are
inferred from the support set only. Note that this
variant does not use OT either as it is unnecessary
to adapt the retrieved information from the mem-
ory to the target domain. (2) MANNER w/o OT,
where we remove the OT module and use cosine
similarity to retrieve the most similar entity type
from memory. The retrieved information is directly
used to infer prototype distributions without any
processing. (3) Deterministic, where we remove
probabilistic framework and model prototypes as
deterministic vectors.
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Figure 4: Overall performance (F1 scores %) of MAN-
NER and VM-ProtoNet on Cross-Dataset.

The results of ablation studies are reported in
Table 3. It is shown that MANNER consistently
outperforms MANNER w/o Memory in all settings,
which indicates the effectiveness of our memory
module in improving the performance. This is be-
cause with appropriate processing, e.g., OT in this
paper, the information stored in memory can pro-
vide background knowledge for quickly and accu-
rately learning new classes from a few examples
and therefore brings performance improvement.

Table 3 also shows that MANNER outperforms
MANNER w/o OT, which demonstrates the effec-
tiveness of OT in MANNER. Moreover, we found
that MANNER w/o Memory outperforms MANNER

w/o OT which directly use the information from the
memory without any processing. This is because in
our cross domain few-shot setting, the information
from the memory (source domain) is different from
that of the test tasks (target domain), i.e., the entity
types of two domain are disjoint, and therefore di-
rectly utilizing the information from the memory
may introduce noises to the test tasks, leading to the
performance degradation. The results demonstrate
the necessity of leveraging OT to adapt informa-
tion from the memory to current task to achieve
satisfactory performance.

Table 3 shows that MANNER achieves better or
comparative results compared with its determinis-
tic counterpart, especially on the 1-shot settings.
The improvement can be explained by the fact that
MANNER introduces small noises to the prototypes
by sampling from the prototype distributions to pre-
vent the model from overfitting the few-shot data
during the finetuning stage.

Effect of Decomposed Framework. It is worth
noting that MANNER decomposes label prediction
of NER into two-subtasks: span detection and en-
tity typing. To investigate the effect of the de-
composed framework, we additionally introduce a
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Figure 5: Effect of memory size on Ontonotes (left) and
Address (right) datasets.

variant of MANNER: VM-ProtoNet where we only
remove the decomposed framework and learn pro-
totypes for each entity label, which is similar to
ProtoBERT. Note that we also use memory and OT
to augment few-shot NER tasks in VM-ProtoNet.
We compare the performance of MANNER and VM-
ProtoNet on Cross-Dataset, which is presented in
Figure 4. The results show that MANNER surpasses
VM-ProtoNet in all settings and achieves notice-
able performance improvement in most cases, es-
pecially on the CoNLL dataset. The success of the
decomposed framework maybe because it avoids
learning prototype for non-entities (i.e., “O” class)
which is noisy and meaningless. Overall, experi-
mental results demonstrate the effectiveness of the
decomposed framework in few-shot NER tasks,
which is consistent with the results of previous
works (Wang et al., 2021b; Ma et al., 2022).

Effect of Memory Size. In MANNER, we limit
the number of token representations of each entity
type stored in the memory. We further conduct ex-
periments to understand the effect of the memory
size on the performance of MANNER. Specifically,
we vary the memory size from 1 to 30 and report
the performance of MANNER on Ontonotes and
Address. The results in Figure 5 show that MAN-
NER can achieve decent performance even with a
low memory size and the performance converges
with the increase of memory size. These findings
suggest that MANNER is insensitive to memory
size, which brings another benefit: it is sufficient
for MANNER to achieve satisfactory performance
by storing only a small number of token repre-
sentations in the memory, which is efficient for
both retrieving and processing information from
the memory.

5 Related Work

Few-Shot NER. Recently, few-shot NER has re-
ceived growing interest. Previous works mainly
address few-shot NER with meta-learning meth-
ods (Fritzler et al., 2019; Wang et al., 2021c;
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Huang et al., 2021; Tong et al., 2021; Ma et al.,
2022). These methods build few-shot models ei-
ther upon prototypical network (Snell et al., 2017),
which learns prototypes for entity types (Fritzler
et al., 2019; Huang et al., 2021; Tong et al., 2021;
Wang et al., 2022b; Ji et al., 2022; Wang et al.,
2022a), or MAML (Finn et al., 2017), which adapts
the model parameters to few-shot tasks through
inner-update on the support set (Li et al., 2022;
Ma et al., 2022). Another line of work adopts
the transfer learning paradigm, where they first
learn a feature extractor on the source domain and
then transfer the pretrained model to the target do-
main (Hou et al., 2020; Yang and Katiyar, 2020;
Das et al., 2022). These methods make predic-
tions through the nearest neighbor inference (Wise-
man and Stratos, 2019). In addition, some re-
cent works focus on the two-stage few-shot NER
model (Ziyadi et al., 2020; Wang et al., 2021b; Ma
et al., 2022), where they decompose the NER task
into two-subtasks: span detection and entity typ-
ing. Moreover, prompt-based techniques (Cui et al.,
2021; Ding et al., 2022; Chen et al., 2022) have also
been proposed to address few-shot NER tasks. In
contrast, MANNER stores the information from the
source domain in the memory, which is then used
to augment few-shot task in target domain.

Memory. Memory-augmented methods have
been widely studied in the field of computer vi-
sion (Santoro et al., 2016; Bornschein et al., 2017;
Ramalho and Garnelo, 2019; Munkhdalai et al.,
2019; Zhen et al., 2020; Du et al., 2022). Particu-
larly, Santoro et al. (2016) propose to augment neu-
ral network with Neural Turing Machine (Graves
et al., 2014) for few-shot learning, which enables
quickly encoding and retrieving new information.
Ramalho and Garnelo (2019) further introduce a
memory controller to select the minimum samples
to be stored in the memory. Memory-augmented
methods have also been successfully applied in
NLP tasks, such as question answering (Das et al.,
2017), text classification (Geng et al., 2020), text
generation (He et al., 2020) and slot tagging (Wang
et al., 2021a). Compared with above methods, our
model utilizes optimal transport to adapt the re-
trieved memory to the target domain instead of
using neural networks, which is more effective.

Optimal Transport. In domain adaption, opti-
mal transport is a widely used method to trans-
port data from the source domain to the target do-

main (Courty et al., 2017a,b; Damodaran et al.,
2018; Fatras et al., 2021; Nguyen et al., 2021; Fa-
tras et al., 2022). Theoretical guarantees have been
provided in (Redko et al., 2017) to justify the use
of OT in domain adaption. In Courty et al. (2017b),
they propose to transport features from the source
domain to the target domain through a barycentric
mapping. However, they only consider transport-
ing feature distributions. In contrast, some works
propose to align the joint distributions of features
and labels in source and target domains (Courty
et al., 2017a; Damodaran et al., 2018).

6 Conclusion

This paper proposes MANNER to handle the cross
domain few-shot NER task. MANNER uses a mem-
ory module to store information from the source do-
main, which is then leveraged to augment few-shot
task in the target domain. To effectively utilize the
information from the memory, MANNER uses opti-
mal transport to retrieve and process information
from the memory, which enables explicitly adapt-
ing the retrieved information to the target domain
and improve the performance in the cross domain
few-shot setting. Experimental results on both En-
glish and Chinese few-shot NER datasets show that
MANNER can achieve superior performance over
existing methods.

Limitations

One limitation of our work is that MANNER only
explicitly utilizes the memory to enhance the per-
formance of the entity typing module in target do-
main. However, we argue that the memory could
also implicitly enhances the span detection module
through the shared pretrained language model with
entity typing module. We leave how to explicitly
leverage memory to enhance both entity typing and
span detection modules as future work.
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A Sinkhorn Algorithm

Sinkhorn algorithm (Cuturi, 2013) is an efficient
method to approximate the optimal transport (OT)
distance. It aims to solve an entropy regularized
optimal transport problem, which is defined as:

Wϵ(νs,νt) = min
T∈Σ(νs,νt)

⟨C,T⟩+ ϵh(T) , (14)

where h(T) =
∑

i,j Tij logTij denotes the en-
tropy regularizer and ϵ is the regularization parame-
ter. The optimization problem in Equation (14) can
be efficiently solved through the following iterative
Bregman projections (Benamou et al., 2015):

a(l+1) =
νs

Gb(l)
, b(l+1) =

νt

G⊤a(l+1)
, (15)

starting from b0 = 1
m1m, where G = [Gij ] and

Gij = e−Cij/ϵ. After L iterations, the optimal
transport plan T∗ is calculated as T∗

ij = aL
i Gijb

L
j .

B Derivation of ELBO

Note that the joint probability distribution of our
model on source domain is given by:

pθ(Ds,Zs | M) = pθ(Ds | Zs)pθ(Zs | Ss,M),

where Ds = {Ss,Qs} = {(x,y,a, e)} represents
the set of observed variables. We further define a
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Algorithm 1: Variational Memory-Augmented Few-Shot NER (MANNER).
Input : Tasks from source domain Ds, few-shot tasks from target domain Dt, training steps T ,

finetune steps J , training learning rate η, finetune learning rate ξ.
1 Initialize model parameters θ and memory M;
2 /* Part I: Training on source domain. */
3 for s = 1, . . . T do
4 Sample a batch of tasks Dbatch from Ds;
5 for each task T = (Ss,Qs) ∈ Dbatch do
6 for each entity type k in T do
7 Retrieve the most similar entity type k∗ from memory based on Equation (4);
8 Adapt the retrieved content Mk∗ to current task based on Equation (6);

9 Calculate the prior distributions of prototypes, i.e., pθ(Zs | Ss,M) based on Equation (7);
10 Calculate the variational distributions of prototypes, i.e., pθ(Zs | Ss,Qs);
11 Sample prototypes Zs from pθ(Zs | Ss,Qs);
12 Calculate the ELBO based on Equation (12);
13 Accumulate gradients of model parameters θ which are obtained by maximizing the ELBO;
14 Update memory with token representations in both support and query sets.

15 Update model parameters θ with learning rate η;

16 /* Part II: Finetuning on target domain. */
17 for each task T = (St,Qt) ∈ Dt do
18 Initialize model parameters θ′ = θ ;
19 for s = 1, . . . , J do
20 for each entity type k in T do
21 Retrieve the most similar entity type k∗ from memory based on Equation (4);
22 Adapt the retrieved content Mk∗ to current task based on Equation (6);

23 Calculate the prior distributions of prototypes, i.e., pθ(Zt | St,M) based on Equation (7);
24 Sample prototypes Zt from pθ(Zt | St,M);
25 Calculate the objective function based on Equation (13);
26 Update model parameters θ′ with learning rate ξ;

Hyperparameters 1-shot 5-shot

Ontonotes WNUT GUM CoNLL Ontonotes WNUT GUM CoNLL

batch size 16 16 1 1 16 1 1 1
training learning rate 1e-4 3e-5 1e-4 3e-5 1e-4 3e-5 1e-4 3e-5
finetune learning rate 1e-4 3e-5 1e-4 3e-5 1e-4 3e-5 1e-4 3e-5
training steps 500 500 1000 1000 500 1000 1000 1000
finetune steps 50 50 50 50 50 50 50 50

Table 4: Optimal hyperparameter settings on Cross-Dataset.

variational distribution qθ(Zs | Ss,Qs) to approxi-
mate the posteriors of latent variables. Therefore,
we can derive the ELBO as follows:

log pθ(Ds | M)

= log

∫
pθ(Ds,Zs | M)

qθ(Zs | Ss,Qs)

qθ(Zs | Ss,Qs)
dZs

≥
∫

qθ(Zs | Ss,Qs) log
pθ(Ds,Zs | M)

qθ(Zs | Ss,Qs)
dZs

= Eqθ(Zs|Ss,Qs) [log pθ (Ds | Zs)]

−DKL [qθ(Zs | Ss,Qs) || pθ(Zs | Ss,M)]

≜ LELBO , (16)

where the inequality is obtained via the Jensen’s
inequality. Since the likelihood function of our
model is given by:

pθ(Ds | Zs) =
∏

o∈Ds

pθ(y,a, e, | x,Zs) p(x).
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We can put this function into Equation (16) and
further derive the ELBO as:

LELBO =

−DKL [qθ(Zs | Ss,Qs) || pθ(Zs | Ss,M)]

+
∑

o∈Ds

Eqθ(Zs|Ss,Qs) [log pθ(y,a, e, | x,Zs)]

+ const. , (17)

where const. =
∑

o∈Ds
log p(x) is a constant.

The KL divergence in Equation (17) has a closed
form solution, which is given by:

−DKL [qθ(Zs | Ss,Qs) || pθ(Zs | Ss,M)]

= −1

2

∑

k∈E

1

σ2
1

(µk −mk)
⊤(µk −mk)

− |E|
2

((s− 1)D − log s) , (18)

where µk, mk denote the mean of the prior and
variational distributions of prototypes, respectively,
s = σ2

2/σ
2
1 , and D is the dimension of prototypes.

Moreover, we sample Zs from variational distribu-
tions qθ(Zs | Ss,Qs) to approximate the expecta-
tion term in ELBO.

C Pseudo Code

The training and inference process of our model is
provided in Algorithm 1. In the training process,
we randomly sample a small batch of tasks Dbatch,
accumulate the gradients of their objective func-
tion and then update the model parameters with the
AdamW optimizer. In the inference process, for
each task, we first initialize the model parameters
θ′ with the learned model parameters in the source
domain, i.e., θ′ = θ, and then finetune the parame-
ters by maximizing the likelihood function in the
support set for J steps.

D Experimental Details

D.1 Datasets
Table 5 shows the statistics of original datasets used
to construct the experimental datasets and statistics
of the constructed few-shot datasets.

Cross-Dataset is an English cross domain few-
shot NER dataset, which is constructed to evaluate
the performance of meta-learning based few-shot
models. We use the public episodes6 constructed
by (Hou et al., 2020) in our experiments, where

6https://github.com/AtmaHou/FewShotTagging.

Dataset # Sent # label
Avg. |S|

1-shot 5-shot

Cross-Dataset

Ontonotes 159,615 19 14.38 62.28
WNUT 005,657 7 05.48 28.66
GUM 003,493 12 06.50 27.81

CoNLL 020,679 5 03.38 15.58

Chinese Cross-Dataset

CCKS 090,000 23 - -
Address 008,856 18 09.8 43.2
Medical 015,000 6 04.6 17.2
Weibo 001,890 4 03.4 11.6

Cluener 010,748 10 09.0 30.4

Table 5: Statistics of datasets, where Avg. |S| denotes
the average size of support in each dataset.

the training, validation and test episodes for each
dataset are provided.

We additionally construct a Chinese cross do-
main few-shot NER dataset from five public Chi-
nese NER datasets: CCKS, Address, Medical,
Weibo and Cluener. We follow the experimental
settings in (Yang and Katiyar, 2020), where they
first train few-shot models on a source domain and
then transfer the model to target domain with few-
shot data. We take CCKS as source domain and
the other four datasets as target domains. To con-
struct few-shot data in target domains, we use the
sampling method in (Ding et al., 2021) to sam-
ple K-shot data from the training set of each test
dataset as support set and use the original test data
as query set. We repeat the sampling process for
five times to obtain accurate experimental results.

D.2 Hyperparameter Settings
We set the memory size m, i.e., number of token
representations of each entity type in the memory,
as 15. The hyperparameter γ and the standard de-
viation of prototype distributions is set to be 0.5
and e−10 respectively. The dropout rate and weight
decay coefficient is set to be 0.1 and 1e − 3, re-
spectively. On Cross-Dataset, we choose batch size
from {1, 16, 32}, learning rate from {1e-5, 3e-5,
1e-4}, training steps from {300, 500, 1000}, and
finetune steps from {30, 50}. We perform grid
search to choose hyperparameters that have the
best performance on the validation set. The opti-
mal hyperparameter settings on Corss-Dataset are
provided in Table 4. On Chinese Cross-Dataset,
we set the batch size as 1, training steps as 1000,
finetune steps as 50, training learning rate as 3e-5
and finetune learning rate as 3e-5 for all settings.
During training, we evaluate our model on the vali-
dation set every 100 steps and select the checkpoint
with best f1 scores on the validation set as the final
model.
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