
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 4442–4453

July 9-14, 2023 ©2023 Association for Computational Linguistics

CAME: Confidence-guided Adaptive Memory Efficient Optimization

Yang Luo1*, Xiaozhe Ren2, Zangwei Zheng1, Zhuo Jiang1, Xin Jiang2, Yang You1

1School of Computing, National University of Singapore
2Noah’s Ark Lab, Huawei

{yangluo,zangwei,jiangz,youy}@comp.nus.edu.sg
{renxiaozhe,jiang.xin}@huawei.com

Abstract

Adaptive gradient methods, such as Adam and
LAMB, have demonstrated excellent perfor-
mance in the training of large language models.
Nevertheless, the need for adaptivity requires
maintaining second-moment estimates of the
per-parameter gradients, which entails a high
cost of extra memory overheads. To solve this
problem, several memory-efficient optimizers
(e.g., Adafactor) have been proposed to obtain
a drastic reduction in auxiliary memory usage,
but with a performance penalty. In this pa-
per, we first study a confidence-guided strategy
to reduce the instability of existing memory
efficient optimizers. Based on this strategy,
we propose CAME to simultaneously achieve
two goals: fast convergence as in traditional
adaptive methods, and low memory usage as
in memory-efficient methods. Extensive exper-
iments demonstrate the training stability and
superior performance of CAME across various
NLP tasks such as BERT and GPT-2 training.
Notably, for BERT pre-training on the large
batch size of 32,768, our proposed optimizer
attains faster convergence and higher accuracy
compared with the Adam optimizer. The im-
plementation of CAME is publicly available1.

1 Introduction

Robust training of large language models (LLMs)
often relies on adaptive gradient-based optimiza-
tion methods (Li et al., 2022; Kingma and Ba, 2015;
Zhuang et al., 2020). Through the use of cumula-
tive second-order statistics, these methods adapt the
per-parameter learning rate and demonstrate supe-
rior convergence speed during the training process
of LLMs. However, the remarkable performance
of adaptive methods incurs an extra cost of mem-
ory usage indeed. For example, Adam requires
to preserve the first moment estimate and second

*Work was done when Yang Luo was an intern at Huawei
Noah’s Ark Lab.

1https://github.com/huawei-noah/Pretrained-Language-
Model/tree/master/CAME

Figure 1: Visualization of Non-negative Matrix Factor-
ization (NMF). Generally, NMF reduces the memory
requirements from O(nm) to O(n+m). In this paper,
we focus on the special case of rank-1 factors.

raw moment estimate of each gradient in order to
tune the learning rate for each parameter, which
inevitably triples the memory usage concerning the
optimizer states. Besides, with the growing size
of the model, LLMs are becoming increasingly ex-
pensive in terms of memory, and the limitation of
memory is gradually emerging as a main bottleneck
for training LLMs.

Many existing memory-efficient optimizers at-
tempt to store second-order statistics with sublin-
ear memory requirement while retaining the excep-
tional convergence property of adaptivity (Shazeer
and Stern, 2018; Anil et al., 2019). Adafactor opti-
mizer achieves remarkable memory cost reduction
by applying the non-negative matrix factorization
algorithm (Lee and Seung, 2000) to factorize the
accumulator matrix for squared gradients into two
rank-1 factors as shown in Figure 1, where the
memory requirement for the original matrix V de-
creases from O(nm) to O(n + m). Whereas, it
is observed that Adafactor suffers a performance
degradation in the training of large language mod-
els universally compared with conventional adap-
tive gradient-based optimization methods. The rea-
son for this phenomenon is Adafactor inevitably in-
troduces some errors that cause instability in train-
ing deep networks due to the operation of non-
negative matrix factorization.

4442



In addition, in the case of large-batch training
that aims to accelerate the training of deep neu-
ral networks, the memory consumption of each
machine (GPU/TPU) is much higher than general
batch size training, which further imposes a grave
constraint on the performance of the trained model.
In comparison to standard training tasks, large-
batch training presents more challenges for op-
timizers. Empirically, when the mini-batch size
increases after a certain point (e.g. 1024), the test
accuracy of the converged solution decreases sig-
nificantly compared with the baseline (He et al.,
2021). To our knowledge, there is currently no
work related to memory-efficient optimizers for
large-batch training.

Motivated by these challenges, we firstly study
a confidence-guided strategy catered to alleviate
the instability of Adafactor by calculating the con-
fidence of the generated update at each training
step. On the basis of the adaptation strategy, we
propose a novel CAME optimizer that saves nearly
the same memory footprint as existing memory-
efficient optimizers while attaining faster conver-
gence and superior generalization performance. To
further assess the scalability of our proposed algo-
rithm, we consider an additional challenging exper-
iment - performing large-batch training on BERT
using CAME optimizer.

Contributions of our paper can be summarized
in the following:

• Inspired by training instability of Adafactor,
we explore a confidence-guided strategy cen-
tered on the existing error in the raw updates
of Adafactor for parameters of large language
models.

• In light of the dedicated strategy, we pro-
pose a novel optimization algorithm, CAME,
for achieving faster convergence and less
performance degradation catered at memory-
efficient optimization. We further investigate
the effect of the proposed memory-efficient
optimization algorithm in large-batch training
settings.

• We demonstrate the powerful performance
of CAME with extensive NLP experiments:
CAME shows faster convergence and better
generalization capability than Adam in BERT
pre-training task with two different batch sizes
(32k and 8k); in the training of GPT-2 model

and T5 model, CAME achieves fast conver-
gence speed as Adam without degrading of
performance. Notably, in the large-batch train-
ing of the BERT model, CAME obtains com-
parable validation accuracy with LAMB using
around 15% less memory usage.

2 Related Work

Memory Efficient Adaptive Optimization Mem-
ory efficient optimizers maintain the benefits of
standard per-parameter adaptivity while signif-
icantly reducing memory footprint. Adafactor
(Shazeer and Stern, 2018) proposes to reconstruct
a low-rank approximation of the exponentially
smoothed accumulator at each training step that
is optimal with respect to the generalized Kullback-
Leibler divergence. SM3 (Anil et al., 2019) divides
the elements in the second-order gradient matrix
into sets by the observed similarity of the elements,
and each item in the generated approximation ma-
trix is the minimum of the maximum value of each
set in which it is located. The methods mentioned
above behave poorly in the training of large lan-
guage models and converge slowly, which raises
a significant challenge for memory-efficient opti-
mization methods.

Large Batch Training A large-batch training
scheme is preferred in distributed machine learn-
ing because of its ability to increase parallelism
by enhancing large-scale cluster utilization. It has
seen growing interest in recent years in large-batch
training (Liu et al., 2022; Li et al., 2021; Huo et al.,
2021). In particular, a layer-wise adaptive learn-
ing rate algorithm LARS (You et al., 2017a) is
proposed to scale the batch size to 32k for ResNet-
50. Based on LARS, LAMB optimizer (You et al.,
2019) can finish the BERT training in 76 minutes
through TPU v3 Pod. Despite the success of these
approaches for BERT models, the much larger
batch size highly boosts the GPU usage which is
prohibitively expensive and inaccessible to most
researchers.

Moreover, training with a large batch size incurs
additional challenges (Hoffer et al., 2017; Keskar
et al., 2016). Large-batch training is prone to
converge to sharp local minima, since the num-
ber of interactions will decrease when the batch
size is increased if the number of epochs is fixed,
which causes a wide gap in generalization of the
model(Keskar et al., 2016). Traditional methods
seek to narrow the generalization gap by carefully

4443



tuning hyperparameters, such as learning rate, mo-
mentum, and label smoothing, to narrow the gen-
eralization gap (Goyal et al., 2017a; Shallue et al.,
2018; You et al., 2017b). Yet there have been few
attempts to reduce memory usage in large-batch
training, and the underlying challenge remains un-
clear.

3 Method

In this section, we firstly provide a brief description
of the Adafactor optimizer and discuss the errors
contained in the update of Adafactor (erroneous up-
date). We further study a confidence-guided strat-
egy and introduce the proposed CAME in detail in
light of the strategy.

3.1 An overview of Adafactor
The L(θ) ∈ R represents the loss function that we
plan to minimize, where θ ∈ Rn×m is the parame-
ter of the model. gt is the gradient at step t, η is the
learning rate, rt and ct are the exponential moving
average of two low-rank factors for the second mo-
ments of the gradient. ϵ1 is a small regularization
constants and ut is the current approximate update.

In the training of large language models, Adafac-
tor is required to apply momentum to ensure the
convergence (Chowdhery et al., 2022), and the cor-
responding pseudocode is illustrated in Algorithm
1. The problem setting is as follows. Assume that
we aim to minimize the expected value of an ob-
jective function f(θ). At each training step, we
receive the loss derived from a mini-batch of data,
and calculate the gradient gt of the function based
on the previous parameters. Subsequently, we up-
date the exponential running averages of two fac-
tors for second moments of the gradient rt and ct,
compute approximations for the second moments
of the gradient vt, and adjust the generated update
(ut) when RMS(ut) surpasses a specific threshold
value d as in:

ût =
ut

max(1, RMS(ut)/d)
(1)

where RMS(ut) refers to the root-mean-square
calculation of the components of ut. Finally, the
first moment of the adjusted update mt is utilized
to update the parameter, resulting in a new iteration
θt. The optimization continues until the parameters
converge and returns the final iteration θT as our
approximate solution.

Adafactor derives an effective solution for non-
negative matrix factorization in the special case

Figure 2: Loss landscape visualization for erroneous
update of Adafactor in 1-layer multilayer perceptron
(MLP) (Haykin, 1994) with same training steps. Adafac-
tor deviates from the training curve of Adam.

of rank-1 factors, which obtains the minimal Kull-
back–Leibler divergence (Lee and Seung) between
the matrix V and the approximated matrix WH .
The formulation of the solution is as follows, in
which 1m = (1, ..., 1) ∈ Rm represents a column
vector of m ones:

W = V 1m, H =
1TnV

1TnV 1m
. (2)

It should be noted that Adafactor stores only
the moving averages of these factors rather than
the entire matrix V , yielding considerable memory
savings and requiring memory usage proportional
to O(n+m) instead of O(nm).

3.2 Erroneous Update
The non-negative matrix factorization operation in
Adafactor will inevitably incur erroneous update in
the training of deep neural networks. As shown in
Figure 2, Adafactor always converge slower than
Adam due to the existing error in calculated up-
dates, which further limits the application scenarios
of memory-efficient optimizers.

As shown in Figure 3, two scenarios demonstrate
how two types of erroneous updates are supposed
to be handled in the ideal case. In Figure 3(a), the
difference between the momentum of updates mt

and the current update ut is large, illustrating that
the historical experience for the update of original
Adafactor contains high level of errors that will
inevitably influence the stability of the training pro-
cess. If we utilize the raw mt to take an optimiza-
tion step, the direction of optimization will deviate
increasingly from the desired direction, which is
reflected by the slow convergence and performance

4444



Algorithm 1: Adafactor Optimizer
Input: Initial parameters θ0, learning rate η, momentum of update m0, r0, c0, step t, regularization

constant ϵ1, exponential moving average parameters β1, β2, clipping threshold d
while θt not converge do

Compute gt = ∇f(θt−1)
rt = β2rt−1 + (1− β2)(g

2
t + ϵ11n1

T
m)1m

ct = β2ct−1 + (1− β2)1
T
n (g

2
t + ϵ11n1

T
m)

vt = rtct/1
T
nrt

ut = gt/
√
vt

ût = ut/max(1, RMS(ut)/d)
mt = β1mt−1 + (1− β1)ût
θt = θt−1 − ηmt

end

degradation of existing memory-efficient optimiz-
ers. By contrast, when the difference between mt

and ut is small as shown in Figure 3(b), the mo-
mentum mt is stable with limited errors and high
confidence therefore a large optimization step is
required with the updating direction close to mt.

(a) scenario 1

(b) scenario 2

Figure 3: Visualization of two scenarios where Adafac-
tor updates have different stability.

Inspired by the erroneous update that is universal
in existing memory-efficient optimizers, we firstly
consider an efficient approach to decrease the side
effect caused by insecure updating. Given mt and
ut, we take the residual between them as the insta-
bility in the preserved momentum and set gener-
ated instability as the denominator of original mt

to more adaptively take an update step. Following

is the formulation of the adjusted update u′, where
ϵ is the regularization constant:

u′t =
mt√

(mt − ut)2 + ϵ
(3)

Extending further on the plain method, we pro-
pose a confidence-guided strategy that enables self-
adjusted updates by taking the confidence of the
raw update of Adafactor into consideration. The in-
tuition behind the proposed strategy is to calculate
the residual between the exponential moving aver-
age (EMA) of the update and the current update,
which represents the deviation of the approximated
update. The larger the deviation of the EMA value
from the current generated update, the wider the
error EMA of update contains, resulting in a lower
level of confidence in the EMA of update. Ob-
viously, we expect the optimizer to take a small
update when it incorporates huge error (a large
residual from the present update), while updating
parameters more when the optimization process is
stable (involved error of EMA is limited).

Specifically, the EMA of update mt is directly
used to take an update step in Adafactor, while in
our proposed strategy, mt is divided by

√
Ut, where

Ut is the calculated instability matrix. Therefore,
1√
Ut

is the confidence in the observation: viewing
mt as the prediction of the update, if mt deviates
greatly from ut (Ut is large), which indicates a
weak confidence in mt, the optimizer performs a
small optimization step; if ut closely matches mt,
we have solid confidence in mt, and correspond-
ingly take a large optimization step.

3.3 CAME Algorithm
Based on the proposed confidence-guided strat-
egy, we develop a brand-new variant of memory-

4445



Algorithm 2: CAME Optimizer
Input: Initial parameters θ0, learning rate η, momentum of update m0 = 0, r0 = 0, c0 = 0, step t

= 0, regularization constants ϵ1, ϵ2, exponential moving average parameters β1, β2, β3,
clipping threshold d

while θt not converge do
Compute gt = ∇f(θt−1)
rt = β2rt−1 + (1− β2)(g

2
t + ϵ11n1

T
m)1m

ct = β2ct−1 + (1− β2)1
T
n (g

2
t + ϵ11n1

T
m)

vt = rtct/1
T
nrt

ut = gt/
√
vt

ût = ut/max(1, RMS(ut)/d)
mt = β1mt−1 + (1− β1)ût
Ut = (ût −mt)

2

Rt = β3Rt−1 + (1− β3)(Ut + ϵ21n1
T
m)1m

Ct = β3Ct−1 + (1− β3)1
T
n (Ut + ϵ21n1

T
m)

St = RtCt/1
T
nRt

θt = θt−1 − η√
St
mt

end

efficient optimization methods with faster con-
vergence. Our proposed CAME optimization
method successfully obtains the same rate of con-
vergence as prevailing first-order optimization algo-
rithms (e.g., Adam) and with almost equal memory
cost to available memory-efficient optimizers (e.g.,
Adafactor). The pseudocode of CAME algorithm
is specified in Algorithm 2.

By calculating Ut at each training step, we em-
ploy non-negative matrix factorization on the in-
stability matrix Ut following (Shazeer and Stern,
2018) where the generalized Kullback-Leibler di-
vergence between V and WH is minimal. With Ut

factorized into Rt and Ct, it is sufficient to store
only the moving averages of these factors rather
than the full matrix Ut, thus saving considerable
memory footprint.

We simply validate intuitions and the correspond-
ing example is shown in Figure 4, in which the
proposed CAME reaches the optimal point much
faster than Adafactor. Learning rate is 10−3 for all
optimizers. In the example, we set the parameters
of CAME to be the same as the default in Adafactor,
β1 = 0.9, β2 = 0.999 and set extra β3 = 0.9999
for CAME.

4 Experiments

In this section, we present extensive comparisons
with existing optimizers on training tasks of three
important large language models: BERT (Devlin
et al., 2019), GPT-2 (Radford et al., 2018a) and T5

Figure 4: Loss trajectories of Adafactor and CAME.
CAME reaches the target local minimum (marked as
green cross in 2D plots) much faster than Adafactor.

(Raffel et al., 2022).

4.1 Setup

Dataset We perform experiments on the BookCor-
pus (Radford et al., 2018a) and English Wikipedia
with 800M and 2.5B words respectively. Further-
more, we focus on the GLUE benchmark (Pe-
ters et al., 2018), SQuAD v1.1 dataset (Rajpurkar
et al., 2016) and SQuAD v2.0 dataset (Rajpurkar
et al., 2018) to demonstrate the performance of
pre-trained BERT models with CAME optimizer.

Model We evaluate the efficiency of our pro-
posed CAME on three trending large language
models: BERT, GPT-2 and T5. We further test
the performance of CAME for large-batch training

4446



0 5 10 15 20
Steps(K)

10%

20%

30%

40%

50%

60%

Ac
cu

ra
cy

Adam
Adafactor
CAME

Figure 5: Masked LM test accuracy of BERT-Large
model trained on Wikipedia dataset with 8k batch size.

with BERT-Large.
Compared methods The main baselines com-

prise two widely-used optimizers: classic optimizer
Adam and memory-efficient optimizer Adafactor.
With regard to large-batch training, LAMB opti-
mizer is additionally considered when setting base-
lines.

Implementation Detail We implement our opti-
mization algorithm in Pytorch (Paszke et al., 2019).
The parameters β1 and β2 in Algorithm 2 are set as
0.9 and 0.999 respectively, and we search for opti-
mal β3 among {0.9, 0.99, 0.999, 0.9999, 0.99999}.
We use 8 Tesla V-100 GPUs and set ϵ1, ϵ2 as 10−30,
10−16 in all experiments with gradient accumula-
tion and model parallelism. Besids, we set η as
2 × 10−4, 6 × 10−4, 3 × 10−4 for BERT-Large
(32K), GPT-2, T5 training and apply learning rate
warmup scheduling (Goyal et al., 2017b) to avoid
divergence due to the large learning rate, by starting
with a smaller learning rate η and gradually increas-
ing to the large learning rate η. To make sure we
are comparing with solid baselines, we use grid
search to tune the hyperparameters for Adafactor,
Adam and LAMB. We further improve the perfor-
mance of large-batch training by applying Mixup
(Zhang et al., 2017) to scale the batch size up to
32,768.

4.2 BERT Training

We firstly present empirical results in the training
task of BERT model to evaluate the performance
of our proposed CAME optimizer, focusing on its
larger variant, BERT-Large, which has 340M pa-
rameters in all. Following the default setting, we
pre-train the BERT-Large model (L = 24, H =
1024) with a sequence length of 128 on 8 Tesla

0 5 10 15 20
Steps(K)

10%

20%

30%

40%

50%

60%

70%

Ac
cu

ra
cy

LAMB
Adam
Adafactor
CAME

Figure 6: Masked LM test accuracy of BERT-Large
model trained on Wikipedia dataset with 32k batch size.
CAME achieves comparable accuracy with Adafactor
using around only half of required training steps (10k).

V-100 GPUs. The experiments were implemented
with the code from NVIDIA 2 and mainly include
two types of batch sizes: 8k and 32k, one of which
represents the widely used setting for pre-training
BERT and the other denotes the training scenario
under large-batch training. The empirical results
are presented in Figure 5 and Figure 6. As illus-
trated in Figure 5, CAME achieves a significant
improvement compared with Adam and Adafactor.
To be specific, CAME (66.5%) increases valida-
tion accuracy at with an increment 3.4% in com-
parison to Adafactor (63.1%) using same number
of training steps (20k). Apart from Adafactor, our
proposed CAME achieves better performance than
Adam in the pre-training of BERT-Large model
with a huge reduction of memory cost.

To evaluate the performance of our proposed
CAME for large-batch training, we scale the
batch size for BERT-Large training to 32,768 on
Wikipedia dataset. As illustrated in Figure 6,
CAME consistently reaches a more remarkable
improvement compared with Adafactor. We notice
that the accuracy of CAME on BERT-Large pre-
training is 68.0%, which is highly over the original
Adafactor (61.9%) with same number of training
steps. In addition, CAME reaches comparable ac-
curacy with only half the training steps required
for Adafactor. With batch size getting larger from
8k to 32k, CAME brings more enhancements to
the training of BERT-Large in comparison with
Adam and Adafactor. Compared with LAMB in
large-batch training, CAME saves a high-level of

2https://github.com/NVIDIA/
DeepLearningExamples

4447

https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples


Baseline CAME Adafactor
0

5

10

15

20

25

30

35
M

em
or

y 
Us

ag
e 

(G
B)

30.6

16.3 15.9

second-order estimate
first-order estimate
others

Figure 7: The memory reduction about optimizer states
of CAME when training BERT-4B using PyTorch.

memory footprint with slight training performance
degradation.

Memory Usage Comparison We set batch
size to 1 to measure the memory usage of each
optimizer more efficiently. As shown in Table 1,
the two optimizers (Adam and LAMB) frequently
employed for training large language models con-
sume the highest amount of memory usage. Mean-
while, our proposed CAME optimizer exhibits a
reduced memory footprint over the existing SM3
memory-efficient optimizer. As a consequence of
our confidence-guided strategy in CAME, there is
no doubt that CAME will introduce an increased
memory footprint in comparison with Adafactor.
However, the extra memory footprint incurred of
CAME is almost negligible (1%) with a substantial
performance improvement.

For further demonstration of the memory sav-
ing effect of CAME, we expand BERT model to
BERT-4B with 4 billion weights using the scaling
method of GPT-3 (Brown et al., 2020). We set the
mini-batch size to 64 and the accumulation steps to
16 in this experiment. In Figure 7, we train BERT-
4B with three different optimizers using PyTorch
framework. As a result, CAME can save 47% mem-
ory footprint about optimizer states compared with
Baseline (Adam) when the weights number of a
model get to 4 billion.

4.3 Downstream Tasks

We select a representative set of downstream tasks
to further demonstrate the performance of BERT
models pre-trained by our proposed CAME. In this
part we adopt BERT-Base model for the fine-tuning
task and follow the originally published BERT-

Table 1: Quantitative memory usage per GPU (GB)
comparison in the pre-training of BERT-Large model.

Optimizer Memory Cost (GB)

Adam 8.24
LAMB 8.23

Adafactor 7.00
SM3 7.44

CAME 7.07

Base results in (Devlin et al., 2019) and (Liu et al.,
2019) as the main baseline. The learning rate is
tuned on the dev set for each setting and each task
is fine-tuned for three epochs.

We compare the end-task performance of BERT-
Base with the baseline on typical downstream tasks
and the empirical results are presented in Table 2.
The experimental results demonstrate the efficiency
of our proposed CAME optimizer by showing that
BERT-Base model trained with CAME on two
batch sizes both achieve comparable performance
to the baseline with less memory cost. In particu-
lar, we observe that BERT-Base model trained with
large batch (32k) presents no performance degra-
dation and even attains higher evaluation metrics
scores on some downstream tasks. Specifically, the
BERT-Base model trained on CAME improves on
average by 0.5 across five metrics compared to the
baseline, proving the feasibility of CAME for the
large-batch training task.

4.4 GPT-2 Training

In addition to BERT pre-training task, we perform
CAME-based training task on another typical large
language model, GPT-2. Using the original struc-
ture of GPT-2 (Radford et al., 2018b), we specif-
ically adopt GPT-medium (L = 24, H = 1024)
with 345M parameters in our experiment. This
implementation is based on the code provided by
Megatron3. Identically, we take English Wikipedia
as the training dataset for this section. Unlike the
pre-training of BERT in Section 4.2, we only con-
centrate on standard training batch size (128) for
GPT-2 pre-training.

The empirical results of validation loss are
shown in Figure 8. We are able to find that CAME
achieves similar convergence and final accuracy
compared to Adam, which reveals an impressive
improvement over the performance of Adafactor

3https://github.com/NVIDIA/Megatron-LM

4448

https://github.com/NVIDIA/Megatron-LM


Table 2: Results of fine-tuning performance on MNLI-m, SST-2, MRPC and two SQuAD datasets. The F1 and EM
for SQuAD v1.1 dataset are firstly averaged, and the average of all results across five datasets is further calculated.

Model MNLI-m SST-2 MRPC SQuAD v1.1 SQuAD v2.0 Average
(Acc) (Acc) (Acc) (F1/EM) (F1) -

Baseline 84.3 92.8 88.9 88.5/80.8 76.3 85.4

CAME (batch size = 8k) 84.8 92.8 89.9 88.8/81.8 77.9 86.1 (+0.7)
CAME (batch size = 32k) 84.5 92.9 89.8 88.5/81.2 77.4 85.9 (+0.5)

0 20 40 60 80 100 120
Steps(K)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Va
lid

at
io

n 
Lo

ss

Adam
Adafactor
CAME

Figure 8: Validation loss of GPT-2 language model.
CAME demonstrates similar optimization performance
to Adam.

with comparable training steps. Moreover, as
indicated in Figure 9, the validation perplexity
of CAME presents the same convergence perfor-
mance as Adam but faster convergence speed than
Adafactor, which clearly supports the validity of
CAME that has fast convergence as in traditional
adaptive methods and low memory usage as in
existing memory-efficient methods. For instance,
the converged validation perplexity of CAME and
Adafactor is 50.1 and 56.9 respectively, which
yields a considerable improvement of 12.0%.

4.5 T5 Training

Finally, we report empirical results from a differ-
ent large language model training task: Text-to-
Text Transfer Transformer, T5. Concretely, we fol-
low the architecture of T5 (Raffel et al., 2022) and
choose T5-Base (L = 24, H = 1024) with 220M
parameters for the experiment. All of our imple-
mentations are also based on the code provided by
Megatron. Similarly, we consider Wikipedia with
2.5B words as the training dataset in this part. As
with the training of GPT-2 in Section 4.4, we only
concentrate on standard training batch size (128)
for T5.

0 20 40 60 80 100 120
Steps(K)

0

20

40

60

80

100

120

140

160

Va
lid

at
io

n 
Pe

rp
le

xi
ty

Adam
Adafactor
CAME

Figure 9: Validation perplexity of GPT-2 language
model. CAME demonstrates comparable convergence
speed with Adam.

The comparison of CAME with Adafactor and
Adam is conducted in the same manner as Section
4.4, and corresponding results of validation loss
and validation perplexity are illustrated in Figure
10 and Figure 11 seperately. Note that CAME con-
sistently obtains comparable convergence perfor-
mance for validation loss and validation perplexity
on par with Adam, while reducing similar memory
usage as Adafactor.

5 Conclusion

In this paper we propose a novel memory-efficient
optimizer called CAME, which supports adaptive
confidence-based updating guided by the resid-
ual between predicted update and generated up-
date. CAME achieves a considerable improvement
compared to existing memory-efficient optimiz-
ers in the training of large language models, with
an ignorable extra memory footprint. Moreover,
CAME shows comparable convergence to Adam
and LAMB with huge memory reduction. In par-
ticular, CAME has proven effective for large-batch
training, which serves as an advantageous exten-
sion to memory-efficient optimizers. We hope our
work will provide insight into memory reduction

4449



0 10 20 30 40 50
Steps(K)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5
Va

lid
at

io
n 

Lo
ss

Adam
Adafactor
CAME

Figure 10: Validation loss of T5 language model.
CAME exhibits similar convergence rates to Adam.

0 10 20 30 40 50
Steps(K)

10

20

30

40

50

60

70

80

90

100

Va
lid

at
io

n 
Pe

rp
le

xi
ty

Adam
Adafactor
CAME

Figure 11: Validation perplexity of T5 language model.
CAME demonstrates similar convergence speed to
Adam.

of optimizers in future exploration.

6 Limitations

Despite the success of our CAME optimizer in
training large language models with memory effi-
ciency, there are still some limitations that need to
be addressed in the future.

Our proposed memory-efficient optimizer intro-
duces additional computation costs for the non-
negative matrix factorization of the instability ma-
trix in comparison with Adafactor. We observe,
however, that the training time of CAME increases
only slightly in our experiments. Beyond that,
CAME exhibits minor performance degradation in
large-batch training of the BERT-Large model ver-
sus LAMB, which allows for further improvement
in the future. Meanwhile, it is possible to conduct
further experiments on other models in other fields,
such as Computer Vision and Reinforcement Learn-
ing, thereby exploring the effectiveness of CAME

training under more application scenarios. As a
final point, it would be much more helpful to pro-
vide an in-depth theoretical analysis of CAME to
improve comprehensiveness of the paper.

Acknowledgements

Yang You’s research group is being sponsored by
NUS startup grant (Presidential Young Professor-
ship), Singapore MOE Tier-1 grant, ByteDance
grant, ARCTIC grant, SMI grant and Alibaba grant.
We also thank Huawei Noah’s Ark Lab for provid-
ing the necessary computing resources and support
for datasets.

References
Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram

Singer. 2019. Memory-Efficient Adaptive Optimiza-
tion. Curran Associates Inc., Red Hook, NY, USA.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, et al. 2020. Lan-
guage models are few-shot learners. In Proceedings
of the 34th International Conference on Neural In-
formation Processing Systems, NIPS’20, Red Hook,
NY, USA. Curran Associates Inc.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, et al. 2022. Palm:
Scaling language modeling with pathways.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. 2017a. Ac-
curate, large minibatch SGD: training imagenet in 1
hour. CoRR, abs/1706.02677.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. 2017b. Ac-
curate, large minibatch sgd: Training imagenet in 1
hour.

Simon Haykin. 1994. Neural networks: a comprehen-
sive foundation. Prentice Hall PTR.

4450

http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
https://doi.org/10.48550/ARXIV.1706.02677
https://doi.org/10.48550/ARXIV.1706.02677
https://doi.org/10.48550/ARXIV.1706.02677


Xiaoxin He, Fuzhao Xue, Xiaozhe Ren, and Yang You.
2021. Large-scale deep learning optimizations: A
comprehensive survey.

Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017.
Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks.

Zhouyuan Huo, Bin Gu, and Heng Huang. 2021. Large
batch optimization for deep learning using new com-
plete layer-wise adaptive rate scaling. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(9):7883–7890.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
2016. On large-batch training for deep learning: Gen-
eralization gap and sharp minima.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Daniel Lee and H. Sebastian Seung. 2000. Algorithms
for non-negative matrix factorization. In Advances in
Neural Information Processing Systems, volume 13.
MIT Press.

Daniel D. Lee and H. Sebastian Seung. 1999. Learning
the parts of objects by nonnegative matrix factoriza-
tion. Nature, 401:788–791.

Conglong Li, Ammar Ahmad Awan, Hanlin Tang,
Samyam Rajbhandari, and Yuxiong He. 2021. 1-
bit lamb: Communication efficient large-scale large-
batch training with lamb’s convergence speed.

Zhiyuan Li, Srinadh Bhojanapalli, Manzil Zaheer,
Sashank Reddi, and Sanjiv Kumar. 2022. Robust
training of neural networks using scale invariant ar-
chitectures. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages
12656–12684. PMLR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Cite arxiv:1907.11692.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh,
and Yang You. 2022. Towards efficient and scalable
sharpness-aware minimization.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning

library. In Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. 2018. Deep contextualized word
representations. Cite arxiv:1802.05365Comment:
NAACL 2018. Originally posted to openreview 27
Oct 2017. v2 updated for NAACL camera ready.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018a. Language
models are unsupervised multitask learners.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018b. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2022. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini,
Jascha Sohl-Dickstein, Roy Frostig, and George E.
Dahl. 2018. Measuring the effects of data parallelism
on neural network training.

Noam M. Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
ArXiv, abs/1804.04235.

Yang You, Igor Gitman, and Boris Ginsburg. 2017a.
Large batch training of convolutional networks.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2019. Large batch optimization for deep learning:
Training bert in 76 minutes.

Yang You, Zhao Zhang, Cho-Jui Hsieh, James Dem-
mel, and Kurt Keutzer. 2017b. Imagenet training in
minutes.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. 2017. mixup: Beyond empirical
risk minimization.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar
Tatikonda, Nicha Dvornek, Xenophon Papademetris,
and James Duncan. 2020. Adabelief optimizer:
Adapting stepsizes by the belief in observed gradi-
ents. Conference on Neural Information Processing
Systems.

4451

https://doi.org/10.48550/ARXIV.2111.00856
https://doi.org/10.48550/ARXIV.2111.00856
https://doi.org/10.48550/ARXIV.1705.08741
https://doi.org/10.48550/ARXIV.1705.08741
https://doi.org/10.1609/aaai.v35i9.16962
https://doi.org/10.1609/aaai.v35i9.16962
https://doi.org/10.1609/aaai.v35i9.16962
https://doi.org/10.48550/ARXIV.1609.04836
https://doi.org/10.48550/ARXIV.1609.04836
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://proceedings.neurips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://doi.org/10.48550/ARXIV.2104.06069
https://doi.org/10.48550/ARXIV.2104.06069
https://doi.org/10.48550/ARXIV.2104.06069
https://proceedings.mlr.press/v162/li22b.html
https://proceedings.mlr.press/v162/li22b.html
https://proceedings.mlr.press/v162/li22b.html
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.48550/ARXIV.2203.02714
https://doi.org/10.48550/ARXIV.2203.02714
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.48550/ARXIV.1806.03822
https://doi.org/10.48550/ARXIV.1806.03822
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.48550/ARXIV.1811.03600
https://doi.org/10.48550/ARXIV.1811.03600
https://doi.org/10.48550/ARXIV.1708.03888
https://doi.org/10.48550/ARXIV.1904.00962
https://doi.org/10.48550/ARXIV.1904.00962
https://doi.org/10.48550/ARXIV.1709.05011
https://doi.org/10.48550/ARXIV.1709.05011
https://doi.org/10.48550/ARXIV.1710.09412
https://doi.org/10.48550/ARXIV.1710.09412


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

section 6.

�3 A2. Did you discuss any potential risks of your work?
section 6.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
section 4.

�3 B1. Did you cite the creators of artifacts you used?
section 4.

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
section 4.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
section 4.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C �3 Did you run computational experiments?
section 4.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
section 4.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

4452

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
section 4.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
section 4.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

4453


