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Abstract

We present DiffusionBERT, a new generative
masked language model based on discrete dif-
fusion models. Diffusion models and many pre-
trained language models have a shared training
objective, i.e., denoising, making it possible to
combine the two powerful models and enjoy
the best of both worlds. On the one hand, dif-
fusion models offer a promising training strat-
egy that helps improve the generation quality.
On the other hand, pre-trained denoising lan-
guage models (e.g., BERT) can be used as a
good initialization that accelerates convergence.
We explore training BERT to learn the reverse
process of a discrete diffusion process with an
absorbing state and elucidate several designs
to improve it. First, we propose a new noise
schedule for the forward diffusion process that
controls the degree of noise added at each step
based on the information of each token. Sec-
ond, we investigate several designs of incorpo-
rating the time step into BERT. Experiments on
unconditional text generation demonstrate that
DiffusionBERT achieves significant improve-
ment over existing diffusion models for text
(e.g., D3PM and Diffusion-LM) and previous
generative masked language models in terms
of perplexity and BLEU score. Promising re-
sults in conditional generation tasks show that
DiffusionBERT can generate texts of compa-
rable quality and more diverse than a series of
established baselines.

1 Introduction

Diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021) have recently
emerged as a new class of state-of-the-art gener-
ative models, achieving high-quality synthesis re-
sults on image data (Ramesh et al., 2022; Rom-
bach et al., 2022; Saharia et al., 2022). Though
these models captured widespread attention from
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Figure 1: In contrast to conventional discrete diffusion
models, DiffusionBERT uses BERT as its backbone to
perform text generation. The main differences are high-
lighted in color: (1) DiffusionBERT performs decoding
without knowing the current time step while canonical
diffusion models are conditioned on time step. (2) The
diffusion process of DiffusionBERT is non-Markovian
in that it generates noise samples xt conditioning not
only on xt−1 but also on x0. Such a non-Markov pro-
cess is due to our proposed noise schedule.

not only the research community but also the pub-
lic, applying diffusion models to text data is still
challenging and under-explored due to the discrete
nature of the text. A few prior works that explored
using diffusion models on text data can be divided
into two lines. The first is to extend diffusion mod-
els to discrete state spaces (Hoogeboom et al., 2021;
Austin et al., 2021). The second is to perform
the diffusion process and its reverse process in the
continuous domain and bridge the continuous and
the discrete domain through embedding and round-
ing (Li et al., 2022; Gong et al., 2022). However,
none of these works leveraged pre-trained language
models (PLMs, Devlin et al. (2019); Lewis et al.
(2020); Raffel et al. (2020); Brown et al. (2020);
Qiu et al. (2020)), which are an unmissable treasure
in the NLP community.

This work, to our knowledge, is the first attempt
to combine diffusion models with PLMs. Such
a combination is built upon a shared training ob-
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jective between diffusion models and PLMs, i.e.,
denoising. Diffusion models consist of a forward
process (data to noise) and a reverse process (noise
to data). In the forward process, a small amount of
noise is gradually added to the data. Then, a neural
network (pθ in Figure 1) is employed to learn the
reverse process step by step, i.e., learn to denoise.
Such a denoising neural network is naturally re-
lated to a wide class of PLMs that are pre-trained
with denoising objectives such as BERT (Devlin
et al., 2019) and BART (Lewis et al., 2020). Hence,
pre-trained denoising language models can serve as
a good starting point to learn the reverse diffusion
process. On the other hand, diffusion models also
offer a promising training strategy for generative
PLMs. In contrast to commonly used generative
PLMs (e.g., GPT (Brown et al., 2020)) that rely
on an autoregressive factorization of the joint prob-
ability, diffusion models provide another way of
factorization along the dimension of time and there-
fore allow the generative model to be not necessar-
ily autoregressive. Thus, diffusion models can be
combined with a variety of PLMs that may not be
pre-trained for generation.

In the discrete domain, the forward diffusion
process can be implemented by a chain of tran-
sition matrices that gradually corrupt the clean
text. As shown in Figure 1, the clean text "Hello
world !" is gradually corrupted into "[MASK]
[MASK] [MASK]" during the diffusion process.
In this work, we explore using pre-trained denois-
ing language models (e.g., BERT) to learn the re-
verse diffusion process and demonstrate their ad-
vantages in accelerating convergence and improv-
ing generation quality. Further, we propose a new
noise schedule of the forward process based on the
principle of distributing the corrupted information
uniformly across the forward process. The noise
schedule, called spindle schedule, generates noise
for xt conditioned not only on xt−1 but also on x0,
making the forward process non-Markovian with-
out changing the original training objective. Note
that the denoising model takes as input xt and time
step t to predict xt−1, where t is unseen during the
pre-training of language models so we investigate
several ways of incorporating the time step into
PLMs. As a result, we find that the best result is
achieved by throwing away the time information,
which we call time-agnostic decoding (TAD).

Experimental results on unconditional text gen-
eration demonstrate the benefit of combining dif-

fusion models with PLMs: the proposed Dif-
fusionBERT significantly improves the genera-
tion quality over existing diffusion models for
text generation (e.g., D3PM (Austin et al., 2021)
and Diffusion-LM (Li et al., 2022)) and previ-
ous generative masked language models (e.g.,
BERT-Mouth (Wang and Cho, 2019)). Diffusion-
BERT also matches several strong baselines in
conditional generation tasks and shows superior
generation diversity. The effectiveness of the pro-
posed spindle schedule and time-agnostic decoding
is confirmed by ablation studies. In a nutshell, Dif-
fusionBERT enjoys the best of both worlds.

2 Background

2.1 Diffusion Models

Diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) are a class of latent variable models
that are originally designed for continuous domains.
A diffusion model is consisting of a forward diffu-
sion process and a reverse diffusion process. Given
a sample x0 ∼ q(x0), a Markov chain of latent
variables x1, · · · ,xT are produced in the forward
process by progressively adding a small amount of
Gaussian noise to the sample:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where {βt ∈ (0, 1)}Tt=1 is a noise schedule control-
ling the step size of adding noise. Eventually xT

becomes an isotropic Gaussian distribution. If βt
is small enough, the reverse process q(xt−1|xt) is
also a Gaussian, which is learned by a parameter-
ized model

pθ(xt−1|xt, t) = N (xt−1;µθ(xt, t),Σθ(xt, t)),
(2)

where µθ(·) and Σθ(·) can be implemented by a
U-Net or a Transformer. When conditioning also
on x0, q(xt−1|xt,x0) has a closed form so we can
manage to minimize the variational lower bound to
optimize log pθ(x0):

Lvlb = Eq[DKL(q(xT |x0) ∥ pθ(xT ))]

+ Eq[
T∑

t=2

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt, t))]

− log pθ(x0|x1), (3)

where Eq(·) denotes the expectation over the joint
distribution q(x0:T ).
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2.2 Diffusion Models in Discrete Domain

For discrete domains, each element of xt is a dis-
crete random variables with K categories. For text
data, K = |V | is the size of the vocabulary. De-
note xt as a stack of one-hot vectors, the process
of adding noise can be written as

q(xt|xt−1) = Cat(xt;p = xt−1Qt), (4)

where Cat(·) is a category distribution and Qt is
a transition matrix that is applied to each token
in the sequence independently: [Qt]i,j = q(xt =
j|xt−1 = i). It is easy to obtain that

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)

= Cat

(
xt−1;p =

xtQ
⊤
t ⊙ x0Qt−1

x0Qtx
⊤
t

)
, (5)

where Qt = Q1Q2 · · ·Qt. Note that ⊙ is element-
wise multiplication and the division is row-wise.

With q(xt−1|xt,x0) at hand, according to
Eq. (3), we can use a parameterized model
pθ(xt−1|xt, t) to learn the reverse diffusion pro-
cess.

3 DiffusionBERT

In contrast to recently proposed diffusion models
for text, e.g., Diffusion-LM (Li et al., 2022) and
DiffuSeq (Gong et al., 2022), which are based on
continuous diffusion models, we instead explore
discrete diffusion models to integrate PLMs as the
backbone. We first introduce a specific instance
of discrete diffusion models (Austin et al., 2021),
which considers a transition matrix with an absorb-
ing state for the sake of using PLMs (§ 3.1). Sec-
ondly, we introduce a new noise schedule of the
forward diffusion process, called spindle schedule,
which is based on the principle of distributing the
corrupted information uniformly across the forward
process (§ 3.2). Then, we investigate several alter-
natives of incorporating the time step into PLMs
for predicting xt−1 given xt and t (§ 3.3). Finally,
we explore training DiffusionBERT for conditional
generation with prompts (§ 3.4).

3.1 Diffusion Models with a Discrete
Absorbing State

To be combined with pre-trained denoising lan-
guage models, we incorporate an absorbing state,
e.g., [MASK] for BERT, in the Markov process. In

particular, each token in the sequence either stays
the same or transitions to [MASK] with some prob-
ability. Formally, each entry of the transition matrix
at step t is as follows,

[Qt]i,j =





1 if i = j = [M],

βt if j = [M], i ̸= [M],

1− βt if i = j ̸= [M],

(6)

where [M] is the abbreviation of [MASK]. Such a
Markov process converges to a stationary distribu-
tion q(xT ), which places all probability mass on a
sequence with all [MASK] tokens.

The t-step marginal q(xi
t|xi

0) can be easily ob-
tained in a closed form,

q(xi
t|xi

0) =

{
αt if xi

t = xi
0,

1− αt if xi
t = [M],

(7)

where αt =
∏t

i=1(1 − βi), xi
t denotes the i-th

token in the sequence at step t. Combining with
Eq. (3) and (5), we can derive a training objective
to optimize pθ(xt−1|xt, t) and generate a sample
by performing the reverse diffusion process:

pθ(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt, t). (8)

3.2 Spindle Noise Schedule

The noise schedule in the continuous domain, such
as the linear schedule (Ho et al., 2020) and the
cosine schedule (Nichol and Dhariwal, 2021), has
shown to be important to the performance of diffu-
sion models.

In contrast to the continuous domain where the
noise can be easily controlled by the variance of
the Gaussian, (1) it is less obvious how to control
the degree of noise added at each step in the dis-
crete domain. For the discrete domain, the noise
schedule βt = (T − t + 1)−1 has been explored
for the case of the uniform transition matrix (Sohl-
Dickstein et al., 2015; Hoogeboom et al., 2021) and
the absorbing-state transition matrix (Austin et al.,
2021). However, (2) such a schedule assumes all
tokens carry the same amount of information and
does not consider the linguistic difference among
the tokens in a sequence. Besides, (3) it violates
the easy-first-generation nature of denoising lan-
guage models. That is, the model tends to generate
tokens that are most frequently appearing (and is
least surprising) in the training corpus to achieve a
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higher likelihood. As the context becomes richer,
more details come up in the sequence.

To address the above issues, we consider a noise
schedule that (1) measures the added noise at
each step by the corrupted information and en-
courage the corrupted information to be uniformly
distributed across the diffusion steps. Since the
information is measured independently for each
token, (2) different tokens in a sequence are as-
signed different probabilities of transitioning to the
[MASK] token. Moreover, inspired by the easy-
first-generation phenomenon, (3) we put the tokens
in a sequence in descending order of their informa-
tion and divide them into T buckets. Each bucket is
ensured to contain the same amount of information.
That is, we mask the most informative tokens at the
start of the forward process and mask the least in-
formative tokens at the end of the forward process
such that the learnable reverse process follows an
easy-first generative behavior.

In particular, distributing corrupted information
uniformly across the forward steps can be formally
described by

1− t

T
=

∑n
i=1H(xi

t)∑n
i=1H(xi

0)
=

∑n
i=1 α

i
tH(xi

0)∑n
i=1H(xi

0)
, (9)

where H denotes the entropy, which measures the
amount of information of a random variable, xi de-
notes the i-th token in the sequence and n denotes
the length of the sequence. According to Eq. (7),
αi
t =

∏t
j=1(1−βi

j) denotes the probability that the
i-th token remains the same at step t, i.e., xi

t = xi
0.

We expect that αi
t > αj

t if H(xi
t) < H(xj

t ) such
that easy (low-information) tokens emerges earlier
than hard (high-information) tokens during the re-
verse process. In practice, the entropy of a given
token H(x) is calculated by the negative logarithm
of its frequency in the training corpus.

Considering these aforementioned properties,
we construct αi

t as follows,

αi
t = 1− t

T
− S(t) · H̃(xi

0), (10)

S(t) = λ sin
tπ

T
, (11)

H̃(xi
0) = 1−

∑n
j=1H(xj

0)

nH(xi
0)

, (12)

where S(t) is introduced to control the effect of
the informativeness at time step t. It is designed
to be sinusoidal to ensure S(0) = S(T ) = 0 such

Figure 2: Each token in a sequence has a specific noise
schedule depending on how much information is lost
when they are masked. For instance, in the sentence
"Bella is sitting over there.", "Bella"
is the most informative word. Thus it is encouraged to
be masked at the early stage so that our model learns to
recover it in the last place.

that xt can retain all (zero) information when t = 0
(t = T ). The effect of S(t) is controlled by a hy-
perparameter λ. When λ = 0, the noise schedule is
degraded to βt = (T−t+1)−1 as in Sohl-Dickstein
et al. (2015); Hoogeboom et al. (2021); Austin et al.
(2021). Figure 2 shows how α progresses during
the forward process. The schedule is named as
spindle due to the shape of the probability curves.

In our proposed schedule, the transition proba-
bility at time step t depends not only on the current
state but also on the original text, making the for-
ward diffusion process non-Markovian. Neverthe-
less, as revealed by Eq. (5), this does not change
the original training objective.

3.3 The Design Space of Feeding Time Steps
Typically, a diffusion model takes as input a
noised sample and the time step to predict the
denoised sample during the reverse process, i.e.,
pθ(xt−1|xt, t). However, t is an additional vari-
able that is unseen during the pre-training of lan-
guage models and therefore it is less trivial how to
feed the time information into the PLMs. Here we
explore three design choices of feeding time steps.

Layer-wise Time Embedding A straightforward
choice is to include the time step as the same way
as positional encoding, i.e., using the Transformer
sinusoidal embedding or a learnable MLP in each
Transformer layer. Note that this way is commonly
adopted in previous work (Ho et al., 2020; Austin
et al., 2021; Li et al., 2022).

4524



Prefix Time Embedding Prompting language
models by prepending trainable soft tokens to the
input sequence has shown promising results re-
cently (Lester et al., 2021; Sun et al., 2022). Hence,
we also explore including a time step token embed-
ding v(t) as a prefix of the input token embeddings
⟨v(x1

t ),v(x
2
t ), · · · ,v(xn

t )⟩. In particular, the time
step token is inserted in between the [CLS] token
and the input sequence. These added time step
token embeddings are trained along with the PLM.

Time-Agnostic Decoding Another alternative is
not to explicitly incorporate the time step t because
it can be implied by the noised sample xt. In con-
trast to the image data, it is easier to implicitly in-
fer the diffusion time step by counting the number
of corrupted tokens (i.e., [MASK]) in the noised
sequence. In this way, the PLM has to perform iter-
ative decoding while being ignorant of the current
time step, i.e., pθ(xt−1|xt).

3.4 Prompting DiffusionBERT for
Conditional Generation

An intriguing property of PLMs is understanding
instructions provided in the context and performing
desired tasks according to the instructions. Inher-
ited from BERT, DiffusionBERT is also able to
solve a wide range of conditional generation tasks
by prompting with task descriptions and task texts
to be processed (see Appendix.B for examples). To
explore the DiffusionBERT for conditional genera-
tion, we adopt partial denoising (Gong et al., 2022)
to perform the diffusion process conditioning on
the partially corrupted text.

4 Experiments

4.1 Tasks and Datasets
We train DiffusionBERT on the One Billion Word
dataset (LM1B) (Chelba et al., 2014) for uncondi-
tional generation. LM1B is a corpus with about 30
million sentences and a vocabulary of about 793k.
For conditional generation, we choose two tasks for
evaluating DiffusionBERT, namely Question Gen-
eration (QG) and Paraphrasing. Quasar-T (Dhingra
et al., 2017) is a Question Answering dataset con-
taining enormous document-question pairs. Gong
et al. (2022) constructed a QG dataset from Quasar-
T and we follow their data split and task settings.
For paraphrasing, we choose Quora Question Pairs
(QQP)1, a widely used question-pairs dataset with

1https://www.kaggle.com/c/
quora-question-pairs

147K training samples.

4.2 Baselines

We conduct comparison on unconditional text gen-
eration against several non-autoregressive (NAR)
baselines: D3PM (Austin et al., 2021), Diffusion-
LM (Li et al., 2022), and BERT-Mouth (Wang and
Cho, 2019). We consider DiffuSeq (Gong et al.,
2022) as a baseline for conditional generation. Sev-
eral strong baselines reported in their paper are also
included for further comparison.

D3PM D3PM is a general framework of discrete
diffusion models. We implement an instance of
D3PM with the absorbing state and a layer-wise
time embedding. Both DiffusionBERT and D3PM
are implemented with a sequence length n = 64
and diffusion steps T = 2048. During inference,
we perform DDIM sampling with time step size of
16 in each iteration. Hence, the total inference cost
is 128 iterations.

Diffusion-LM Diffusion-LM learns an embed-
ding to map discrete text into the continuous space
where it performs Gaussian diffusion process. A
rounding step is required to map the continuous em-
beddings into discrete texts. We re-implemented
Diffusion-LM with the model architecture of BERT
and diffusion steps T = 2000. Since the perfor-
mance drop of Diffusion-LM is bigger than Dif-
fusionBERT when sampling less steps, we do not
skip steps during generation.

BERT-Mouth BERT-Mouth samples text from
BERT via order-agnostic autoregressive masked
language modeling. Starting from a sequence of
[MASK], BERT samples one token at each time
step in random order. We continue training BERT
on LM1B for fair comparison.

DiffuSeq DiffuSeq introduces a conditional text
generation framework for encoder-only diffusion
models. It performs diffusion process only on the
target (i.e. partial denoising). Experimental re-
sults of DiffuSeq show that generation of diffusion
models is generally more diverse in conditional
generation settings. Such diversity contributes to
sample quality with the help of Minimum Bayes
Risk (MBR) decoding (Koehn, 2004) i.e., sampling
multiple candidates and re-ranking them by their
BLEU scores relative to other candidates.
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Method Pretrained Schedule Time Step PPL ↓ BLEU ↑ Self-BLEU ↓

D3PM (Austin et al., 2021) %

(T − t+ 1)−1 LTE 82.34 0.3897 0.2347

::::
TAD 125.15 0.3390 0.2720

:::::::
Spindle LTE 77.50 0.4241 0.2288

Diffusion-LM (Li et al., 2022)
% Cosine LTE 118.62 0.3553 0.2668

! Cosine LTE 132.12 0.3562 0.2798

BERT-Mouth (Wang and Cho, 2019) ! - - 142.89 0.2867 0.1240

::::::::::::::
DiffusionBERT !

(T − t+ 1)−1
LTE 92.53 0.3995 0.2118

::::
PTE 79.95 0.3886 0.2156

::::
TAD 78.76 0.4213 0.2116

:::::::
Spindle

::::
TAD 63.78 0.4358 0.2151

Table 1: Main results on LM1B. The methods proposed in this work are marked with
:::::
wavy

::::
lines. The best results are

in bold and the second best results are underlined. LTE: layer-wise time embedding. PTE: prefix time embedding.
TAD: time-agnostic decoding.

4.3 Experimental Setup
In both conditioned and unconditioned settings,
our DiffusionBERT is based on BERT-BASE-
UNCASED with about 110M parameters. We
train DiffusionBERT using the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with learning
rate of 3e-6, dropout probability of 0.1 and batch
size of 256. We use a 10K-step linear warmup
schedule starting from learning rate of 1e-8. For
generation efficiency and better alignment with
BERT pre-training objective, we use DDIM sam-
pling (Song et al., 2021) in which BERT generates
all tokens at first and performs the forward process
in Eq. 7 to skip time steps. All experiments are
conducted on NVIDIA A100 Tensor Core GPUs.
We use 4 GPUs for training and a single GPU for
sampling.

To sample from DiffusionBERT trained on
LM1B, we use a top-K filter with K = 30 and
perform 128 steps of inference to align with the
settings in Austin et al. (2021).

In the two conditional generation tasks, Diffu-
sionBERT is trained for 100K steps. Sampling
involves a top-15 filter and 400 inference steps. We
follow Gong et al. (2022) in the MBR size |S| = 10
and sequence length of 128.

4.4 Unconditional Generation
Our main results of unconditional sampling are
included in Table 1. We choose BLEU-4 and self-
BLEU-4 (Zhu et al., 2018) as the metric for gen-
eration quality and diversity, respectively. In par-
ticular, we follow Savinov et al. (2022); Caccia

et al. (2020) to sample 1K sentences to compute
BLEU score relative to all sentences in the test
set. Another 1K sentences are sampled for comput-
ing self-BLEU. Overall, DiffusionBERT achieves
the best generation quality and diversity trade-off
among the considered NAR methods. Besides, the
perplexity of DiffusionBERT with the spindle noise
schedule is substantially lower. Evidence of lower
bound is used as a proxy of the perplexity of Diffu-
sionBERT and D3PM since the exact likelihood of
diffusion models is intractable.

DiffusionBERT vs. Other Generative BERT
Models We compare DiffusionBERT with
another representative generative masked lan-
guage model, BERT-Mouth (Wang and Cho,
2019). Experimental results show that Diffusion-
BERT achieves better performance in terms of the
perplexity and the BLEU score. We attribute the
superior performance of DiffusionBERT to its one-
time sampling of all tokens, which helps Diffusion-
BERT generate more coherent text, especially in
a long range. Although such decoding may face
the problem of multimodality (Gu et al., 2018), in-
appropriate phrases can be fixed in the upcoming
diffusion steps. The probabilistic modeling offers
more flexibility in that generated tokens with low
probability are more likely to be masked and re-
sampled. Wang and Cho (2019) also proposed to
continue masking and predicting tokens after the
whole sequence is complete. But such randomness
in the selection and replacement of tokens results
in low inference speed.
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Figure 3: BLEU scores on the LM1B test set. Left is
better, lower is better.

Discrete vs. Continuous Diffusion Models We
then focus on the comparison of discrete and
continuous diffusion models for text generation.
To achieve this, we mainly compare Diffusion-
BERT with Diffusion-LM, which is based on con-
tinuous diffusion models. As a result, despite of
its outstanding controlling ability, we show that
the texts generated by Diffusion-LM have a lower
quality than DiffusionBERT. Though both Diffu-
sionBERT and Diffusion-LM adopt the same con-
figuration of Transformer, it is worth noting that
the superior performance of DiffusionBERT may
be contributed by not only the discrete diffusion
models but also the use of pre-trained models.
To disentangle the effect of pre-training and dis-
crete/continuous diffusion models, we also explore
initializing Diffusion-LM with BERT. As shown
in Table 1, training Diffusion-LM from BERT ini-
tialization performs even worse than training from
scratch. We conjecture that the continuous nature
of Diffusion-LM is not compatible with the initial-
ization from BERT since the embedding learned
by BERT may not be suitable for the Gaussian
diffusion process. In contrast, the comparison of
D3PM and DiffusionBERT shows that Diffusion-
BERT benefits much from the BERT initialization
due to its discrete diffusion process.

Effect of Time Step In terms of both likelihood
and generation quality, the layer-wise time embed-
ding (LTE) lags far behind the other two time step
designs for DiffusionBERT while time-agnostic
decoding (TAD) achieves the best result. By con-
trast, D3PM without time step embedding per-
forms significantly worse. In a nutshell, simpli-
fying time step design has positive effect on Dif-

Method/Metric
Quality Diversity

BLEU ↑ Rouge-L ↑ Self-BLEU ↓ Div-4 ↑
GRU-attention 0.0651 0.2617 0.9999 0.3178

Transformer-base 0.0364 0.1994 0.8767 0.4055
GPT2-base FT 0.0741 0.2714 0.1403 0.9216
GPT2-large FT 0.1110 0.3215 0.2910 0.8062

GPVAE-T5 0.1251 0.3390 0.3567 0.7282
NAR-LeVT 0.093 0.2893 0.983 0.4776

DiffuSeq 0.1731 0.3665 0.2789 0.8103

DiffusionBERT 0.0971 0.3420 0.0703 0.9372

(a) QG

Method/Metric
Quality Diversity

BLEU ↑ Rouge-L ↑ Self-BLEU ↓ Div-4 ↑
GRU-attention 0.1894 0.5129 0.9958 0.3287

Transformer-base 0.0580 0.2489 0.7717 0.4312
GPT2-base FT 0.1980 0.5212 0.5480 0.6245
GPT2-large FT 0.2059 0.5415 0.7325 0.5020

GPVAE-T5 0.2409 0.5886 0.5604 0.6169
NAR-LeVT 0.2268 0.5795 0.9995 0.3329

DiffuSeq 0.2413 0.5880 0.2732 0.8641

DiffusionBERT 0.2420 0.5845 0.1504 0.9770

(b) Paraphrase

Table 2: Results on conditional generation tasks. The
best and second best results are remarked in bold and
underlined, respectively.

fusionBERT but is quite harmful for D3PM. This
suggests that initializing pθ with PLMs enables
DiffusionBERT to perform generation without ex-
plicitly providing time information yet achieving
better generation results. The resemblance between
BERT pre-training objective and absorbing diffu-
sion models makes it easier for DiffusionBERT to
generalize to noisier scenarios while a Transformer
encoder trained from scratch needs a specific time-
aware module to model the reverse process.

Effect of the Spindle Noise Schedule We try our
proposed spindle noise schedule on both Diffusion-
BERT and D3PM. The perplexity is improved by
5.8% and 19% for D3PM and DiffusionBERT, re-
spectively. Besides, D3PM with the spindle sched-
ule outperforms that with the standard (T−t+1)−1

schedule in terms of BLEU score. The same trend
holds for DiffusionBERT but with a smaller mar-
gin.

4.5 Quality-Diversity Trade-off

Figure 3 demonstrates the quality-variation trade-
off by changing the truncation parameter K or the
sampling temperature τ in 10 values2, Diffusion-
BERT exhibits comparable generation ability with

2Except for Diffusion-LM and BERT-Mouth since control-
ling temperature has little effect.
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a Transformer decoder trained from scratch and
pushes the Pareto front of NAR generation qual-
ity/diversity trade-off by a large margin. However,
it still falls behind pre-trained AR models of the
same size.

4.6 Training Efficiency

One important feature of DiffusionBERT is that
with time-agnostic decoding, all parameters are
initialized by pre-trained models. Consequently,
the model includes fewer parameters and gets rid
of adapting new parameters, improving the train-
ing efficiency. We only train DiffusionBERT for
40% steps of D3PM and 20% steps of DiffuSeq
till convergence. Appendix.D provides a detailed
comparison of convergence speed between Diffu-
sionBERT and the diffusion baselines.

4.7 Conditional Generation

To evaluate the generation quality and diversity, we
choose two metrics in each aspect. Besides BLEU
and Self-BLEU scores, we also report Rouge-L
for quality and Div-4 score for diversity. Higher
Rouge-L (resp. Div-4) suggests better generation
quality (resp. diversity).

As shown in Table 2, DiffusionBERT achieves
competitive performance on both tasks and sur-
passes other baselines by a large margin in terms
of diversity. We attribute such variety to the knowl-
edge BERT obtained during pre-training and the
diffusion generative process (Li et al., 2022). Apart
from lexical or grammatical diversity, Diffusion-
BERT covers a wider range of semantic meanings.
Moreover, such diversity contributes to generation
quality via MBR decoding (Gong et al., 2022).

5 Related Work

5.1 BERT for Text Generation

It has been shown by Wang and Cho (2019) that
the transfer-learning ability of BERT does not only
helps to achieve impressive results in natural lan-
guage understanding but also benefits sequential
sampling for text generation. However, its bi-
directionality nature holds BERT from matching
the decoder-only counterparts (Radford et al., 2018)
in modeling text from left to right.

5.2 Diffusion Models for Text

This work lies in the line of diffusion models, a
latent variable generative framework proposed by

Sohl-Dickstein et al. (2015). It has been archi-
tecturally improved by Ho et al. (2020) and has
gained broad attention for its impressive genera-
tion ability and controllability in image generation
(Ramesh et al., 2022; Saharia et al., 2022). De-
spite that, diffusion models for text still struggle
to match autoregressive models in various gener-
ation tasks. Since the Gaussian noise proposed
in Sohl-Dickstein et al. (2015) cannot be directly
applied to discrete data, they also introduced a dis-
crete forward process with a Bernoulli transition
kernel. Hoogeboom et al. (2021) generalized from
Bernoulli to categorical distributions. A more gen-
eral family of discrete diffusion processes was in-
troduced in Austin et al. (2021); Hoogeboom et al.
(2022), including absorbing kernels and combina-
tions of absorbing and uniform transition kernels.
Li et al. (2022); Gong et al. (2022) models text in
the continuous embedding space, which is closer
to the settings in earlier works of diffusion models.

5.3 Non-Autoregressive Text Generation

Absorbing discrete diffusion models resembles con-
ditional masked language models (Ghazvininejad
et al., 2019) in that both methods predict the whole
sequence simultaneously and follows a construct-
destruct pattern to iteratively refine the generated
text. The difference between those two models has
been discussed in Austin et al. (2021). Savinov
et al. (2022) proposed to approach the problem
of non-autoregressive text modeling via unrolling
the generation path, which resembles the idea of
diffusion models for unconditional text generation.
Non-autoregressive models are also considered in
translation but implemented in various ways, e.g.,
insertion/deletion (Gu et al., 2019) and iterative
sequence alignment (Saharia et al., 2020).

6 Conclusion

This work aims to approach the problem of text
generation with non-autoregressive models. To
achieve this, we combine pre-trained denoising lan-
guage models with absorbing-state discrete diffu-
sion models. The training procedure of our method
includes two main deviations from current discrete
diffusion models, i.e., a new family of time step de-
signs and the spindle noise schedule. The spindle
noise assigns a schedule for each token according
to its frequency in the training corpus. Experimen-
tal results of unconditional generation demonstrate
the success of DiffusionBERT in terms of genera-
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tion quality and diversity. In constrained settings,
DiffusionBERT surpasses 7 strong baselines in gen-
eration variety by a large margin and its generation
quality matches state-of-the-art methods.

Limitations

In this work, we demonstrate the effectiveness of
the proposed DiffusionBERT. However, the sam-
pling efficiency in unconditional generation still
lags behind fine-tuned GPT and we observe a few
sampled sentences lacking coherence when the pre-
assigned length is large (e.g., 128). The issue of
inference efficiency is more severe in constrained
settings in that MBR decoding samples multiple
sentences for one source text. Though it brings
significant improvement in BLEU and Rouge-L
scores, the sampling time of one batch is several
times that of unconditional generation.

Ethics Statement

The proposed DiffusionBERT is a novel approach
for text-based diffusion models. In addition,
we demonstrate that DiffusionBERT can achieve
highly efficient training due to the use of PLMs.
Therefore, this work helps reduce computation
costs and carbon emissions. Though all the datasets
and PLMs used in our experiments are publicly
available and have not been reported to carry social
bias against any sensitive attributes, more work is
still needed to investigate the potential unfairness
in these datasets and the knowledge BERT carries.
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A Generation Process

During sampling phase, all three generative masked
language models show an easy-first generative be-
havior through time. Table 3 demonstrates an ex-
ample in unconditional settings. When the context
is extremely sparse, the model tends to generate
tokens that is most frequently appearing (and is
least surprising) in the training corpus to achieve a
higher likelihood, though the generated sequences
exhibit no consistency. As the context becomes
richer, more details come up in the sequence. This
phenomenon indicates the discrepancy between
training and sampling: absorbing discrete diffu-
sion models for text generation corrupt all tokens
independently with the same noise schedule during
training, while the neural network prefers tokens
that are less informative when most of the input is
masked.

B Templates of Conditional Generation

We show in Table 4 how the source sentences in
Seq2seq tasks are transformed into our input tem-
plate. Instead of simply concatenating source and
target text, such format offers DiffusionBERT with
more information to generate the desired outputs.

C Length of Generated Text

NAR methods have long been faced with the prob-
lem of fixed length generation. Unlike their AR
counterparts, NAR methods are generally not able
to dynamically determine the end of the sequence

Figure 4: Curve of validation ELBO during training.

during generation. Especially in constrained set-
tings, length of the optimal output depends greatly
on the source sentence and cannot be assigned in ad-
vance. Existing solutions include length prediction
modules (Gu et al., 2019) and generating [PAD]
tokens (Gong et al., 2022). DiffusionBERT adopts
the latter method for target length determination. In
particular, we set the overall sequence length to 128
and train DiffusionBERT to predict all [MASK]
tokens according to the instruction. Predictions
consist of the generated target text followed by a
[SEP] token and a series of [PAD] tokens. As
shown in Table 4, the target length is dynamic de-
pending on the position of [SEP].

D Training Speed

Thanks to Time Agnostic Decoding, we introduce
no additional parameters into our backbone. Thus
training DiffusionBERT equals to finetuning BERT
to generate text, which is relatively easier than train-
ing from scratch. In unconditional training, Diffu-
sionBERT converges remarkably faster than D3PM.
Even if the training budget is cut to 30% that of
D3PM, DiffusionBERT is still able to match the
performance reported in Table 1. Figure 4 demon-
strates the curve of validation ELBO in the training
process. Such superiority in convergence speed
also holds in constrained settings. Besides, with the
help of PLMs, DiffusionBERT can be well trained
with smaller batch size and requires less compu-
tational resources. Though trained with half the
number of GPU cores, DiffusionBERT achieves
a 80% convergence acceleration compared to Dif-
fuSeq on the QQP dataset.
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BERT-Mouth

t = 0 [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]
t = 8 [MASK] of [MASK] five [MASK] remain [MASK] in [MASK] .
t = 16 two of [MASK] five structures remain [MASK] this location .
t = 24 five of [MASK] the windows remain at this location .
t = 32 most of even the windows stand still this day .

D3PM

t = 0 [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]
t = 8 [MASK] [MASK] [MASK] [MASK] been [MASK] [MASK] [MASK] [MASK] .
t = 16 [MASK] [MASK] [MASK] [MASK] been [MASK] [MASK] the [MASK] .
t = 24 [MASK] [MASK] [MASK] also been [MASK] by the [MASK] .
t = 32 the man has also been arrested by the police .

DiffusionBERT

t = 0 [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]
t = 8 [MASK] , [MASK] [MASK] [MASK] [MASK] [MASK] that [MASK] .
t = 16 today , [MASK] will be [MASK] [MASK] that [MASK] .
t = 24 today , [MASK] will be remembered for that mistake .
t = 32 today , he will be remembered for that mistake .

Table 3: Examples generated by three generative masked language models. All three models yield words of higher
frequency when t is small and tend to generate more informative tokens as the reverse diffusion process goes on.

Task Question Generation Paraphrase

Template Answer: <src>. Question: <tgt> The sentence "<src>" is equal to "<tgt>"

Input Example Answer: She’s into video games. Question: M M M M M M M M The sentence "Ava feels happy." is equal to "M M M M M M M M

Generation Examples What is Ava doing now? [SEP] [PAD] Ava feels positive. [SEP] [PAD] [PAD] [PAD]
Is Ava free now? [SEP] [PAD] [PAD] Ava is in a cheerful state. [SEP]

Table 4: Instruction templates and their corresponding generation examples in conditional generation. <src> and
<tgt> refers to the source and target text in one data sample, respectively. M is the abbreviation of [MASK] token.

Method Steps Inference Time (secs) PPL

DiffusionBERT

2 0.66 313.57
8 1.39 91.01
16 1.80 75.66
64 4.25 65.83
128 7.53 63.78
512 27.48 54.63

Diffusion-LM 2000 83.67 112.12

BERT-Mouth
64 2.18 142.89
512 14.39 86.78

GPT 64 1.55 38.7

Table 5: Comparison of inference time and perplexity
among baselines and DiffusionBERTin unconditional
generation.

E Sampling Speed

With the x0-parameterization proposed in Song
et al. (2021) and Austin et al. (2021), Diffusion-
BERT is able to perform inference with any given
budget by controlling the step size in the reverse
process. We also control the sampling time of
BERT-Mouth by adjusting the max iteration count
of its mask-predict process. We list the decod-
ing speed and the corresponding perplexity on
the LM1B test set in Table 5. Overall, Diffu-
sionBERT exhibits competitive performance even

when it reaches comparable speed to GPT and out-
performs BERT-Mouth in efficiency-performance
tradeoff.

Recent works have proposed some higher-order
ODE solvers to accelerate diffusion models in con-
tinuous domain (Lu et al., 2022). By leveraging the
all-tokens-in-one-forward nature of NAR text gen-
eration, we look forward to discovering the poten-
tial of DiffusionBERT in sampling speed. Specif-
ically, the generation time of AR models is lim-
ited by the sequence length n. While Diffusion-
BERT decomposes the sampling process through
time t, which can be optimized by advanced diffu-
sion model sampler so that t is much smaller than
n. We leave this for future work.

F Implementation of Evaluation Metrics

We evaluate the performance of Diffusion-
BERT with 3 n-gram-based methods and Rouge-L.
The n-gram methods, namely BLEU-4, Self-BLEU-
4 and Div-4, are implemented based on NLTK.
We use the implementation in torchmetrics
to compute Rouge-L scores.
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