Prompter: Zero-shot Adaptive Prefixes for Dialogue State Tracking Domain Adaptation

Ibrahim Taha Aksu, Min-Yen Kan, Nancy Chen


Abstract
A challenge in the Dialogue State Tracking (DST) field is adapting models to new domains without using any supervised data — zero-shot domain adaptation. Parameter-Efficient Transfer Learning (PETL) has the potential to address this problem due to its robustness. However, it has yet to be applied to the zero-shot scenarios, as it is not clear how to apply it unsupervisedly. Our method, Prompter, uses descriptions of target domain slots to generate dynamic prefixes that are concatenated to the key and values at each layer’s self-attention mechanism. This allows for the use of prefix-tuning in zero-shot. Prompter outperforms previous methods on both the MultiWOZ and SGD benchmarks. In generating prefixes, our analyses find that Prompter not only utilizes the semantics of slot descriptions but also how often the slots appear together in conversation. Moreover, Prompter’s gains are due to its improved ability to distinguish ”none”-valued dialogue slots, compared against baselines.
Anthology ID:
2023.acl-long.252
Volume:
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Anna Rogers, Jordan Boyd-Graber, Naoaki Okazaki
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
4588–4603
Language:
URL:
https://aclanthology.org/2023.acl-long.252
DOI:
10.18653/v1/2023.acl-long.252
Bibkey:
Cite (ACL):
Ibrahim Taha Aksu, Min-Yen Kan, and Nancy Chen. 2023. Prompter: Zero-shot Adaptive Prefixes for Dialogue State Tracking Domain Adaptation. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4588–4603, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
Prompter: Zero-shot Adaptive Prefixes for Dialogue State Tracking Domain Adaptation (Aksu et al., ACL 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.acl-long.252.pdf
Video:
 https://aclanthology.org/2023.acl-long.252.mp4