
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 4617–4628

July 9-14, 2023 ©2023 Association for Computational Linguistics

Multi-modal Action Chain Abductive Reasoning

Mengze Li1, Tianbao Wang1, Jiahe Xu1, Kairong Han1, Shengyu Zhang1, Zhou Zhao1∗,
Jiaxu Miao1∗, Wenqiao Zhang1∗, Shiliang Pu4, Fei Wu2,3

1Zhejiang University 2Shanghai Institute for Advanced Study of Zhejiang University
3Shanghai AI Laboratory 4Hikvision Research Institute

Abstract

Abductive Reasoning, has long been considered
to be at the core ability of humans, which en-
ables us to infer the most plausible explanation
of incomplete known phenomena in daily life.
However, such critical reasoning capability is
rarely investigated for contemporary AI sys-
tems under such limited observations. To facil-
itate this research community, this paper sheds
new light on Abductive Reasoning by study-
ing a new vision-language task, Multi-modal
Action chain abductive Reasoning (MAR), to-
gether with a large-scale Abductive Reason-
ing dataset: Given an incomplete set of lan-
guage described events, MAR aims to imagine
the most plausible event by spatio-temporal
grounding in past video and then infer the hy-
pothesis of subsequent action chain that can
best explain the language premise. To solve
this task, we propose a strong baseline model
that realizes MAR from two perspectives: (i)
we first introduce the transformer, which learns
to encode the observation to imagine the plau-
sible event with explicitly interpretable event
grounding in the video based on the common-
sense knowledge recognition ability. (ii) To
complete the assumption of a follow-up action
chain, we design a novel symbolic module that
can complete strict derivation of the progres-
sive action chain layer by layer. We conducted
extensive experiments on the proposed dataset,
and the experimental study shows that the pro-
posed model significantly outperforms existing
video-language models in terms of effective-
ness on our newly created MAR dataset. Our
dataset is available 1.
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Figure 1: A diagram of the MAR task.

1 Introduction

Abductive Reasoning typically begins with an in-
complete observation or several observations and
then proceeds to the likeliest possible explanation
for the set (Du et al., 2021; Peirce, 1974). Given
an event observation (O), humans can find some
related information in the recollection and easily
trace the complete process with strong reasoning
ability as a hypothesis (H) to explain the observa-
tion. For instance, when we observe the O: "The
man in a T-shirt chocked on food is vomiting into
the toilet" and remember that he used to devour
food in the kitchen, we could infer the complete
event chain about that man as hypothesis H: the
man devoured the food in the kitchen → he was
choking → he put down the food → he left the
kitchen in a hurry → he ran into the bathroom →
he bent over the toilet. This ability enables us to
perform better than machines in high-level reason-
ing and would be the most precious capacity for
modern AI. Therefore, it is important to enhance
such Abductive Reasoning capacities of AI models,
i.e., complete process as explanation.

Motivated by the aforementioned Abductive
Reasoning scenario, we present a novel vision-
language task, called Multi-modal Action chain
abductive Reasoning (MAR), which is illustrated
in Figure 1. Specifically, given a set of language-
described observations, the MAR task targets to
precisely localize the target event in the past video
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(visual recollection simulation of human) about the
language-described person and rigorously reason
out the subsequent action chain (subsequent events
inference), to explain the observation. Different
from the previous Abductive Reasoning task (Bha-
gavatula et al., 2019) focusing on the unimodal and
partial reasoning, our new task has the following
characteristics: (i) MAR needs to locate the target
event from the complex video information to ex-
plain the textual observation; (ii) MAR requires
rigorous recovery of the complete action chain.

These characteristics introduce two challenges
to the MAR task: (1) Heterogeneous Informa-
tion Alignment. To realize the event grounding,
aligning the cross-modal information is necessary.
However, unlike the highly concise language de-
scription, the videos in real scenes usually con-
tain complex and redundant information, including
multiple people with different appearances, actions,
scenes, etc. Only a small amount of information
in videos aligns with the text-described observa-
tion. Precisely extracting information from the
complicated video information to align is difficult
but necessary for the AI system. (2) Action Chain
Reasoning. Rigorous action chain reasoning is an
interlocking and progressive process. If one step of
reasoning is wrong, the correctness of subsequent
steps cannot be guaranteed. Therefore, for action
chain reasoning, it is highly required to correctly
learn the logical relationship between actions and
correctly select from multiple next-step actions in
each step of reasoning.

We contribute a carefully annotated large-scale
dataset, TO-MAR, based on our collected data to
facilitate the challenges solved for the MAR task.
It contains 14, 201 cross-modal examples based on
the videos manually collected from the TV show
and the existing dataset (Sigurdsson et al., 2016).
To address the MAR task challenges, these exam-
ples have targeted manual annotations: (i) Com-
monsense Knowledge Annotation for Assisted
Alignment. We provide the full annotation of com-
monsense knowledge for every textual observation
related person in the large-scale videos, including
the character’s appearance, clothing, actions, sen-
timent, etc. (ii) Rigorous Annotation for Action
Chains. Expert annotators with strong logical abil-
ity are asked to annotate the language-described
observations and the action chains, ensuring the
accuracy and rigor of logical annotations.

Based on the constructed dataset, we propose an

end-to-end Neural-symbOlic model Via common-
sense knowledgE for multi-modaL action chain
Abductive Reasoning (NOVEL). There are two key
targeted designs: (i) Knowledge-guided Align-
ment. We adopt the multi-task learning paradigm
to synchronize the recognition learning of com-
monsense knowledge. Based on such knowledge
recognition ability, our NOVEL can minimize the
interference of the inferred event and past video,
thereby more easily learning to generate explicit
event grounding conditioned on textual observa-
tions. (ii) Graph-aware Symbolic Reasoning.
Motivated by the powerful reasoning ability of the
symbolic network (Yi et al., 2018), we design the
targeted symbolic reasoning module based on the
traditional graph theory. Specifically, we store the
learned action association graph in the training pro-
cess. During inference, we determine the interme-
diate action chain between the textual observation
and the grounded video event with Dijkstra’s al-
gorithm (Dijkstra, 1959). Our contributions are
three-fold:

• We introduce a new task, Multi-modal Action
chain abductive Reasoning (MAR), which in-
cludes two sub-parts: target event grounding
and sequential action chain reasoning.

• A carefully collected large-scale dataset, TO-
MAR, is provided, in which the complete
observation-explanation pairs are accurately
and rigorously annotated. In addition, a vari-
ety of commonsense knowledge that can aid
in training is annotated in detail.

• An end-to-end neural-symbolic model
named NOVEL is proposed for MAR with
knowledge-guided alignment and graph-based
symbolic reasoning. Extensive experiments
demonstrate the model design rationality.

2 Related Work

Multi-modal Spatio-temporal Grounding. Our
MAR task is related to the multi-modal spatio-
temporal grounding task, which aims to detect tar-
get visual information described by the sentence
from the video. It is an important task in the visual
understanding domain (Miao et al., 2023, 2021;
Zhang et al., 2019, 2022b,a). For video ground-
ing research direction, most researchers focus their
research on temporal grounding task (Yang et al.,
2021; Xiao et al., 2021). However, spatio-temporal
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grounding and spatial grounding (Li et al., 2022a;
Yang et al., 2022; Jin et al.; Su et al., 2021; Li et al.,
2022b, 2023) have received less attention. (Zhang
et al., 2020) uses the graph neural network to model
the spatio-temporal relationship between objects to
align text descriptions for object localization. In
addition, to evaluating the model performance, this
paper proposes a complete large-scale dataset. (Su
et al., 2021) designs an end-to-end multi-modal
grounding model based on the transformer. It out-
performs all previous models without pre-training.
Later, (Yang et al., 2022) makes a targeted design to
fit the pre-trained parameters and achieves a great
improvement in accuracy.

Neural-symbolic Reasoning. Compared with
the pure neural network (Li et al., 2020b; Wu et al.,
2022; Li et al., 2020a; Wu et al., 2020; Miao et al.,
2022), neural-symbolic models have stronger infer-
ence and perception capabilities. (Yi et al., 2018) is
an earlier paper exploring this direction. It stitches
symbolic models behind the multi-modal neural
network to reason on the information the network
perceives. In this neat way, the model achieves
excellent results. (Li et al., 2020c) combines the
laws of physics with deep learning to make mod-
els capable of fitting complex physical processes.
In this way, the model can effectively predict the
motion trends of objects in the physical world. Sim-
ilarly, (Ding et al., 2021) uses physical laws such
as collision to design a symbolic model to process
the information perceived by the neural network,
which can effectively predict the future motion of
objects such as balls or sliders. (Greff et al., 2019)
applies neural network and symbolic model to high-
level and low-level visual relation detection, respec-
tively, and achieves good performance through the
cooperation of the two.

Abductive Reasoning. There is a limited
amount of existing research work on abductive rea-
soning AI systems (Du et al., 2021). Previous ab-
ductive reasoning tasks (Bhagavatula et al., 2019;
Liang et al., 2022) require AI systems to provide a
unimodal and partial explanation, which may lack
some key information.

3 Dataset Description

To advance research on Abductive Reasoning, we
propose the Multi-modal Action chain abductive
Reasoning task (MAR) and contribute a large-scale
Text-videO dataset for the MAR task (TO-MAR).
To complete the MAR task, the AI system needs to

Table 1: Statistics of commonsense knowledge types
for the TO-MAR dataset.

Category Subcategory

Appearance Gender, Hair Length, Age

Clothing Length of Lower-body Clothing, Type
of Lower-body Clothing, Type of Upper-
body Clothing, Sleeve Length, 3 Other
Outfits, 9 Colors of Upper-body Clothing,
9 Colors of Lower-body Clothing

Action Intransitive Verb, Transitive Verb, Object

Sentiment None

Scene None

reason out the complete process (the video event
and the subsequent action chain) to explain the
observed event described by the textual observation
O. In detail, the target event Et is grounded in the
video V by localizing the temporal boundary T and
the target person bounding boxes B in the event Et.
After that, the action chain A = {Ai}NA

i=1 following
the target event Et is inferred, where the NA is the
number of actions in chain A.

3.1 Dataset Preparation

We collect and annotate the proposed TO-MAR
dataset based on the above MAR’s definition. To
increase the variety of data, a two-source dataset
collection is conducted for labeling: (1) We select
lifestyle videos from the Charades dataset (Sigurds-
son et al., 2016). These examples contain diverse
people and rich activities. (2) The TV show videos
are selected from 92 well-known American dramas,
such as The Big Bang Theory, Grey’s Anatomy, etc.
Notably, the number of people is relatively limited
compared to the first source, but the causal links
among events are clearer.

3.2 Dataset Annotation

The TO-MAR dataset contains commonsense
knowledge annotations and MAR task annotations.
More details are in the appendix.

Commonsense Knowledge Annotation. We
annotate the commonsense knowledge that is re-
lated to the person conditioned on the observations
for event grounding, including the appearance and
clothing of key video characters. We also anno-
tated the characters’ actions, sentiments and lo-
cated scenes in each frame. Each category con-
tains several critical subcategories (e.g., Appear-
ance: Gender, Hair Length, Age. ) recognized
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Figure 2: Statistics of the example number with different
target video event lengths, sentence lengths, and action
chain lengths.

by labeling experts to ensure the MAR model the
relationship between the event and observations.

MAR Task Annotation. The MAR task an-
notation for the video V consists of a language-
described observation O and its explanation, in-
cluding the spatio-temporal markers (the bounding
boxes B and the temporal boundary T ) of the tar-
get video event Et and the subsequent action chain
A. In order to ensure the quality of the annota-
tions, we employ experts with related annotation
experience from leading AI research institutions.
The annotation process contains two steps: Step 1:
Annotating. The annotators annotate the natural
language description O of the observation referred
to the commonsense knowledge and the follow-up
video content for the TV show video clips. The
corresponding target video event Et and the subse-
quent action chain A annotations are also recorded.
Step 2: Verification. The validators carefully val-
idate the annotated examples. If the annotation is
not agreed upon by the validators, it is relabeled or
dropped.

Dataset Features and Statistics. To further
introduce the TO-MAR dataset, we analyze the
data distribution: (1) Dataset Split. We separate
the TO-MAR dataset into train/val/test sets with
12, 527/426/1, 248 labeled examples. The videos
of the three sets do not overlap. More detailed
statistics are shown in Figure 2. (2) Diversity. To
include various causal relationships, our dataset
contains rich activities (cooking, work, etc.) and
various scenes (family, hospital, etc.). (3) Large-
Scale. The TO-MAR dataset consists of 14, 201
examples, which proves a testbed for the evaluation
of the MAR task models.

4 Method

MAR Task Formulation. Given the language de-
scription of the observed event O and the video
V consisting of NE past events E = {Ei}NE

i=1, the

Multi-modal Action chain abductive Reasoning
task (MAR) aims to explain the observation O
by localizing the target event (the t-th event) Et
in the video V , and supplementing the intermedi-
ate action chain A = {Ai}NA

i=1 between the tar-
get event Et and observation O. All actions in
the action chain A are chosen from the action set
S = {Si}NS

i=1. Meanwhile, the NA and the NS are
the action number in the action chain A and the
action set S, respectively. To formulate the model
training process, we define M as the trained model
initialized with parameter Θ. Then, the training
optimization function can be expressed as:

M((O,V),(E ,S); Θ)

= max
Θ

ϵ(ξ(E ,S), δ(O,V; Θ)).
(1)

In it, the function ξ(.) outputs the ground truth,
which contains: (1) the temporal boundary T of the
target video event Et and the target person bounding
boxes B in the event Et; (2) the category of each
action in the action chain A. The δ(.) outputs the
prediction, and the Θ is the learnable parameter.
The function ϵ(.) calculates the consistency of ξ(.)
and δ(.).

Model Pipeline. As shown in the Figure 3, after
extracting features from the observation O and the
frames of the video V with RoBERTa (Liu et al.,
2019) and Resnet101 (He et al., 2016), our NOVEL
M mainly contains two parts to process the fea-
tures. (1) First, the multi-modal features is rea-
soned by the transformer model (Vaswani et al.,
2017). Based on the recognition ability of the com-
monsense knowledge (e.g., the character’s actions,
appearance, etc.), the model focuses on the key
video information aligned with the textual observa-
tion O, and learns to infer the temporal boundary
T and the target bounding boxes B of the target
event Et in the video. (2) Second, the symbolic
reasoning part maintains a relation memory mod-
ule and stores the learned action relation in it at
the training step. In the inference phase, the action
graph is constructed based on the action relations.
We use Dijkstra’s algorithm to find the connected
path on the action graph so as to infer the action
chain A between the observation O and the target
video event Et.

4.1 Knowledge-guided Alignment
We follow the general training and prediction pro-
tocol of cross-modal transformer applied in other
video grounding methods (Kamath et al., 2021;
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Figure 3: The diagram of our proposed NOVEL for MAR task. (1) The transformer-based neural network learns
to ground the target video event Et and predicts the language-described person’s target action, based on the
commonsense knowledge recognition ability. (2) We construct the action graph from the learned action relation
memory and reason out the connection path between the start node (the video action) and the end node (the
observation action) with Dijkstra’s algorithm.

Yang et al., 2022). The transformer decoder gen-
erates the features for all video frames. For each
frame, we predict the bounding boxes and whether
it is the temporal start or end of the target event Et.

However, there is complex information in the
input video V . We need to guide the model to
focus on the video information aligned with the ob-
servation O during the training process, using the
prediction learning for the commonsense knowl-
edge (e.g., human action, appearance, etc.) of the
target character in the video. Specifically, follow-
ing previous transformer-based models (Yang et al.,
2022; Carion et al., 2020), several query vectors
are defined: frame level vectors Qr = {qi

r}Nr
i=1 and

video level vectors Qv = {qi
v}2i=1. The Nr is the

frame number in the video V . With these query vec-
tors, we apply transformer decoder D to analyze
multi-modal features F fused by the transformer
encoder:

[Fr,Fv] = D([Qr,Qv],F), (2)

where [.] represents the feature concatenated.

Next, we predict the commonsense knowledge
of the language-described character using these out-
put frame level features Fr = {fir}Nr

i=1 and video
level features Fv = {fiv}2i=1. The scene where the
character is located and the character’s sentiment
change over time. Thus, we predict them frame by
frame using MultiLayer Perceptron (MLP). View-
ing the i-th frame as an example, the prediction
process is represented as:

pi
sc = softmax(MLPsc(fir)), (3)

pi
se = softmax(MLPse(fir)). (4)

In them, the MLPsc and MLPse are the MLP ap-
plied to predict the probabilities of all scene and
sentiment classes (pi

sc and pi
se). In addition, we ap-

ply the video level features Fv to predict the appear-
ance and clothing of the target character described
by the language sentence O, and the character’s
action in the target video event Et:

pap = softmax(MLPap(f1v)) (5)

pcl = softmax(MLPcl(f1v)), (6)
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pac = softmax(MLPac(f2v)). (7)

In them, the MLPap, MLPcl and MLPac are the
MLP applied to predict the probabilities of all ap-
pearance, clothing, and action classes (pap, pcl, and
pac), respectively. We employ the cross-entropy
loss function to train the prediction of common-
sense knowledge.

4.2 Graph-aware Symbolic Reasoning
The prediction for the action chain A requires rig-
orous layer-by-layer logical reasoning ability. Con-
sidering the symbolic network’s reasoning ability
(Yi et al., 2018; Li et al., 2020c), we design a tra-
ditional graph theory based symbolic module for
searching targeted nodes (actions).

In the training phase, we divide the action chain
annotation labeled for each training example into
several single-step action mappings and store them
in the action relation memory module. During the
process, new actions are continuously introduced.
We initialize the prototype feature fip for the newly
added action category with index i. In addition,
at each step of the relation memory update, we
construct the action graph based on the action rela-
tions. There may be Nd different connected paths
between two nodes, which may result in the pre-
dicted action chain A not unique. To address the
problem, we replace the starting node fsp with Nd

different nodes {fsjp }Nd
j=1 and view them as the start-

ing of each path.
During the inference process, the action node

described by the textual observation O is detected
from the action graph. Using the traditional graph
theory algorithm, Dijkstra (Dijkstra, 1959), we find
all paths ending at this node. Assuming that there
are Ns nodes on these paths, we view them as the
candidate starting nodes and calculate the proba-
bility of being selected psn = {pisn}Ns

i=1, using the
transformer decoder predicted feature f2v:

psn = softmax([S(f1p, f2v),S(f2p, f2v), ...,S(fNs
p , f2v)]),

(8)
where the S(.) is the similarity calculation function.
The node with max probability is chosen out from
the candidate starting nodes. With the starting and
ending nodes, the actions corresponding to the mid-
dle nodes between them constitute the intermediate
action chain A.

5 Experiments

We evaluate the effectiveness of the proposed
NOVEL on TO-MAR dataset, followed by a discus-

Table 2: Compared with baselines on TO-MAR.

Methods m_vIoU vIoU@0.3 vIoU@0.5 ACC

STVGBert 8.5 10.1 3.6 -
IT-OS 13.4 16.5 9.7 -

TubeDETR 15.7 18.7 9.9 -

Cycle_C - - - 58.5
FUTR - - - 62.1

NOVEL 18.2 24.4 13.9 72.0

sion of NOVEL’s property with controlled studies.

5.1 MAR Experiments

Implement Detail. Our model is implemented
based on the PyTorch framework, which is trained
on a Linux server. The implementation of the
transformer part is based on the TubeDETR (Yang
et al., 2022). For the training data, we randomly
rotate and resize the input frames. In addition,
random horizontal flips and size cropping are ap-
plied during the video frame preprocessing. For
the validation and test data, we only normalize
and randomly resize each frame. In the train-
ing process, the batch size is 1 and the random
seed is 42. The learning rate is set to 0.00005
and the weight decay is 0.0001. All experi-
mental environments are deployed in Hikvision
(https://www.hikvision.com/en/).

Evaluation Metrics. Following the evaluation
protocols of the spatio-temporal grounding (Su
et al., 2021), we adopt m_vIoU and vIoU@R to
evaluate the model performance. The vIoU is calcu-
lated by 1

|Sp∪Sgt|
∑

n∈Sp∩Sgt
IoU(b̂t, bt). In it, the

Sp and the Sgt are the frame sets in the predicted
and ground truth tubes, respectively. The b̂t and
the bt are the predicted and ground truth bounding
boxes of the frame t. The vIoU@R is the ratio of
samples whose vIoU>R. The m_vIoU is the mean
vIoU of all samples. In addition, we adopt the ac-
tion chain accuracy (ACC) to evaluate the model
performance for the action chain prediction.

Baselines. Existing methods of other tasks can-
not be transferred directly to our MAR task. Thus,
we extend several SOTA multi-modal and reason-
ing models as the baselines to compare. In detail,
for a comprehensive comparison, we consider: (1)
multi-modal video grounding methods, including
TubeDETR (Yang et al., 2022), IT-OS (Li et al.,
2022a), and STVGBert (Su et al., 2021); (2) action
chain prediction methods, Cycle_C (Farha et al.,
2020) and FUTR (Gong et al., 2022).
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Figure 4: Compared with the baselines under different
proportions of the training set.

Performance Comparison. We compare our
NOVEL model with the baselines on the TO-MAR
dataset for the MAR task. The experiment results
are shown in Table 2. From it, we can observe
that our NOVEL model performs better than all
previous methods. Specifically, compared to the
previous state-of-the-art, TubeDETR, the NOVEL
significantly improves the target event grounding
(vIoU@0.3) from 18.7 to 24.4. In addition, the
NOVEL model improves the action chain predic-
tion from 62.1 to 72.0 compared with the best per-
formance baseline, FUTR. We attribute the per-
formance improvement of our model to common-
sense knowledge-driven perception design. It helps
the model focus on the correct visual semantics
aligned with the textual observation. The graph
symbol model rigorously describes the logical rela-
tionship between actions, and Dijkstra’s algorithm
accurately reasons out the action chain.

Comparison using Different Training Data
Volumes. We are interested in how the NOVEL
model performance varies with the amount of train-
ing data. To this end, we randomly select different
proportions of examples from the training set and
compare our NOVEL model with several state-of-
the-arts trained on them. The experimental results
are shown in Figure 4. From it, we can observe
that the NOVEL model performance is always the
best under different data volumes. Based on the
commonsense knowledge recognition ability, the
NOVEL model can eliminate the interference of ir-
relevant information on training, so that the model
can learn the target video event grounding more
effectively. Even if the training set is small, the
NOVEL model still has higher accuracy.

Ablation Study. To fully evaluate the NOVEL
model’s effectiveness, we need to understand how
different components contribute. The new architec-
tures are constructed by removing several compo-

Table 3: Ablation study on the TO-MAR dataset. *
represents that the ablation model’s grounding part and
action chain reasoning part are trained separately.

Methods m_vIoU vIoU@0.3 vIoU@0.5 ACC

Base* 16.4 18.4 10.8 62.1
(+∆kno)* 18.2 24.4 13.9 62.1

Base 12.8 15.9 8.7 59.7
+∆kno 16.1 19.8 11.8 60.9
+∆sym 16.4 18.4 10.8 67.6

+∆kno+∆sym

(NOVEL) 18.2 24.4 13.9 72.0

nents from the NOVEL. The investigated building
blocks include the knowledge-guided alignment
and the graph-aware symbolic reasoning module.
For convenience, we use ∆kno and ∆sym to repre-
sent these key components. After removing, the
state-of-the-art model, FUTR, compensates for the
lack of action chain prediction functionality.

The experiment results are shown in Table 3.
From it, we can observe the following: (1) We eval-
uate our ablation grounding models and the FUTR
model training together or not (labeled without or
with * in the table). Notably, when training sepa-
rately, the ∆kno is bound to the ablation grounding
models, to prove its contribution to the NOVEL’s
module. When training together, the pure neural
network models fail to effectively capture the corre-
lation between the target video event grounding and
the action chain prediction. Even in the training
process, the learning of the two interferes with each
other, which leads to a loss of precision. (2) The
NOVEL model performs better after adding each
building block. It reveals the reasonable design
of these key modules. (3) When the knowledge-
guided alignment module and the graph-aware sym-
bolic module are used together, the performance
of the action chain reasoning is better. The results
demonstrate the knowledge-guided alignment de-
sign aids in the extraction of knowledge useful for
reasoning, and the symbolic reasoning module can
complete accurate reasoning on this basis.

Case Study. A case study is conducted to
demonstrate the NOVEL’s capability in visuals. In
detail, two examples are sampled from our TO-
MAR dataset. A comparison of the NOVEL model
with the state-of-the-arts, TubeDETR and FUTR, is
necessary to fully demonstrate model performance
on these examples. The experiment results are vi-
sualized in Figure 5. From the figure, we can find
that our NOVEL model predicts the target video
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Figure 5: Two examples of the NOVEL model and the
baselines (TubeDETR and FUTR) predictions. "GT"
represents the Ground Truth.

event and the action chain accurately. In addition,
its commonsense knowledge prediction is also cor-
rect. In contrast, the baseline predictions are not
as satisfactory. This intuitively reflects that our
neural-symbolic model, NOVEL, is reasonably de-
signed for the multi-modal action chain Abductive
Reasoning task.

5.2 Spatio-Temporal Grounding Experiments
Based on our proposed TO-MAR dataset, the mod-
els suitable for another similar language-vision un-
derstanding task, Multi-modal Spatio-Temporal
Grounding (MSTG), can be evaluated. This task
aims to detect the spatio-temporal tube described
by the concise language sentence from the com-
plex video content (Su et al., 2021). We further
evaluate the effectiveness of the knowledge-guided
alignment in our NOVEL model on this task.

Dataset. 9, 143 labels for this task based on
the TO-MAR dataset are annotated by annota-

Table 4: Compared with baselines on TO-MSTG.

Methods m_vIoU vIoU@0.3 vIoU@0.5

STVGBert 4.7 3.8 1.0
IT-OS 8.0 9.0 3.1

TubeDETR 8.9 9.5 4.5

NOVEL 11.7 12.0 7.0

tors. Each label contains a natural language query,
video clip temporal boundaries, and target ob-
ject bounding boxes. We split all examples into
7, 845/277/1, 021 (train/val/test) without overlap
and name this dataset as TO-MSTG. We describe
the annotation method in detail in the appendix. In
the future, we will further expand the data scale.

Performance Comparison. The experi-
ment results are shown in Table 4. From it,
we can observe that our NOVEL model per-
forms best compared with the other three base-
lines. Specifically, it improves the accuracy
(m_vIoU/vIoU@0.3/vIoU@0.5) from 8.9/9.5/4.5
to 11.7/12.0/7.0. This again demonstrates the
power of commonsense knowledge guidance for
the heterogeneous information alignment problem.
In addition, the knowledge-guided alignment de-
sign generalizes effectively to different AI tasks,
where heterogeneous alignment problem exists.

6 Conclusion

In this paper, we propose a new task, multi-modal
action chain abductive reasoning, to promote the de-
velopment of the abductive field. This cross-modal
task targets to reason out a more complete explana-
tion (explanation event grounding and sequential
action chain inference) than the previous abductive
reasoning tasks. Furthermore, we propose a large-
scale dataset (TO-MAR) and a neural-symbolic
model via commonsense knowledge (NOVEL) for
our new task as a strong baseline. Extensive ex-
periments on the TO-MAR dataset and the TO-
MSTG dataset demonstrate the effectiveness of our
NOVEL model.

Limitations

This work is currently limited to the action chain as
the abstract summary of the complete explanation
for the given limited observation. In the future,
we will further upgrade this task, e.g., considering
the progressive textual descriptions as the complete
explanation. We hope our work can advance the
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reasoning AI system research community.
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