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Abstract

Feature attribution methods (FAs) are popu-
lar approaches for providing insights into the
model reasoning process of making predic-
tions. The more faithful a FA is, the more
accurately it reflects which parts of the input
are more important for the prediction. Widely
used faithfulness metrics, such as sufficiency
and comprehensiveness use a hard erasure cri-
terion, i.e. entirely removing or retaining the
top most important tokens ranked by a given
FA and observing the changes in predictive
likelihood. However, this hard criterion ig-
nores the importance of each individual token,
treating them all equally for computing suf-
ficiency and comprehensiveness. In this pa-
per, we propose a simple yet effective soft
erasure criterion. Instead of entirely remov-
ing or retaining tokens from the input, we ran-
domly mask parts of the token vector repre-
sentations proportionately to their FA impor-
tance. Extensive experiments across various
natural language processing tasks and differ-
ent FAs show that our soft-sufficiency and soft-
comprehensiveness metrics consistently prefer
more faithful explanations compared to hard
sufficiency and comprehensiveness.1

1 Introduction

Feature attribution methods (FAs) are popular post-
hoc explanation methods that are applied after
model training to assign an importance score to
each token in the input (Kindermans et al., 2016;
Sundararajan et al., 2017). These scores indicate
how much each token contributes to the model pre-
diction. Typically, the top-k ranked tokens are then
selected to form an explanation, i.e. rationale (DeY-
oung et al., 2020). However, it is an important
challenge to choose a FA for a natural language
processing (NLP) task at hand (Chalkidis et al.,
2021; Fomicheva et al., 2022) since there is no sin-

1Our code: https://github.com/casszhao/So
ftFaith

Figure 1: Hard and soft erasure criteria for comprehen-
siveness and sufficiency for two toy feature attribution
(FA) methods A and B.

gle FA that is consistently more faithful (Atanasova
et al., 2020).

To assess whether a rationale extracted with a
given FA is faithful, i.e. actually reflects the true
model reasoning (Jacovi and Goldberg, 2020), vari-
ous faithfulness metrics have been proposed (Arras
et al., 2017; Serrano and Smith, 2019; Jain and
Wallace, 2019; DeYoung et al., 2020). Sufficiency
and comprehensiveness (DeYoung et al., 2020),
also referred to as fidelity metrics (Carton et al.,
2020), are two widely used metrics which have
been found to be effective in capturing rationale
faithfulness (Chrysostomou and Aletras, 2021a;
Chan et al., 2022). Both metrics use a hard era-
sure criterion for perturbing the input by entirely
removing (i.e. comprehensiveness) or retaining
(i.e. sufficiency) the rationale to observe changes
in predictive likelihood.

However, the hard erasure criterion ignores the
different importance of each individual token, treat-
ing them all equally for computing sufficiency and
comprehensiveness. Moreover, the hard-perturbed
input is likely to fall out of the distribution the
model is trained on, leading to inaccurate mea-
surements of faithfulness (Bastings and Filippova,
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2020; Yin et al., 2022; Chrysostomou and Aletras,
2022a; Zhao et al., 2022). Figure 1 shows an exam-
ple of two toy FAs, A and B, identifying the same
top two tokens (“like”, “movie”) as a rationale for
the prediction. Still, each of them assigns differ-
ent importance scores to the two tokens resulting
into different rankings. According to the hard era-
sure criterion, comprehensiveness and sufficiency
will assign the same faithfulness score to the two
rationales extracted by the two FAs.

In this paper, we aim to improve sufficiency and
comprehensiveness in capturing the faithfulness of
a FA. We achieve this by replacing the hard token
perturbation with a simple yet effective soft erasure
criterion (see Figure 1 for an intuitive example).
Instead of entirely removing or retaining tokens
from the input, we randomly mask parts of token
vector representations proportionately to their FA
importance.

Our main contributions are as follows:

• We propose two new faithfulness metrics, soft-
comprehensiveness and soft-sufficiency that
rely on soft perturbations of the input. Our
metrics are more robust to distribution shifts
by avoiding entirely masking whole tokens;

• We demonstrate that our metrics are consis-
tently more effective in terms of preferring
more faithful rather than unfaithful (i.e. ran-
dom) FAs (Chan et al., 2022), compared to
their “hard” counterparts across various NLP
tasks and different FAs.

• We advocate for evaluating the faithfulness
of FAs by taking into account the entire input
rather than manually pre-defining rationale
lengths.

2 Related Work

2.1 Feature Attribution Methods

A popular approach to assign token importance
is by computing the gradients of the predictions
with respect to the input (Kindermans et al., 2016;
Shrikumar et al., 2017; Sundararajan et al., 2017).
A different approach is based on making pertur-
bations in the input or individual neurons aiming
to capture their impact on later neurons (Zeiler
and Fergus, 2014). In NLP, attention mechanism
scores have been extensively used for assigning
token importance (Jain and Wallace, 2019; Ser-
rano and Smith, 2019; Treviso and Martins, 2020;

Chrysostomou and Aletras, 2021b). Finally, a
widely used group of FA methods is based on train-
ing simpler linear meta-models to assign token im-
portance (Ribeiro et al., 2016).

Given the large variety of approaches, it is of-
ten hard to choose an optimal FA for a given task.
Previous work has demonstrated that different FAs
generate inconsistent or conflicting explanations
for the same model on the same input (Atanasova
et al., 2020; Zhao et al., 2022).

2.2 Measuring Faithfulness

One standard approach to compare FAs and their
rationales is faithfulness. A faithful model expla-
nation is expected to accurately represent the true
reasoning process of the model (Jacovi and Gold-
berg, 2020).

The majority of existing methods for quantita-
tively evaluating faithfulness is based on input per-
turbation (Nguyen, 2018; DeYoung et al., 2020; Ju
et al., 2022). The main idea is to modify the input
by entirely removing or retaining tokens according
to their FA scores aiming to measure the difference
in predictive likelihood .

Commonly-used perturbation methods include
comprehensiveness, i.e. removing the rationale
from the input), and sufficiency, i.e. retaining only
the rationale (DeYoung et al., 2020). Another com-
mon approach is to remove a number of tokens and
observe the number of times the predicted label
changes, i.e. Decision Flip (Serrano and Smith,
2019). On the other hand, Monotonicity incremen-
tally adds more important tokens while Correla-
tion between Importance and Output Probability
(CORR) continuously removes the most important
tokens (Arya et al., 2021). (In)fidelity perturbs the
input by dropping a number of tokens in a decreas-
ing order of attribution scores until the prediction
changes (Zafar et al., 2021). Additionally, Yin et al.
(2022) proposed sensitivity and stability, which
do not directly remove or keep tokens. Sensitiv-
ity adds noise to the entire rationale set aiming to
find a minimum noise threshold for causing a pre-
diction flip. Stability compares the predictions on
semantically similar inputs.

One limitation of the metrics above is that they
ignore the relative importance of each individual
token within the selected rationale, treating all of
them equally. Despite the fact that some of them
might take the FA ranking into account, the rel-
ative importance is still not considered. Jacovi
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and Goldberg (2020) have emphasized that faith-
fulness should be evaluated on a “grayscale” rather
than “binary” (i.e. faithful or not) manner. How-
ever, current perturbation-based metrics, such as
comprehensiveness and sufficiency, do not reflect a
“grayscale” fashion as tokens are entirely removed
or retained (e.g. comprehensiveness, sufficiency),
or the rationale is entirely perturbed as a whole (e.g.
sensitivity).

2.3 Evaluating Faithfulness Metrics

Quantitatively measuring the faithfulness of model
explanations is an open research problem with sev-
eral recent efforts focusing on highlighting the
main issues of current metrics (Bastings and Filip-
pova, 2020; Ju et al., 2022; Yin et al., 2022) and
comparing their effectiveness (Chan et al., 2022).

A main challenge in comparing faithfulness met-
rics is that there is no access to ground truth, i.e.
the true rationale for a model prediction (Jacovi
and Goldberg, 2020; Ye et al., 2021; Lyu et al.,
2022; Ju et al., 2022). Additionally, Ju et al. (2022)
argue that it is risky to design faithfulness metrics
based on the assumption that a faithful FA will gen-
erate consistent or similar explanations for similar
inputs and inconsistent explanations for adversarial
inputs (Alvarez-Melis and Jaakkola, 2018; Sinha
et al., 2021; Yin et al., 2022).

Chan et al. (2022) introduced diagnosticity for
comparing the effectiveness of faithfulness met-
rics. Diagnosticity measures the ability of a metric
on separating random explanations (non-faithful)
and non-random ones (faithful). They empirically
showed that two perturbation metrics, sufficiency
and comprehensiveness, are more ‘diagnostic’, i.e.
effective in choosing faithful rationales compared
to other metrics.

Despite the fact that sufficiency and comprehen-
siveness are in general more effective, they suffer
from an out-of-distribution issue (Ancona et al.,
2018; Bastings and Filippova, 2020; Yin et al.,
2022). More specifically, the hard perturbation
(i.e. entirely removing or retaining tokens) creates
a discretely corrupted version of the original input
which might fall out of the distribution the model
was trained on. It is unlikely that the model predic-
tions over the corrupted input sentences share the
same reasoning process with the original full sen-
tences which might be misleading for uncovering
the model’s true reasoning mechanisms.

3 Faithfulness Evaluation Metrics

3.1 Sufficiency and Comprehensiveness
We begin by formally defining sufficiency and com-
prehensiveness (DeYoung et al., 2020), and their
corresponding normalized versions that allow for
a fairer comparison across models and tasks pro-
posed by Carton et al. (2020).

Normalized Sufficiency (NS): Sufficiency (S)
aims to capture the difference in predictive like-
lihood between retaining only the rationale p(ŷ|R)
and the full text model p(ŷ|X). We use the normal-
ized version:

S(X, ŷ,R) = 1−max(0, p(ŷ|X)− p(ŷ|R))

NS(X, ŷ,R) = S(X, ŷ,R)− S(X, ŷ, 0)

1− S(X, ŷ, 0)

(1)

where S(x, ŷ, 0) is the sufficiency of a baseline
input (zeroed out sequence) and ŷ is the model
predicted class using the full text x as input.

Normalized Comprehensiveness (NC): Com-
prehensiveness (C) assesses how much informa-
tion the rationale holds by measuring changes in
predictive likelihoods when removing the rationale
p(ŷ|X\R). The normalized version is defined as:

C(X, ŷ,R) = max(0, p(ŷ|X)− p(ŷ|X\R))

NC(X, ŷ,R) = C(X, ŷ,R)
1− S(X, ŷ, 0)

(2)

3.2 Soft Nomralized Sufficiency and
Comprehensiveness

Inspired by recent work that highlights the out-of-
distribution issues of hard input perturbation (Bast-
ings and Filippova, 2020; Yin et al., 2022; Zhao
et al., 2022), our goal is to induce to sufficiency and
comprehensiveness the relative importance of all
tokens determined by a given FA. For this purpose,
we propose Soft Normalized Sufficiency (Soft-NS)
and Soft Normalized Comprehensiveness (Soft-
NC) that apply a soft-erasure criterion to perturb
the input.

Soft Input Perturbation: Given the vector rep-
resentation of an input token, we aim to retain or
remove vector elements proportionately to the to-
ken importance assigned by a FA by applying a
Bernoulli distribution mask to the token embed-
ding. Given a token vector xi from the input X
and its FA score ai, we soft-perturb the input as
follows:

x′i = xi � ei, ei ∼ Ber(q) (3)
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where Ber a Bernoulli distribution and e a binary
mask vector of size n. Ber is parameterized with
probability q:

q =

{
a, if retaining elements
1− a, if removing elements

We repeat the soft-perturbation for all token em-
beddings in the input to obtain x′. Our approach is
a special case of dropout (Srivastava et al., 2014)
on the embedding level.

Following Lakshmi Narayan et al. (2019), we
have also tested two other approaches to soft pertur-
bation in early-experimentation: (1) adding Gaus-
sian noise to the embeddings; and (2) perturbing the
attention scores, both in proportion to the FA scores.
However, we found that dropout outperforms these
two methods. Perhaps this is due to their sensitivity
to hyperparameter tuning (e.g. standard deviation)
which potentially contributes to their poor perfor-
mance. Hence, we only conduct full experiments
using dropout-based soft perturbation. Details on
these alternative methods to perturb the input are
included in Appendix C.

Soft Normalized Sufficiency (Soft-NS): The
main assumption of Soft-NS is that the more im-
portant a token is, the larger number of embedding
elements should be retained. On the other hand, if
a token is not important most of its elements should
be dropped. This way Soft-NS takes into account
the complete ranking and importance scores of the
FA while NS only keeps the top-k important tokens
by ignoring their FA scores. We compute Soft-NS
as follows:

Soft-S(X, ŷ,X′) = 1−max(0, p(ŷ|X)− p(ŷ|X′))

Soft-NS(X, ŷ,X′) =
Soft-S(X, ŷ,X′)− S(X, ŷ, 0)

1− S(X, ŷ, 0)
(4)

where X′ is obtained by using q = ai in Eq. 3 for
each token vector x′i.

Soft Normalized Comprehensiveness (Soft-
NC): For Soft-NC, we assume that the more im-
portant a token is to the model prediction, the heav-
ier the perturbation to its embedding should be.
Soft-NS is computed as:

Soft-C(X, ŷ,X′) = max(0, p(ŷ|X)− p(ŷ|X′))

Soft-NC(X, ŷ,X′) =
Soft-C(X, ŷ,X′)

1− S(X, ŷ, 0)

(5)

Dataset Avg. Length Classes Size (Train/Dev/Test) Avg. F1

SST 18 2 6,920 / 872 / 1,821 90.4 ± 0.5
AG 36 4 102,000 / 18,000 / 7,600 93.6 ± 0.2

Ev.Inf 363 3 5,789 / 684 / 720 82.3 ± 2.2
M.RC 305 2 24,029 / 3,214 / 4,848 74.0 ± 2.5

Table 1: Dataset statistics and mode prediction perfor-
mance (average over five runs)

where X′ is obtained by using q = 1− ai in Eq. 3
for each token vector x′i.

4 Experimental Setup

4.1 Tasks
Following related work on interpretability (Jain
et al., 2020; Chrysostomou and Aletras, 2022b),
we experiment with the following datasets:

• SST: Binary sentiment classification into posi-
tive and negative classes (Socher et al., 2013).

• AG: News articles categorized in Science,
Sports, Business, and World topics (Del Corso
et al., 2005).

• Evidence Inference (Ev.Inf.): Abstract-only
biomedical articles describing randomized
controlled trials. The task is to infer the
relationship between a given intervention
and comparator with respect to an outcome
(Lehman et al., 2019).

• MultiRC (M.RC): A reading comprehension
task with questions having multiple correct
answers that should inferred from informa-
tion from multiple sentences (Khashabi et al.,
2018). Following DeYoung et al. (2020)
and Jain et al. (2020), we convert this to
a binary classification task where each ra-
tionale/question/answer triplet forms an in-
stance and each candidate answer is labelled
as True/False.

4.2 Models
Following Jain et al. (2020), we use BERT (Devlin
et al., 2019) for SST and AG; SCIBERT (Belt-
agy et al., 2019) for EV.INF. and RoBERTa (Liu
et al., 2019) for M.RC. See App. A for hyperpa-
rameters. Dataset statistics and model prediction
performance are shown in Table 1.

4.3 Feature Attribution Methods
We experiment with several popular feature attribu-
tion methods to compare faithfulness metrics. We
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do not focus on benchmarking various FAs but to
improve faithfulness evaluation metrics.

• Attention (α): Token importance is com-
puted using the corresponding normalized at-
tention score (Jain et al., 2020).

• Scaled attention (α∇α): Attention scores
scaled by their corresponding gradients (Ser-
rano and Smith, 2019).

• InputXGrad (x∇x): It attributes importance
by multiplying the input with its gradient com-
puted with respect to the predicted class (Kin-
dermans et al., 2016; Atanasova et al., 2020).

• Integrated Gradients (IG): This FA ranks
input tokens by computing the integral of the
gradients taken along a straight path from a
baseline input (i.e. zero embedding vector) to
the original input (Sundararajan et al., 2017).

• DeepLift (DL): It computes token impor-
tance according to the difference between the
activation of each neuron and a reference acti-
vation, i.e. zero embedding vector (Shrikumar
et al., 2017).

4.4 Computing Faithfulness with Normalized
Sufficiency and Comprehensiveness

Following DeYoung et al. (2020), we compute the
Area Over the Perturbation Curve (AOPC) for nor-
malized sufficiency (NS) and comprehensiveness
(NC) across different rationale lengths. AOPC pro-
vides a better overall estimate of faithfulness (DeY-
oung et al., 2020). We evaluate five different ra-
tionale ratios set to 1%, 5%, 10%, 20% and 50%,
similar to DeYoung et al. (2020) and Chan et al.
(2022).

4.5 Comparing the Diagnosticity of
Faithfulness Metrics

Comparing faithfulness metrics is a challenging
task because there is no a priori ground truth ratio-
nales that can be used.

Diagnosticity: Chan et al. (2022) proposed diag-
nosticity to measure the degree of a given faithful-
ness metric favors more faithful rationales over less
faithful ones. The assumption behind this metric
is that the importance scores assigned by a FA are
highly likely to be more faithful than simply assign-
ing random importance scores to tokens. Given an

explanation pair (u, v), the diagnosticity is mea-
sured as the probability of u being a more faithful
explanation than v given the same faithfulness met-
ric F . u is an explanation determined by a FA,
while v is a randomly generated explanation for
the same input. For example the NC score of u
should be higher than v when evaluating the di-
agnosticity of using NC as the faithfulness metric.
More formally, diagnosticity Dε(F ) is computed
as follows:2

Dε(F ) ≈
1

|Zε|
∑

(u,v)∈Zε

1(u �F v) (6)

where F is a faithfulness metric, Zε is a set of
explanation pairs, also called ε-faithfulness golden
set, 0 ≤ ε ≤ 1. 1· is the indicator function which
takes a value 1 when the input statement is true and
a value 0 when it is false.

Chan et al. (2022) randomly sample a subset
of explanation pairs (u, v) for each dataset and
also randomly sample a FA for each pair. In our
experiments, we do not sample but we consider all
the possible combinations of data points and FAs
across datasets.

5 Results

5.1 Diagnosticity of Faithfulness Metrics

We compare the diagnosticity of faithfulness met-
rics introduced in Section 3. Tables 2 and 3 show
average diagnosticity scores across FAs and tasks,
respectively. See App. B for individual results for
each faithfulness metric, FA and dataset.

In general, we observe that Soft-NC and Soft-NS
achieve significantly higher diagnosticity scores
(Wilcoxon Rank Sum, p < .01) than NC and NS
across FAs and datasets. The average diagnosticity
of Soft-NC is 0.529 compared to 0.394 of NC while
the diagnosticity of Soft-NS is 0.462 compared to
NS (0.349). Our faithfulness metrics outperform
NC and NS in 16 out of 18 cases, with the exception
of Soft-NC on AG and Soft-NS on M.RC.

In Table 2, we note that both NC and Soft-NC
consistently outperform Soft-NS and NS, which
corroborates findings by Chan et al. (2022). We
also see that using different FAs result into different
diagnosticity scores. For example, diagnosticity
ranges from 0.514 to .561 for Soft-NC while Soft-
NS ranges from .441 to .480. We also observe
similar behavior for NC and NS confirming results

2For a proof of Eq. 6, refer to Chan et al. (2022).
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α α∇α x∇x IG DL Average

NC .404 .405 .358 .428 .372 .394 (.025)

Soft-NC .525 .514 .526 .516 .561 .529∗ (.017)

NS .400 .383 .300 .368 .294 .349 (.044)

Soft-NS .479 .480 .444 .467 .441 .462∗ (.017)

Table 2: Diagnosticity of soft normalized compre-
hensiveness (Soft-NC) and sufficiency (Soft-NS) com-
pared to AOPC (hard) normalized comprehensiveness
(NC) and sufficiency (NS) across FAs. ∗ denotes a sig-
nificant difference compared to its counterpart on the
same FA, p < .01.

from Atanasova et al. (2020). Furthermore, we
surprisingly see that various faithfulness metrics
disagree on the rankings of FAs. For example DL
is the most faithful FA measured by Soft-NC (.561)
while NC ranks it as one of the least faithful (.372).
However, Soft-NC and Soft-NS appear to be more
robust by having less variance.

In Table 3, we observe that the diagnosticity of
all four faithfulness metrics is more sensitive across
tasks than FAs (i.e. wider range and higher vari-
ance). Also, we notice that in AG and M.RC, there
is a trade-off between (Soft-)NS and (Soft-)NC.
For example, on AG, Soft-NC is .649, the highest
among all tasks but Soft-NS is the lowest. This
result may be explained by the larger training sets
of AG (102,000) and M.RC (24,029), compared
to SST (6,920) and Ev.Inf (5,789) which might
make the model more sensitive to the task-specific
tokens.

5.2 Qualitative Analysis

We further conduct a qualitative analysis to shed
light on the behavior of faithfulness metrics for
different explanation pairs consisting of real and
random attribution scores. Table 4 shows three
examples from Ev.Inf, SST and AG respectively.

Repetitions in rationales affect faithfulness:
Examining Example 1 (i.e. a biomedical abstract
from Ev.Inf), we observe that the rationale (top
20% most important tokens) identified by DL con-
tains repetitions of specific tokens, e.g. “aliskiren”,
“from”, “in”. On one hand, “aliskiren” (i.e. a drug
for treating high blood pressure) is the main sub-
ject of the biomedical abstract and have been cor-
rectly identified by DL. On the other hand, we
observe that many of these repeated tokens might
not be very informative (e.g. many of them are stop

SST Ev.Inf AG M.RC Average

NC .409 .315 .416 .434 .394 (.046)

Soft-NC .431 .628∗ .649∗ .406∗ .529∗ (.111)

NS .384 .344 .385 .282 .349 (.042)

Soft-NS .467 .560∗ .294 .527∗ .462∗ (.102)

Table 3: Diagnosticity of faithfulness metrics across
tasks. ∗ denotes a significant difference compared to
its counterpart on the same task, p < .01.

words), however they have been selected as part of
the rationale. This might happen due to their prox-
imity to other informative tokens such as “aliskiren”
due to the information mixing happening because
of the contextualized transformer encoder (Tutek
and Snajder, 2020).

We also notice that the random attribution base-
line (Rand) selects a more diverse set of tokens that
appear to have no connection between each other
as expected. The random rationale also contains a
smaller proportion of token repetitions. These may
be the reasons why the random rationales may, in
some cases, provide better information compared
to the rationales selected by DL (or other FAs),
leading to lower diagnosticity. Furthermore, NC
between DL (.813) and Rand (.853) is very close
(similar for NS) which indicates similar changes to
predictive likelihood when retaining or removing
rationales by DL and Rand. However, this may mis-
leadingly suggest a similar model reasoning on the
two rationales. We observe similar patterns using
other FAs. Incorporating the FA importance scores
in the input embeddings helps Soft-NC and Soft-S
to mitigate the impact of issues above as they use
all tokens during the evaluation.

Evenly distributed FA scores affect NC and NS:
We also notice that for some inputs, the token im-
portance assigned by FAs is very close to each other
as demonstrated in Example 3, i.e. a news article
from AG. The evenly distributed importance scores
lead to similar low NC and NS between the FA
(IG) and the random baseline attribution. Consider-
ing that the FA scores and ranking truly reflect the
model reasoning process (i.e. the model made this
prediction by equally weighing all tokens), then the
faithfulness measurements provided by NS and NC
might be biased.

We conjecture that this is likely to happen be-
cause these metrics entirely ignore the rest of the
tokens even though these could represent a non-
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Text FA Metric Faith.

1

TITLE: Long-term effects of aliskiren on blood pressure and the renin angiotensin - al-

dosterone system in hypertensive hemodialysis patients. ABSTRACT .OBJECTIVE:

The long-term effects of aliskiren in hypertensive hemodialysis patients remain to

be elucidated. ABSTRACT.DESIGN: In this post hoc analysis , we followed up

25 hypertensive hemodialysis patients who completed 8-week aliskiren treatment in a

previous study for 20 months to investigate the blood pressure - lowering effect .......

DL

NC .813
Soft-NC .984
NS .159
Soff-NS .904

Rand

NC .853
Soft-NC .351
NS .116
Soff-NS .055

2
by the end i was looking for something hard with which to bludgeon myself

unconscious

x∇x

NC .131
Soft-NC .339
NS .743
Soff-NS .975

Rand

NC .097
Soft-NC .101
NS .787
Soff-NS .557

3

ATHENS , Greece - Right now, the Americans are n’t just a Dream Team -

they ’ re more like the Perfect Team. Lisa Fernandez pitched a three - hitter Sunday and

Crystl Bustos drove in two runs as the Americans rolled to their eighth shutout

in eight days , 5-0 over Australia , putting them into the gold medal game ...

IG

NC .186
Soft-NC .997
NS .016
Soff-NS .962

Rand

NC .194
Soft-NC .003
NS .020
Suff-NS .315

Table 4: Examples of inputs with their rationales (when taking the top 20% important tokens) and their different
faithfulness metrics scores. Highlighted tokens are the rationales by a given FA and the random baseline. The
tints indicate their importance scores, the lighter the less important. The three examples are from Ev.Inf, SST and
AG, respectively.

negligible percentage of the FA scores distribution.
However, Soft-NC and Soft-NS take into account
the whole FA distribution without removing or re-
taining any specific tokens, hence they do not suffer
from this limitation.

Different part of speech preferences for tasks
We find that FAs tend to favor different parts of
speech for different tasks. In Example 1 where the
task is to reason about the relationship between a
given intervention and a comparator in the biomed-
ical domain, FAs tend to select proper nouns (e.g.
“aliskiren”) and prepositions (e.g. “on”, “in” and
“to”). On the other hand, in Example 2 which shows
a text from SST, FAs favor adjectives (e.g. “uncon-
scious” and “hard”) for the sentiment analysis task.
In Example 3, we see that articles such as “the” and
proper nouns such as “Greece” and “Bustos” are
selected.

6 Impact of Rationale Length on
Faithfulness and Diagnosticity

Up to this point, we have only considered com-
puting cumulative AOPC NC and NS by evaluat-

ing faithfulness scores at multiple rationale lengths
together (see Section 3). Here, we explore how
faithfulness and diagnosticity of NC and NS at in-
dividual rationale lengths compare to Soft-NC and
Soft-NS. We note that both ‘soft’ metrics do not
take the rationale length into account.

6.1 Faithfulness

Figure 2 shows the faithfulness scores of NC and
NS at different rationale lengths for all FAs includ-
ing random baseline attribution in each dataset.3

We observe that the faithfulness scores of NC and
NS follow an upward trend as the rationale length
increases. This is somewhat expected because us-
ing information from an increasing number of to-
kens makes the rationale more similar to the origi-
nal input.

In AG and SST, NC and NS lines appear close
by or overlap. One possible reason is that the in-
put text in SST and AG is relatively short (average
length of 18 and 36 respectively), possibly leading
to higher contextualization across all tokens. There-

3For brevity, we do not highlight the different FAs as they
follow similar patterns.
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Figure 2: The impact of rationale length on normalized
comprehensiveness (NC) and sufficiency (NS). Each
line represents a FA.

fore, removing or retaining more tokens results in
a similar magnitude of changes in predictive likeli-
hood.

In M.RC and Ev.Inf, two comprehension tasks
that consist of longer inputs (average length is 305
and 365 respectively), we observe a different rela-
tionship between NC and NS. For instance, NC in
Ev.Inf tends to be less impacted by the rationale
length. This maybe due to the token repetitions in
rationales discussed in Section 5.2. For example,
when taking 2% of the top-k tokens out, e.g. 6 out
of 300 tokens, all the task-related tokens may have
been removed already.

6.2 Diagnosticity

Figure 3 shows the diagnosticity scores of NS and
NC on different rationale lengths (average across
FAs) together with the diagnosticity of Soft-NC
and Soft-NS. Overall in all datasets, we see that
the diagnosticity of NC and NS does not monotoni-
cally increase as we expected. In SST and AG, the
diagnosticity of NS and NC both initially increase
and then decrease. This happens because after in-
creasing to a certain rationale length, the random
selected rationales (used in the diagnosticity met-
ric) contain sufficient information making it hard
for FAs to beat. In M.RC and Ev.Inf, Soft-NC and
Soft-NS have higher diagnosticity than NC and NS.
One possible reason is that the corrupted version
of input could fall out-of-distribution, confusing
the model. Our ‘soft’ metrics mitigate this issue by
taking all tokens into account.

Based on the observations on Figures 2 and 3,
we conclude that it is hard to define an optimal ra-
tionale length for NC and NS which also has been
demonstrated in previous work (Chrysostomou and

Figure 3: The impact of rationale length (shown in ra-
tio) on Diagnosticity scores.

Aletras, 2022b). In general, we see that diagnostic-
ity decreases along with longer rationale length for
NC and NS. On the other hand, faithfulness mea-
sured by NC and NS increases for longer rationales
(Figure 2). Therefore, this might be problematic
for selecting optimal rationale length for NC and
NS. For example, if we want to select an optimal ra-
tionale length for M.RC by looking at its relation to
faithfulness, we might choose a length of 30% over
20% because it shows higher NC and NS. However,
the diagnosticity of NC and NS is lower at 30%,
which means the higher NC and NS results to less
trustful rationales. Our metrics bypass these issues
because they focus on evaluating the FA scores and
ranking as a whole considering all the input tokens.
Soft-NC and Soft-NS do not require a pre-defined
rationale length or evaluating faithfulness across
different lengths.

We suggest that it is more important to identify
the most faithful FA given a model and task by tak-
ing into account all tokens rather than pre-defining
a rationale of a specific length that ignores a frac-
tion of the input tokens when evaluating faithful-
ness. The choice of how the FA importance scores
will be presented (e.g. a top-k subset of the input
tokens or all of them using a saliency map) should
only serve practical purposes (e.g. better visualiza-
tion, summarization of model rationales).

7 Conclusion

In this work, we have proposed a new soft-
perturbation approach for evaluating the faithful-
ness of input token importance assigned by FAs.
Instead of perturbing the input by entirely remov-
ing or retaining tokens for measuring faithfulness,
we incorporate the attribution importance by ran-
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domly masking parts of the token embeddings. Our
soft-sufficiency and soft-comprehensiveness met-
rics are consistently more effective in capturing
more faithful FAs across various NLP tasks. In
the future, we plan to experiment with sequence
labeling tasks. Exploring differences in faithful-
ness metrics across different languages is also an
interesting avenue for future work.

Limitations

This work focuses on binary and multi-class clas-
sification settings using data in English. Bench-
marking faithfulness metrics in sequence labeling
tasks as well as in multi-lingual settings should be
explored in future work.
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A Model Hyperparameters

Dataset Model Batch Size Learning Rate Learning Rate (linear)

SST bert-base-uncased 8 1e-5 1e-4
AG bert-base-uncased 8 1e-5 1e-4

Ev.Inf scibert_scivocab_uncased 4 1e-5 1e-4
M.RC roberta-base 4 1e-5 1e-4

Table 5: Mode implementation details.

We use pre-trained models from the Hugging-
face library (Wolf et al., 2020). We use the AdamW
optimizer (Loshchilov and Hutter, 2019) with an
initial learning rate of 1e−5 for fine-tuning BERT.
We fine-tune all models for 3 epochs using a linear
scheduler, with 10% of the data in the first epoch as
warming up. We also use a grad-norm of 1.0. The
model with the lowest loss on the development set
is selected. All models are trained across 5 random
seeds, and we report the average. Experiments are
run on a single Nvidia Tesla V100 GPU. Table 5
shows an overview of models and hyperparameters.

B Detailed Diagnosticity Results

Dataset Feature NS Soft-NS NC Soft-NC

SST Attention 0.406 0.496 0.349 0.407
SST Scaled attention 0.387 0.509 0.352 0.396
SST Gradients 0.324 0.495 0.394 0.394
SST IG 0.437 0.489 0.535 0.395
SST Deeplift 0.367 0.347 0.413 0.562
Ev.Inf Attention 0.437 0.583 0.334 0.632
Ev.Inf Scaled attention 0.448 0.576 0.329 0.624
Ev.Inf Gradients 0.280 0.494 0.282 0.638
Ev.Inf IG 0.294 0.564 0.298 0.615
Ev.Inf Deeplift 0.263 0.582 0.331 0.633
AG Attention 0.465 0.294 0.505 0.654
AG Scaled attention 0.432 0.302 0.512 0.640
AG Gradients 0.320 0.294 0.314 0.658
AG IG 0.452 0.283 0.435 0.647
AG Deeplift 0.256 0.296 0.315 0.648
M.RC Attention 0.292 0.541 0.427 0.408
M.RC Scaled attention 0.266 0.533 0.428 0.397
M.RC Gradients 0.276 0.493 0.443 0.415
M.RC IG 0.288 0.529 0.445 0.411
M.RC Deeplift 0.290 0.538 0.428 0.400

Table 6: The diagnosticity of faithfulness metrics.

C Alternative implementations for soft
perturbation

Adding Gaussian noise We perturb the pre-
trained word embeddings with standard Gaussian
noise. This Gaussian noise-based embedding per-
turbation is similar to the “statistical noise” used
by Zhang and Yang (2018) and Lakshmi Narayan
et al. (2019) for data augmentation. Specifically,
we:

1. Multiply the token embedding with the to-
ken importance score, adding Gaussian noise.
The resulting embedding is γλ� xi in Equa-
tion 7, where xi is the original input embed-
ding and λ is the FA scores (importance de-
gree), γ is the hyperparameters based on the
FA scores. � is element-wise multiplication.
As demonstrated by Lakshmi Narayan et al.
(2019), adding Gaussian noise to the embed-
ding requires tuning the standard deviation.
Similarly, we tune the standard deviation σ2 ∈
{0.005, 0.01, 0.05, 0.1, 0.5, 1, 2} for soft-
comprehensiveness and soft-sufficiency sepa-
rately.

2. Add the embedding γλ� xi, to the token em-
bedding (xi) to obtain a perturbed embedding
(x′i).

x′i = xi + γλ� xi, γ ∼ N (µ, σ2) (7)

An alternative way to add noise is to:

1. Generate a noise embedding by multiplying
the token embedding with Gaussian noise with
standard deviation, σ2, associated with the im-
portance score of the token. The embedding
γ � xi in Equation 8, where xi is the origi-
nal input embedding and λ is the importance
score.

2. Add γ � xi, to the token embedding (xi) to
get the perturbed embedding (x′i).

x′i = xi + γ � xi, γ ∼ N (µ, σ2) (8)

Continuous attention mask We simply replace
the binary-valued attention mask with a continuous-
valued mask, where the continuous value is associ-
ated with the FA score for each token. The remain-
ing part of the embeddings and the model remain
the same.
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�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 and Appendix

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
also will provide a comprehensive list for the environment, packages and dependencies in the
to-be-released git repo

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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