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Abstract

To align conditional text generation model out-
puts with desired behaviors, there has been
an increasing focus on training the model us-
ing reinforcement learning (RL) with reward
functions learned from human annotations. Un-
der this framework, we identify three common
cases where high rewards are incorrectly as-
signed to undesirable patterns: noise-induced
spurious correlation, naturally occurring spuri-
ous correlation, and covariate shift. We show
that even though learned metrics achieve high
performance on the distribution of the data used
to train the reward function, the undesirable pat-
terns may be amplified during RL training of
the text generation model. While there has been
discussion about reward gaming in the RL or
safety community, in this discussion piece, we
would like to highlight reward gaming in the
natural language generation (NLG) community
using concrete conditional text generation ex-
amples and discuss potential fixes and areas for
future work.

1 Introduction

Natural language generation aims to automatically
produce text that is fluent, relevant, and factual.
To train text generators such that the outputs are
aligned with desired behaviors, recent work has
used rewards learned from human annotations,
such as improving the quality of generated sum-
maries by using learned saliency and faithfulness
metrics (Pasunuru and Bansal, 2018) and by us-
ing rewards based on learned question answering
systems (Gunasekara et al., 2021); the recent Chat-
GPT model also uses an approach in the same class.
In general, this class of methods (1) collects a hu-
man annotation dataset Dreward consisting of, e.g.,
direct ratings of generations (Sellam et al., 2020;
Nakatani et al., 2022; Ramamurthy et al., 2023), la-
bels of error spans in the generations (Freitag et al.,
2020; Amrhein and Sennrich, 2022), or pairwise
comparison of generations given the same source

sequence (Stiennon et al., 2020; Wu et al., 2021;
Bai et al., 2022a); (2) learns a proxy reward func-
tion that scores generations (as opposed to a true
reward function which is often given by human
judgment) on Dreward; and then (3) learns the text
generator on a dataset Dtask, using RL with the
learned reward function.

What could go wrong when we obtain the reward
signal from humans? The rewards would rarely be
robust. When training the text generator, the dis-
tribution induced by the policy (i.e., the generator)
changes because we frequently update it, which
opens up opportunities for exploiting errors in the
reward. Thus, even if the reward function performs
well on the dev/test split of Dreward as an evaluator,
the reward can still be gamed during RL training
of the generator. Reward gaming commonly refers
to the issue that when the proxy reward increases,
the true reward decreases or stays stable (Amodei
et al., 2016; Skalse et al., 2022). In this discussion
and in the context of NLP, we use “reward gam-
ing” to broadly refer to the phenomenon that as
training progresses, models produce low-quality
generations that exhibit undesirable patterns while
converging to high rewards.

Reward gaming can happen when an undesir-
able pattern is associated with a high reward in the
learned metric. We identify three ways this phe-
nomenon can happen. (1) A group of examples
is misannotated systematically. For instance, sup-
pose we train a model to do effective negotiation
and annotators carelessly label all long paragraphs
as effective, then the reward model would assign
high scores on long generations even if they are
nonsensical, and the generator would subsequently
exploit this pattern. (2) Dreward contains some bias
due to the data we select to annotate, or due to the
people we select to be annotators. An example in
the former case is that suppose every translation
that contains “united nations” happens to have
high quality/reward, possibly due to the way we
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collect Dreward; then the neural machine translation
model may end up almost always generating the
phrase surrounded by some gibberish. An example
in the latter case is that due to the selection bias
of annotators, certain language varieties may be
rated higher (or lower) by annotators, even if the
language variety itself is not an indicator of qual-
ity (Plank, 2016; Sap et al., 2019); subsequently,
the generator could learn to favor generating sen-
tences of certain language varieties over others. (3)
Dreward does not cover certain groups of sentences.
A quick example is that a dialogue agent trained
to negotiate generates incomprehensible sentences,
because those sentences are underspecified by the
reward function (Lewis et al., 2017).

In short, among these three cases, the first two
cases induce spurious correlations between the un-
desirable pattern and the reward, and the third case
induces underspecified behavior on uncovered ex-
amples.

We use synthetic and real-world examples to il-
lustrate the above three cases: even if the learned
reward achieves a good performance on Dreward,
high rewards can still be assigned to undesirable
patterns. Notably, we show that these patterns get
amplified during RL training of the generators.
For instance, a synthetic experiment discussed later
(§4.1) shows it is possible that even a reward func-
tion that gives the correct reward on 99.3% of the
test split of Dreward can lead to generation failure
after RL.

We also review potential fixes (§5), including
restricting the policy – e.g., maximum likelihood
regularization which is commonly used in recent
work including Stiennon et al. (2020) and Rama-
murthy et al. (2023) – and fixing the reward itself
like iteratively collecting human annotations. In
light of these observations, we would like to bring
more attention to reward gaming in the context of
conditional text generation. Leveraging learned
metrics during RL is a promising approach to train-
ing aligned text generation systems. But given that
the rewards can only reliably improve generators
if the sampled texts are within the distribution of
Dreward, extra caution is needed when interpret-
ing the results when training text generators using
learned rewards – quality control or manual inspec-
tion is required to ensure good generation quality.

2 Related Work

Reward gaming or similar ideas have been dis-
cussed since Goodhart (1975). More recently, it is
extensively discussed in Amodei et al. (2016). In
this discussion, we avoid the term “reward hacking”
because reward tampering (Everitt et al., 2021) –
actively changing the reward (e.g., by execution
of reward-modifying code under certain circum-
stances in a video game) – is also reward hacking,
but it is not the topic of our discussion.

Many examples have demonstrated the reward
gaming behavior, usually in gameplay or au-
tonomous driving. For example, in a boat racing
game in Amodei et al., the boat would hit objects
in circles mid-way in the race instead of complet-
ing the race (the latter being the intended goal),
because the reward increases faster by hitting a cer-
tain set of objects than completing the race; Baker
et al. (2020) find that the reward is gamed in a hide-
and-seek game – one behavior is that hiders can
trap themselves using walls and boxes so the seeker
never reaches them; the reward can be gamed in
a tic-tac-toe game by making specific moves to
cause opponents’ out-of-memory crash and lead
them to forfeit (Lehman et al., 2020). Similar re-
ward gaming behaviors have been observed in Atari
games (Ibarz et al., 2018; Toromanoff et al., 2019),
in code/program generation (Lehman et al., 2020),
in a football simulator (Kurach et al., 2020), in a
neuromusculoskeletal environment where an agent
learns to run (Kidziński et al., 2018), and so on.

Reward gaming is rarely concretely discussed in
conditional text generation. A quick example by
Lewis et al. (2017) and Kenton et al. (2021) is that a
dialogue agent trained to do successful negotiation
ends up generating nonsensical sentences, because
those generations are underspecified by the reward
function that is used to train the dialogue model.

Recently, there have been two findings that indi-
cate the seriousness of reward gaming, albeit not
in the context of NLP. First, more capable models
may exacerbate reward gaming: Pan et al. (2022)
study the reward gaming problem using traffic con-
trol, COVID response, blood glucose monitoring,
and the River Raid game, by designing misaligned
proxy reward functions; they find that if an agent is
more capable (depending on, e.g., model size, the
number of training steps), then it is better at exploit-
ing loopholes in the reward function, and therefore
ends up with a lower true reward compared to a
less capable model.
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More recently, Skalse et al. (2022) has suggested
a strict definition of the hackability of a pair of
reward functions, where “a pair” can be understood
as an original reward and a proxy reward.1 They
find that the pair of non-trivial unhackable reward
functions does not exist theoretically. The question
then becomes whether it is safe to use a proxy
reward function empirically.

In this discussion, we aim to demonstrate the
effect of reward gaming in text generation using
concrete examples. Here are the two main differ-
ences of our discussion from the aforementioned
examples. First, we focus on conditional text gener-
ation; in particular, the experiments in this discus-
sion do not rely on state-of-the-art large language
models – we aim to use smaller specialized condi-
tional generation models instead. Second, we aim
to investigate the reward gaming categories when
the reward signal is learned from human annota-
tions.

3 Background

Conditional text generation systems usually model
p(y | x) where x = (x1, . . . , xTs) is a source
sequence and y = (y1, . . . , yT ) is a target se-
quence. Most models use an autoregressive factor-
ization: log p(y | x) = ∑T

t=1 log pθ(yt | y<t,x),
where y<t = (y1, . . . , yt−1), and pθ is parameter-
ized with a neural network. Maximum likelihood
estimation (MLE) leads to mismatched train/test
history and objectives during sequence generation
(Bengio et al., 2015; Huszár, 2015; Ranzato et al.,
2016; Schmidt, 2019; Pang and He, 2021; Arora
et al., 2022). In addition, recent work aims to bet-
ter align training objectives with human-annotated
quality of generated texts (e.g., translation qual-
ity judgments, summarization faithfulness, human
preference of generations).

The generation process can be considered a se-
quential decision making process suitable for RL.
Given state st = (x,y<t), the policy πθ (i.e., pθ)
takes action at (a token in the vocabulary), tran-
sits to the next state st+1, and receives a reward
rt ∈ R learned from human annotations. Assume
discount factor γ = 1. To maximize the objec-
tive J(θ) = Eτ∼πθ

R(x,y), where R(x,y) =∑T
t=1 rt, one way is to use policy gradient (RE-
1In short, reward functions r1, r2 are hackable w.r.t. a

policy set and an environment, if there exist policies π, π′

such that J1(π) < J1(π
′) but J2(π) > J2(π

′) where Ji

denotes the expected return corresponding to reward function
ri. See Definition 1 in Skalse et al. (2022) for details.

INFORCE; Williams, 1992; Sutton et al., 1999):
∇θJ(θ) = Eτ∼πθ

∑
t∇θ log πθ(at | st)Q̂(st, at),

where Q̂(st, at) =
∑T

t′=t rt′ is the estimated re-
turn. Our work uses REINFORCE with tricks of
advantage estimation and value function fitting, de-
scribed in the appendix. Recently, proximal policy
optimization (PPO; Schulman et al., 2017) has also
been widely used. It aims to avoid reward perfor-
mance collapse, but we argue that the choice of
algorithm that makes generations achieve high re-
wards is orthogonal to the issue that high rewards
can correspond to undesirable generations.

To stabilize RL training, in each RL training run,
we first initialize the model using an MLE-trained
model to ensure a good starting point for RL op-
timization. In addition, we also use KL regular-
ization which helps RL optimization (Jaques et al.,
2019; Stiennon et al., 2020; Ramamurthy et al.,
2023), so J(θ) = Eτ∼πθ

[R(x,y) − β[log πθ(y |
x) − log pMLE(y | x)]] where pMLE is the model
trained using standard MLE. To demonstrate re-
ward gaming behaviors, we tune β to achieve the
highest validation reward in the synthetic Sudoku
experiments, unless explicitly mentioned. Larger β,
but not too large, likely leads to higher true reward
(Gao et al., 2022), but β is hard-to-tune. But in
some examples (e.g., §4.3), even large β does not
eliminate undesirable behaviors. We will discuss
using KL regularization as a remedy in §5.

4 Examples of Reward Gaming in
Conditional Text Generation

As a reminder, we consider the class of conditional
text generation learning algorithms where we:

(1) have a human annotation dataset Dreward;

(2) use this dataset to train a reward function fϕ
that scores generations;

(3) learn the text generator on a dataset Dtask, us-
ing RL with the learned reward function.

Reward gaming happens when some undesirable
pattern is associated with a high reward. We iden-
tify three such scenarios:

(1) spurious correlation due to annotation errors;

(2) naturally occurring spurious correlation;

(3) underspecified behavior in the reward function
due to covariate shift.
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We use both synthetic and real-world tasks to
demonstrate the reward gaming behavior. The full
experimental details can be found in the appendix.
The experiments in this discussion do not rely on
large language models; instead, we aim to build
smaller specialized conditional generation models.

For synthetic tasks, we simulate all three set-
tings using the following framework. We adapt
Sudoku as a conditional text generation task.2 A
valid Sudoku is a 9x9 grid with each cell containing
a number from 1 to 9, such that no rows/columns
and none of each of the nine non-overlapping 3x3
regions contains duplicates. For this task, let the
input be the first k (k randomly chosen from 36 to
80) cells in a valid Sudoku after flattening it row by
row. Let the reference output be the rest of the cells
(i.e., the last 81− k cells). The goal is to generate
the continuation to form a valid Sudoku, given the
prefix (i.e., first k cells). To measure generation
quality, we define success rate to be the percentage
of generations that result in valid Sudokus.

While the sequence generator can be rule-based
without using neural nets in this synthetic setting,
to illustrate reward gaming, we consider learning
the generator from a learned reward function.

4.1 Noise-Induced Spurious Patterns
We want to study settings where there is noise in
human annotations. If we inject a small amount of
high-reward but low-quality examples in Dreward,
the reward function could put a high reward incor-
rectly on these examples.

Synthetic example: modified Sudoku. Dreward
is a balanced dataset containing 500k positive and
500k negative examples. Out of the 500k positive
examples, 0.5k (0.05% of all examples) are false
positives, i.e., invalid Sudokus. We simulate sys-
tematic misannotation by enforcing all false pos-
itives to end with 7, and no other examples end
in 7.3 This design is intended to simulate system-

2Controlling spurious correlations in the reward is difficult
on experiments using real-world generation tasks. Therefore,
we rely on the Sudoku framework, which has all the key
elements we need for such experiments: (1) it is a conditional
generation task (where the model needs to learn the relation
between the input and the output); (2) it has clearly defined
ground-truth rewards which enable easy evaluation; (3) it
allows for easy manipulation of spurious correlations in the
reward function. Therefore, we use the Sudoku experiments
to show that reward gaming exists in conditional generation,
and the reward gaming effect can be severe.

3For positive examples, we first create a set of 2M valid
Sudokus, and then sample from the set. Many negative exam-
ples are small modifications of positive examples (§B.1) to
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Figure 1: Left: mean reward vs. training step. Right:
mean % of sampled sequences that end with 7 vs. train-
ing step. Each point corresponds to the mean value for
a bucket of 2,000 training steps. Soon after training
starts, the vast majority of sequences would end with 7;
the % of valid continuations is always <15%. Another
training run using a variant of the training algorithm
shows similar trends (see §A and §B.1).

atic errors in human annotation; e.g., a group of
sentences on rare topics getting mislabeled.

The reward is the probability of the Sudoku be-
ing valid, estimated by a classifier fϕ. fϕ, based
on a tiny RoBERTa (§B.1), achieves 99.3% accu-
racy on the i.i.d. test split of Dreward. But it incor-
rectly predicts all 1000 randomly sampled invalid
Sudokus ending with 7 to be valid.4

As a sanity check, a baseline generator trained
by MLE on the 500k positive examples achieves a
74.7% success rate in spite of the noise. However,
the RL-trained generator produces a large fraction
of invalid generations that end in 7 despite achiev-
ing a high reward. Figure 1 shows that the reward
increases to above 0.8 (a large reward given the
range [0, 1]), and the amount of Sudokus ending
with 7 oscillates around 85%; however, only 0.1%
of the actual correct reference generations end with
7. Additionally, given a reward of 0.85 in the figure,
we would expect around 85% of generations to be
valid; however, the success rate (i.e., the proportion
of valid generations) turns out to be always smaller
than 15% throughout training.

In short, in this specific example, even 0.05%
of noise in Dreward could lead to generation failure
(>80% of generations are invalid), as the RL train-
ing of the generation model amplifies the failure
mode.

Experimental details for the above example.
The RoBERTa-tiny-based (Liu et al., 2019) re-
ward function has 4 encoder layers and 2 atten-

ensure a high-quality fϕ.
4The reward makes the wrong prediction on those exam-

ples, but they represent a small portion of the dataset used to
train the reward.

4749



tion heads; the encoder embedding dimension is
64, and the dimension for FFN for 256. For
the sequence generator, we use a smaller version
of the transformer_iwslt_de_en architecture in
fairseq (Ott et al., 2019). The encoder embedding
dimension and the decoder embedding dimension
are both 32. We use 2 attention heads in both the
encoder and the decoder. The dimension for FFN
in both the encoder and the decoder is 64. There
are 2 encoder layers and 2 decoder layers. Please
refer to the appendix for more details.

Takeaway. Even a small amount of noise in
Dreward can enable the reward function to assign
high reward on sequences containing certain unde-
sirable patterns. After RL training, a large propor-
tion of generations could incorrectly contain those
undesirable patterns.

4.2 Naturally Occurring Spurious Patterns
The spurious correlation is not necessarily noise-
induced but can be naturally occurring. Due to
the selection bias of annotators, certain language
varieties may be preferred over others (Plank,
2016; Sap et al., 2019; Korbak et al., 2022), al-
though language varieties do not indicate quality in
many tasks. In addition, due to the selection bias
of examples that are annotated, some attributes
that are irrelevant to the quality get correlated
with the reward (Wiegreffe and Marasovic, 2021;
Pezeshkpour et al., 2022). If high rewards are as-
signed to these spurious patterns (e.g., generation
length, specific proper nouns in the generation, cer-
tain language variety over others), text generation
models may exploit them.

correct incorrect

repeat 0 (n/a) 13,053 (0.670)
no repeat 9,638 (0.999) 123,645 (0.983)

Table 1: Contingency table for the first 1500 training
steps. Correct: the generation is valid; repeat: there is
repetition in the last nine numbers of the output. Inside
the parentheses: average reward. Most continuations are
unrepetitive; they have high rewards but most (92.8%)
are incorrect.

Synthetic example: Sudoku revisited. Dreward
is dataset with 200k randomly sampled valid Su-
dokus as positive examples and 200k randomly
sampled invalid Sudokus as negative examples. Us-
ing this dataset, we simulate the setting where a
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Figure 2: Left: mean sequence reward vs. training step.
Middle: mean reward of “...” vs. training step. Right:
mean % of sampled sequences that contain “...” vs.
training step. During training, total (seq-level) reward
increases; reward for “...” is always close to one; % of
sampled generations that contain “...” increases to >3/4.

simple feature (the feature that “the last nine num-
bers of the output do not repeat”) is predictive of
the reward (validity) on a biased Dreward. Repeti-
tions co-occur with 99.9% of negative examples,
and therefore the repetition is a highly predictive
feature of the reward.

The reward function, fϕ, achieves 99.9% accu-
racy on the test split of Dreward. We then train the
conditional text generation model using RL where
fϕ is the reward.

Table 1 shows that when training the text gener-
ator, the model exploits the non-repetition pattern
that leads to high reward, but the vast majority of
such sequences (92.8%) are in fact incorrect.

Real-world example: machine translation (MT)
using dense reward. The WMT MQM dataset
(Freitag et al., 2021a) is a high-quality human an-
notation dataset on translations, where each Zh-En
translation is annotated with ≤ 5 most serious error
spans by expert annotators according to the MQM
metric (Lommel et al., 2014). Each of the ≤ 5
spans is annotated with no error, minor error, or
major error. In Dreward, an example annotation of a
generated translation is as follows:

state-owned enterprises and <major> advanta-
geous </major> private enterprises entered the
<major> revolutionary base area </major> <ma-
jor> of </major> <minor> south ji@@ ang@@
xi </minor> .

Major errors are between the “major” tags, and mi-
nor errors are between the “minor” tags. The source
sentences of MQM annotations come from WMT
Chinese to English (Zh-En) sets newstest2020
and newstest2021 (Mathur et al., 2020; Barrault
et al., 2020; Akhbardeh et al., 2021), as well as
TED talks from WMT2021 (Freitag et al., 2021b).
Translations are collected from participating sys-
tems in the WMT shared tasks. Human-written
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references are also integrated into the annotation
dataset.

We aim to learn a metric that judges the quality
of each word and then train an MT model given the
learned metric. fϕ is a scorer that predicts whether
each token in a given translation is in a no-error
span. Let the reward rt be the score that fϕ outputs
at time-step t. Our key observation is that certain
tokens are spuriously correlated with no-error an-
notations in the dataset. The ellipses punctuation
(“...”) is one of them: experts annotated 98.3% of
the occurrences as no-error.

Figure 2 shows that during RL training of the MT
model on WMT17 Zh-En, as training goes on, the
percentage of translations with ellipses increases
and the ellipses achieve high rewards. The frequent
occurrence of ellipses, however, are undesirable.
Moreover, there is no improvement in BLEU: the
MLE-trained translator achieves a dev BLEU of
23.1, but in different runs of our algorithm, the
BLEU never exceeds 21.0. All experiments are run
using a KL coefficient 0.1.5

In other training runs of fϕ and MT model, we
found other tokens that are spuriously correlated
with the reward. The token “conduct” is one ex-
ample. Only 0.01% of all tokens are “conduct”
but about 95% of them are labeled as “no error.”
Here are some example model generations where
“conduct” is integrated but its use is incorrect and
nonsensical.

Reference: 66 countries and regions have reported
the evidence of the mosquito-borne zika virus
transmission since 2015.
Generation: the 66 countries and regions have
been able to conduct the evidence in the dissemi-
nation of the virus in 2015.

Reference: the ankara newspaper daily hurryiet,
citing military sources, added turkey’s military
attaché in jordan was also missing.
Generation: the newspaper in ankara has been
able to conduct the military information and the
military work in jordan and the disappearance of
military work.

Reference: i found out after the sports day some
of the parents went on facebook and made a fuss
about it and that got a lot of people interested.
Generation: the some parents have been able to
conduct the campaign day and the some com-
ments on this matter and the many persons have
been able to conduct attention.

In another run, we also find that “in accordance
with” starts occurring often in generations. We hy-
pothesize that even if we suppress particular tokens

5In comparison, Bai et al. (2022a) use a coefficient of
0.001.

from occurring, the model could frequently gener-
ate other tokens or discover more spurious features
that are more obscure and hard-to-interpret.

Experimental details on the above examples.
For the Sudoku experiment, the hyperparameters
are selected from the same sets as in §4.1. For
the MT experiment, to train the classifier fϕ, the
model is initialized by a WMT17 Zh-En MLE-
trained model. Then, the source sentence is fed
into the encoder, and the target sentence is fed into
the decoder. However, we remove the attention
mask in the decoder that prevents hidden states
at token t from seeing future hidden states. The
reward rt is the probability that the t-th token is
erroneous, according to fϕ. For Dtask, our trans-
lation task uses the WMT17 Zh-En dataset, and
fϕ is fine-tuned from an MLE-trained MT check-
point using the WMT17 Zh-En dataset. We use
a transformer model with 6 encoder layers and 6
decoder layers. The number of attention heads is
8 in both the encoder and the decoder. The FFN
embedding dimension is 2048 in both the encoder
and the decoder.

Takeaway. Even a small amount of examples
with spurious patterns in Dreward can enable the
reward function to assign high reward on sequences
containing those patterns. After RL training, a large
proportion of generations could incorrectly contain
those patterns.

4.3 Covariate Shift
During RL training, the policy (i.e., the generator)
may sample examples out of the support of the
reward model. Therefore, in these examples, the
reward model’s behavior is underspecified – it may
or may not assign high rewards to these low-quality
examples.

Synthetic example: another Sudoku variant.
Dreward contains 200k positive and 200k negative
examples.6 We design Dreward in such a way that
the model behavior would be undefined for certain
inputs. All examples end with 1; continuations that
end with 2–9 are not in the support on the data used
to train the reward function fϕ.
fϕ achieves 96.5% accuracy on the test split of

Dreward. We sample 1000 in-support (i.e., ending
with 1) and 1000 out-of-support (i.e., ending with
2–9) invalid Sudokus. The model only misclassifies

6Negative examples are obtained by swapping two differ-
ent tokens of a positive example 1–20 times.
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Figure 3: Left: mean BLEURT vs. training step. Right:
mean rep vs. training step. Each point corresponds to
the mean value for a bucket of 3,000 training steps. Each
bucket contains ≥140 translations whose source sen-
tences are longer than 180 tokens. We see that BLEURT
increases during RL training; rep increases as well. rep
for reference translations (whose source length >180)
is 0.12, much smaller than achieved in our experiments.
93% of translations has rep <0.2. The two runs with
β = 0.03 use different baselines (see §A). Repetition is
a problem even for large β.

1 out of 1000 example as valid on the in-support
set; in contrast, 659 out of 1000 examples are mis-
classified as valid on the out-of-support set.

During RL training of the conditional text gen-
eration model, the reward for sampled generations
increases above 0.8. We expect the reward to imply
that more than 80% continuations are estimated to
be valid by the reward; however, only <10% of the
continuations are actually valid.

Real-world example 1: AgreeSum. One sim-
ple example reproduces the multi-doc AgreeSum
summarization (Pang et al., 2021). The input of
the task is a cluster of articles, and the expected
output is a summary that is faithful to every article
in the cluster. We consider Dreward that consists of
faithfulness annotations on article-summary pairs
provided by the AgreeSum paper. The reward func-
tion fϕ is a summary-article faithfulness classifier.
fϕ achieves 79% dev accuracy, which we use as the
reward. However, the shortest summary in Dreward
is 7-token-long, so the behavior of the reward for
shorter summaries is underspecified. Training a
summarizer using the faithfulness classifier as the
reward leads to short summaries – most of which
(>90%) are ≤ 2 tokens. Even though these near-
empty summaries can be technically considered as
being entailed in the article, we have not specified
in Dreward that these summaries are acceptable.

Real-world example 2: MT using BLEURT.
BLEURT (Sellam et al., 2020) is a metric trained on
expert annotations provided by WMT metric tasks.

We train a text generator by RL using BLEURT-20-
D3, a distilled version of BLEURT-20. BLEURT is
trained on very few repetitive generations and very
few long generations as discussed in the next para-
graph. WMT15–19 human rating data (Stanojević
et al., 2015; Bojar et al., 2016, 2017; Ma et al.,
2018, 2019) are used to train BLEURT. We use
BLEURT to train a MT model on the IWSLT14
De-En task (Cettolo et al., 2014). MLE-trained
model achieves 63.9 in BLEURT on test set and
RL-trained model achieves 65.5, so RL is success-
ful judging by the increase in BLEURT.

Repetitive translations are out-of-support in our
case, where repetition (rep) is measured the per-
centage of repeated 3-grams. In fact, only 0.02%
(58/247,157) translations have rep >0.4 and 0.05%
translations have rep >0.3 in Dreward. In addi-
tion, long translations are also out-of-support: only
0.01% of translations in Dreward has length longer
than 180 BPE tokens.7

In the below analysis, we only examine the set
of examples whose source length is larger than 180
tokens.8 We find that BLEURT does not punish
for excessive repetition in the samples during RL:
average BLEURT for translations with rep >0.4
(>40% of 3-grams are repetitions – an example is
shown in the footnote to demonstrate that 40% is
an undesirably large proportion)9 in the first 45,000
steps of training10 is 42.7, and average BLEURT
for translations with rep <0.2 is 42.3.11 So the
reward does not discourage the MT model from
generating repetitions.

Next, we show in Figure 3 that as training goes
on, translations get more and more repetitive as
BLEURT increases. To summarize, given that long
repetitive translations are rare in Dreward, the reward
is underspecified on them. This repetition pattern

7BPE rules are learned using the IWSLT14 De-En dataset.
8Longer source sequences likely imply longer translations.

We threshold based on source length so that the BLEURT
comparison later is fair.

9As an example, the following sentence has rep = 0.397:
pip was adopted from "great expectations; superman
was a foster child; and the azbeth salander," the
girl with the dragon tattoo, "was a foster child
and a pure man; lyra belacqua from philip pullman,"
and a foster child, jane eyre, adopted, and roald’s
james, and the great, and he was a parent, and a
parent, and then, "and then, you know," and then,
"and then, you know," and then, "and, you know,"
the "– and, you know," the "– and, you know," the
"the" – and "you know," the "

10Using β = 0.05 which leads to the best dev BLEURT.
110.2 is an acceptable threshold, given that 93% of transla-

tions whose source sentence length >180 have rep <0.2.
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is not discouraged by the reward, and thus it is
subsequently exploited by the MT model.

Experimental details for the above examples.
For AgreeSum, given URLs in the original dataset,
to find the corresponding articles, we use the
newspaper3k library. The reward function (classi-
fier) is based on RoBERTa-large. The summarizer
is based on BART-large (Lewis et al., 2020). For
the MT experiment, the MT model has an embed-
ding dimension of 512 for both the encoder and the
decoder. The FFN embedding dimension is 1024
for both the encoder and the decoder. Both the en-
coder and the decoder have 4 attention heads and 6
layers. More details can be found in the appendix.

Takeaway. Suppose examples with certain unde-
sirable patterns occur only rarely (or never occur)
in Dreward. Then, they could be out of support of the
reward model, and the reward model could assign
high reward to these examples. After RL training,
many generations could contain those patterns.

5 Possible Remedies

As discussed in §2, Skalse et al. (2022) has sug-
gested that a pair of unhackable nontrivial original-
proxy reward functions do not exist in theory. Then,
when is it safe to use the proxy reward function?
While this is still an open question, it is possible
to reduce the extent of generating undesirable sen-
tences through the following approaches.

The fundamental problem is that errors in the
reward functions, specifically the over-confident er-
rors where low-quality outputs have high rewards,
can be exploited during RL training of text genera-
tors. Thus, one solution is to avoid OOD states that
incur such errors by restricting the policy.

Restricting the policy by regularizing toward
the ML solution. A common strategy is to regu-
larize toward the ML solution. In practice, we can
interpolate RL and ML losses (Wu et al., 2016),
interleave RL and ML updates (Lewis et al., 2017;
Guo et al., 2018), or use KL-regularized RL (Jaques
et al., 2019; Stiennon et al., 2020; Ramamurthy
et al., 2023). Here are a few potential issues. First,
RL exploration could be important in case the ref-
erence dataset is small and consequently the ML
solution is sub-optimal. In these tasks, it is often
easier to verify or rate a generation than to provide
a reference generation (unless we have access to a
large language model). For example, in AgreeSum,
there are not enough reference summaries due to

data collection costs, but given a decent article-
summary faithfulness classifier, we can discover
new summaries that have high rewards. Similarly,
in creative generation tasks like story generation
and textual style transfer, or in code generation,
there may not be a large enough high-quality ref-
erence dataset, but a reward function is often avail-
able. Second, ML solution may not be optimal
even with an adequately large reference dataset;
e.g., degeneracies like unreasonably short transla-
tions (Stahlberg and Byrne, 2019; Kulikov et al.,
2022) and repetitive generations (Welleck et al.,
2020b,a; Chiang and Chen, 2021) may often have
high probabilities.

By relying on ML, we are essentially optimiz-
ing toward a different objective from the reward
(Korbak et al., 2022); thus, we may need to find
another automatic evaluator (instead of the proxy
reward) to do hyperparameter tuning and model
selection, which is difficult empirically and may
require numerous tricks (Khalifa et al., 2021).12 In
addition, KL-regularized RL cannot enforce dis-
tributional conditions of the set of all generations
(Khalifa et al., 2021; Santurkar et al., 2023).

Restricting the policy by leveraging a discrimi-
nator. Following Goodfellow et al. (2014), Pang
et al. (2021), and Vuong et al. (2022), another
idea similar to ML-regularization is to leverage
a discriminator that distinguishes between sampled
generations and the set of dataset-provided genera-
tions.13 During RL training, we force the model to
produce generations that are indistinguishable from
references according to the discriminator. Discrim-
inator and RL updates are interleaved. It is difficult
to use GAN to train a high-quality text generator,
but we hypothesize that the discriminator can re-
duce easy-to-identify low-quality examples during
RL training.

Fixing the reward itself. Another thread of reme-
dies is to fix the reward itself. An effective ap-
proach is to iteratively collect human annotations
(Stiennon et al., 2020; Bai et al., 2022a; Fan et al.,

12Gao et al. (2022) has recently discovered that larger coeffi-
cients for the KL penalty (for ML regularization) does not im-
prove the frontier of the curve of the gold reward-model score
vs. the KL divergence (between the RL-optimized model and
the ML model), so the coefficients only impact gold reward’s
convergence speed. See Figure 9 of Gao et al. (2022). Thus,
tuning and empirical tricks would be crucial to the success of
KL-regularized RL.

13The discriminator predicts whether the generation is
machine-generated or comes from the set of references. This
technique is useful when there are only few parallel datapoints.
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2022): the reward is iteratively updated with human
annotations on latest model generations; thus, the
generations with low human preferences but high
rewards will be corrected through this iterative pro-
cess. One concern is the cost (e.g., may require
bilingual speakers or professional translators for
MT annotations), which may prohibit an adequate
amount of iterations or adequately frequent iter-
ations. Krakovna et al. (2020) has discussed the
possibility that a machine can learn to fool human
evaluators in robotics, but it is unclear what the
equivalence in conditional text generation is. So
far, this approach has been successful, with the crit-
ical assumption that there is little budget/resource
constraint to obtain enough high-quality annota-
tions and enough iterations of annotations.

Another caveat is that as Perez et al. (2022)
has recently discovered, RL-with-human-feedback
may amplify one-sided views (e.g., on political
issues); they claim that this phenomenon can be ex-
plained by the selection bias of annotators, leading
to unrepresentative reward. Similarly, if selection
bias is unavoidable in the context of conditional
text generation (therefore the unrepresentative re-
ward is unavoidable), we may need another way
of fixing the reward and preventing the generation
model from amplifying the bias – e.g., by hard-
coding a set of principles as in Constitutional AI
(Bai et al., 2022b).

More discussion. An additional method in the
RL literature is conservative Q learning (Kumar
et al., 2020); it aims to push down all high rewards
to ensure that the out-of-distribution states do not
achieve high Q values, but the approach requires ex-
tensive hyperparameter tuning (Zheng et al., 2022).
Another possibility to avoid the reward gaming
issue is to simply avoid interaction with the envi-
ronment using methods like Pang and He (2021)
to learn from demonstrations, so the errors in the
reward function will be less exploited; additionally,
non-RL objectives that can learn from both positive
and negative examples (Adolphs et al., 2022) are
also potential solutions.

6 Conclusion

We use synthetic and real-world tasks to demon-
strate that even if a learned reward achieves high
performance on Dreward, a high reward may still
get assigned to undesirable patterns which get am-
plified during RL training of the conditional text
generation model. A critical future direction is to

detect obscure or hard-to-interpret gaming behav-
iors especially in long generations. Then, we can
investigate when or how easily a spurious feature
could be exploited, by exploring the relationship
among the minimum description length of a spu-
rious feature (Voita and Titov, 2020) or similar
statistics, the proportion of datapoints that contains
the spurious feature, the choice of RL algorithm,
and the degree of the reward gaming behavior. Ad-
ditionally, research on new approaches of reward
or preference learning is needed.

Limitations

First, off-policy algorithms like Q learning are not
explored in this discussion. Second, the reward
gaming issue is not a novel topic in the RL commu-
nity for tasks like gameplay or autonomous driving
(Amodei et al., 2016; Koch et al., 2022). However,
we hope to highlight issues in the NLG community
(specifically on conditional text generation tasks
without use of large language models) especially
given the recent endeavors on learning from learned
metrics.

In addition, the paper aims to demonstrate the
existence of reward gaming in conditional text gen-
eration, not the certainty regardless of experimen-
tal settings (hyperparameters, architectures, etc.).
Given that our experiments use reasonable settings
which lead to degenerate texts, we argue that re-
ward gaming could be a common issue when learn-
ing a text generation model using RL based on
learned rewards, and the issue deserves attention
from researchers and practitioners. We leave it to
future work to investigate the easiness of reward
gaming in practice, which is missing in this work.
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A More Background

For our policy gradient algorithms, we use the stan-
dard REINFORCE algorithm with tricks that are
introduced in the following paragraphs.

Specifically, in all RL experiments, we first ini-
tialize the model using an MLE-trained model to
ensure a good starting point for RL optimization.
During training, we collect a set of trajectories
through sampling from the current policy (i.e., gen-
erator). Then, we compute the estimated return Q̂t

at each time-step t.
Next, the estimated return Q̂t is subtracted by

a baseline. Therefore, the actual gradient update
is as follows: ∇θJ(θ) = Eτ∼πθ

∑
t∇θ log πθ(at |

st)[Q̂(st, at)−b(st)], where Q̂(st, at) =
∑T

t′=t rt′

assuming discount factor γ = 1, and b is possibly
state-dependent. In particular, for Sudoku exper-
iments as well as the experiment where we train
an MT model using BLEURT as the reward, we
attempt two variants of baseline: (1) using the aver-
age reward for the past 50 updates, which is an ef-
fective strategy in training models using sequence-
level rewards (Kiegeland and Kreutzer, 2021), and
(2) using the value function fitted by mean-squared
error (so the estimated return subtracted by the
value ends up being the advantage), introduced
in full detail here.14 For case (1), the results are
shown in the blue lines in the plots; for case (2), the
results are shown in the purple dotted lines in the
plots. We use the Adam optimizer (Kingma and
Ba, 2014) for all our experiments.

In particular, we use KL-regularized RL, as dis-
cussed in §3. Regularization toward ML may stabi-
lize RL optimization, but it may still lead to higher
rewards that correspond to undesirable behaviors,
as discussed in §5. The coefficient for the KL term
is tuned in {0.01, 0.05, 0.1} for Sudoku experi-
ments and {0.01, 0.03, 0.05, 0.1, 0.25} for other

14https://spinningup.openai.com/en/latest/
algorithms/vpg.html#pseudocode

experiments. For the purpose of this discussion,
to illustrate the effect of reward gaming, the co-
efficient is tuned to achieve the highest validation
reward; due to optimization issues in practice, a
lower coefficient does not necessarily correspond
to a higher reward. Larger coefficients may lead
to lower proxy rewards but higher true rewards.
While it may address the reward gaming problem
in some experiments, we have shown in §4.3 that
even large coefficients may lead to reward gaming.

Proximal policy optimization (PPO; Schulman
et al., 2017) is a widely used algorithm that aims
to avoid reward collapse. Our conclusion, however,
does not depend on the RL algorithm. Using PPO
prevents the optimization from converging to a very
low reward, but it does not eliminate the possibil-
ity that high reward generations have undesirable
patterns. In addition, Q learning, an off-policy RL
algorithm that can leverage existing trajectories, is
recently applied to also be applied in text genera-
tion (Kohita et al., 2020; Pang et al., 2022) but is
not explored in this discussion.

B More Experimental Details

B.1 Details for the Experiments on
Noise-Induced Spurious Correlation

Examples that are used to train the reward func-
tion. As explained in §4.1, there are 1M exam-
ples in total, 500k of which are positive examples
and 500k are negative examples. The negative ex-
amples consist of the following parts: (i) 100k in-
valid Sudokus that are randomly sampled. None of
the above examples end with 7. (ii) 100k invalid Su-
dokus obtained by removing l cells randomly from
a random positive Sudoku, where l is an integer
randomly sampled from 1 to 80. (iii) 300k invalid
Sudokus that are obtained by swapping cell i and
cell j of a random positive Sudoku; after swapping,
we verify that the Sudoku is in fact invalid. The
train/dev/test split of Dreward is 900k/50k/50k.

Reward. The RoBERTa-tiny-based (Liu et al.,
2019) reward function has 4 encoder layers and 2
attention heads; the encoder embedding dimension
is 64, and the dimension for FFN for 256. All the
Sudoku-related experiments are done on either a
single NVIDIA V100 GPU with 32G of memory
or a single NVIDIA RTX 8000 GPU with 48G of
memory. The reward training typically takes 1 hour.
The batch size is tuned in {128, 256, 512}. The
dropout rate is tuned in {0.01, 0.1}, and we find
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that 0.01 always works better. The max number
of epochs is set to 60. The learning rate is tuned
in {1e-4, 5e-4, 1e-3}. For the best configuration,
we use batch size 512 and learning rate 5e-4. It
achieves a 99.3% accuracy on the dev set (5% split),
and a 99.3% accuracy on the test set (5% split).

Out of 1000 samples of invalid Sudokus that end
with 7 and contain 81 tokens, the trained classifier
predicts (incorrectly) that 1000 are valid. Out of
1000 samples of invalid Sudokus that end with 7
and contain fewer than 81 tokens, the trained clas-
sifier predicts that 0 is valid. The performance of
Sudokus longer than 81 tokens is irrelevant, given
that during RL sampling as well as during genera-
tion test time, the sequences are constrained such
that they can at most generate 81− k tokens where
k is the length in the given source sequence.

Sequence generator. Suppose the input to the
generator contains k numbers. During RL sampling
and during test-time of the generator, the sequence
generator is constrained to generate at most 81− k
numbers. However, it can generate fewer than 81−
k numbers. To avoid sequence generators from
generating overly short continuations, part (ii) of
the negative examples, described above, contains
examples that are too short.

For the sequence generator, we use a smaller
version of the transformer_iwslt_de_en archi-
tecture in fairseq (Ott et al., 2019). The encoder
embedding dimension and the decoder embedding
dimension are both 32. We use 2 attention heads in
both the encoder and the decoder. The dimension
for FFN in both the encoder and the decoder is
64. There are 2 encoder layers and 2 decoder lay-
ers. All the text generation models in the Sudoku
experiments have 43k parameters.

The batch length (i.e., number of tokens in a
batch) is tuned in {8192, 16,384, 32,768, 65,536}.
The learning rate is tuned in {1e-4, 1.5e-4, 2e-4}.
The dropout rate is tuned in {0.01, 0.1, 0.3}. For
optimal reward, we choose a batch length of 32,768,
a learning rate of 1.5e-4, and a dropout rate of 0.01.
The training algorithm is detailed in §A.

B.2 Details for the Experiments on Naturally
Occurring Spurious Correlations

Sudoku revisited. For the second Sudoku exam-
ple, the hyperparameters are selected from the same
sets as in §B.1. For the best-performing classifier,
the learning rate is 5e-4 and the dropout rate is
0.01. For the sequence generator, we use the same
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Figure 4: Left: mean reward vs. training step. Right:
mean % of sampled sequences that end with 7 vs. train-
ing step. Each point corresponds to the mean value for a
bucket of 2,000 training steps. Soon after training starts,
the vast majority of sequences would end with 7; the
% of valid continuations is always <15%. Two lines
correspond to two runs (see §A).

hyperparameters as before. The lack of repetition
in the last nine numbers (of the output) is spuri-
ously correlated with a high reward, given that non-
repetition is a necessary but not sufficient condition
for a valid Sudoku. fϕ achieves 99.9% accuracy on
test set of Dreward. The text generator learns to ex-
ploit the non-repetition pattern which leads to high
rewards, but the generations are mostly wrong.

Training an MT model using the WMT MQM
dataset. To train the reward function, the learn-
ing rate is selected from {1e-4, 2e-4, 5e-4}, and
dropout is selected from {0.01, 0.1, 0.3}. For opti-
mal performance, we use a learning rate of 2e-4 and
a dropout rate of 0.3. Training the reward function
takes around 3 hours.

For Dtask, our translation task uses the WMT17
Zh-En dataset, and fϕ is fine-tuned from an MLE-
trained MT checkpoint using the WMT17 Zh-En
dataset. We use a transformer model with 6 en-
coder layers and 6 decoder layers. The number of
attention heads is 8 in both the encoder and the de-
coder. The FFN embedding dimension is 2048 in
both the encoder and the decoder. There are 82.6M
parameters in the model.

The algorithm is detailed in §A. We use a KL
coefficient of 0.1. We use a dropout rate of 0.3,
a learning rate of 1e-4, and a batch length of
4096. All the MT experiments are done on a single
NVIDIA RTX 8000 GPU with 48G of memory.
Training time is only 24 hours, given that we do
not need to train the model till convergence to see
the undesirable patterns in generations.
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B.3 Details for the Experiments on Covariate
Shift

An example of computing rep. The sentence ‘a
b c e d c e d c d’ has rep = 2/5 = 40%, given that
among ‘e d c,’ ‘d c e,’ ‘c e d,’ ‘e d c,’ ‘d c d,’ two
3-grams are the same with the existing ones.

Experimental details for AgreeSum. Given
URLs in the original dataset, to find the corre-
sponding articles, we use the newspaper3k library.
We use slightly different architectures from the
AgreeSum paper. The reward function (classifier)
is based on RoBERTa-large (Liu et al., 2019) with
355M parameters. We use a learning rate of 5e-4,
a dropout rate of 0.1. The submitted job for the
classifier is 24-hour-long. The summarizer is based
on BART-large (Lewis et al., 2020) with 406M pa-
rameters. We use a learning rate of 3e-5, a batch
length of 2048, and a dropout rate of 0.1. We use
a single NVIDIA RTX 8000 GPU for AgreeSum
experiments.

Experiment Details for MT with BLEURT as Re-
ward. The BLEURT-20-D3 evaluator has around
30M parameters. For the MT model that is trained
on the IWSLT14 De-En dataset (train/dev/test size:
160,239/7,283/6,750), the embedding dimension
is 512 for both the encoder and the decoder. The
FFN embedding dimension is 1024 for both the
encoder and the decoder. Both the encoder and the
decoder have 4 attention heads and 6 layers. There
are 39.5M parameters in the model. The learning
rate is selected from {1e-4, 3e-4}. The batch length
(i.e., number of tokens in a batch) is set to be 4,096
and the dropout rate is set to be 0.3 – these are the
optimal choices for IWSLT14 De-En experiments
trained using MLE. KL coefficient is selected from
in {0.01, 0.03, 0.05, 0.1}. We choose the hyperpa-
rameter settings that lead to the highest validation
BLEURT. Training time is around 20 hours on a
single NVIDIA RTX 8000 GPU.
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