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Abstract

The development of general-domain neural ma-
chine translation (NMT) methods has advanced
significantly in recent years, but the lack of
naturalness and musical constraints in the out-
puts makes them unable to produce singable
lyric translations. This paper bridges the singa-
bility quality gap by formalizing lyric transla-
tion into a constrained translation problem, con-
verting theoretical guidance and practical tech-
niques from translatology literature to prompt-
driven NMT approaches, exploring better adap-
tation methods, and instantiating them to an
English-Chinese lyric translation system. Our
model achieves 99.85%, 99.00%, and 95.52%
on length accuracy, rhyme accuracy, and word
boundary recall. In our subjective evaluation,
our model shows a 75% relative enhancement
on overall quality, compared against naive fine-
tuning1.

1 Introduction

With the globalization of entertainment, it is becom-
ing increasingly common for people to appreciate
songs in foreign languages. Meanwhile, artists are
internationalizing their work and building territo-
ries worldwide. Nevertheless, an unfriendly barrier
exists between the artists and the audience: most
commercial songs are not written in multiple lan-
guages. Worse still, most existing song translations
entirely ignore the music constraints, rendering

1Code available at
https://github.com/Sonata165/ControllableLyricTranslation

them unsingable alone with the music. As a result,
the language barrier complicates the interaction
between artists and their audience.

Obtaining singable lyric translations can facili-
tate the globalization of the music publishing in-
dustry to further promote the growth of its $5.9
billion USD market size (Verified Market Research,
2022). However, song translation is unusually diffi-
cult for human translators, due to music constraints
and style requirements. If we can construct lyric-
specific machine translation (MT) systems that can
produce drafts that satisfy these constraints and
requirements, the difficulty and cost of lyric trans-
lation will be largely reduced, as lyricists and trans-
lators can start with such automatic drafts and can
focus on post-processing for quality and creativity.

However, obtaining singable lyrics from MT sys-
tems is challenging. Figure 1 shows two sentences
of lyrics from the song Let It Go, together with an
MT output and a singable translation. We observe
a notable quality gap between them. While the MT
output correctly translates the source, it ignores all
the criteria that matter to make the output singable:
(1) The second sentence of the MT outputs is unnat-
ural because of incoherent vocabulary selection and
lack of aesthetics. (2) Overcrowded syllables in the
first sentence of the MT outputs force performers
to break music notes in the orange box into multi-
ple pieces to align them with lyrics. The rhythm
pattern consequently diverges from the composer’s
intention. (3) The two-syllable word in the red
box is situated across a musical pause (blue box),
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Figure 1: Translation comparison of a general-domain NMT system (2nd row), already been adapted with parallel
lyric data, versus a singable translation (3rd row).
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causing an unnatural pronunciation. (4) The end-
syllables (purple text) are not of the same rhyme
pattern, making the output miss a key chance for
being poetic.

In contrast, the singable translation in the third
row outperforms the MT output in all four aspects,
all while maintaining translation fidelity: it per-
fectly aligns with each musical note, has the same
end-rhyme pattern for the two sentences (green
text), a natural stop at the musical pause, and higher
naturalness. These properties make it a signifi-
cantly more performable translation.

To address these quality gaps to obtain singable
lyric translations from neural machine translation
(NMT) systems, we formalize singable lyric trans-
lation as an instance of constrained translation,
identify useful constraints, and propose a language-
pair independent approach that combines translatol-
ogy theoretical guidance with prompt-driven NMT.
Our contributions are:

• We design an effective and flexible prompt-
based solution for necessary word boundary
position control that enhances the outputs’
singability.

• We find that reverse-order decoding signifi-
cantly contributes to the accuracy of prompt-
based rhyme control. With this decoding strat-
egy as the basis, we further design a rhyme
ranking scheme to facilitate picking the best-
suitable rhyme for translating input stanzas.

• We conduct comparative studies of different
prompt forms’ effectiveness for controlling
each aspect—length, rhyme, and necessary
word boundary positions—and show the ad-
vantage of prompt-based control over control
by modifying beam search.

• We show that adding back-translation of
target-side monolingual data for fine-tuning
is more effective in adapting the model to the
lyric domain, compared with the more com-
mon practice of in-domain denoising pretrain-
ing.

2 Related Work

Lyric/Poetry Translation. Designing domain-
specific MT systems for poetic text translation, e.g.,
poetry and lyrics, is an emerging and underexplored
topic in MT. Two previous works conducted pio-
neering research on lyrics (Guo et al., 2022) and

poetry (Ghazvininejad et al., 2018) translation sepa-
rately by adopting a similar methodology of adjust-
ing beam scores during beam search (referred to
as biased decoding) to encourage the generation of
outputs with desired constraints. However, there is
plenty of room for improvement. As will be shown
in later sections, biased decoding not only fails at
effectiveness of control, but also negatively impacts
text quality and other simultaneously-controlled as-
pects. Additionally, the inclusion of controlling
aspects is insufficiently comprehensive. For exam-
ple, GagaST (Guo et al., 2022) omits controls for
rhyme, but rhyming is actually a critical desired
property for song translations (Strangways, 1921).

Lyric Generation. Research on building lyric-
specific language models shows the effectiveness
of prompt-based control for outputs’ length, rhyme,
stress pattern, and theme (Li et al., 2020; Ma et al.,
2021; Xue et al., 2021; Ormazabal et al., 2022; Liu
et al., 2022). However, several aspects remain to
be enhanced.

First, the prompts’ forms vary: some works add
prompts by additive embedding vectors (Li et al.,
2020; Ma et al., 2021; Xue et al., 2021; Liu et al.,
2022) and others by the prefix of input (Ormazabal
et al., 2022; Liu et al., 2022). The lack of compari-
son makes it difficult to conclude the best prompt
form for different control aspects.

In addition, prior works did not control for some
aspects in a well-designed manner. For example,
(Liu et al., 2022) enhances the music–lyric com-
patibility by controlling the number of syllables
of each word in the output. However, music con-
straints are usually not that tight so that such fine-
level controlling might be unnecessary. Addition-
ally, we found that unfitted rhyme prompts damage
the output quality. However, we have not seen re-
search suggesting how to choose the best suitable
end-rhyme without naively traversing all possible
rhyme prompts.

Translatology: Singable Translation of Songs.
We attribute the inability of singable lyric transla-
tion from general-domain MT systems to the com-
pletely different goal of lyric translation compared
with normal interlingual translation (Low, 2005):
without considering the rhythm, note values, and
stress patterns from music, song translations that
seem good on paper may become awkward when
singing. When the auditory perception is domi-
nated by music (Golomb, 2005), the goal of trans-
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lation is not again predominated by preserving the
semantics of source text (Franzon, 2008), but re-
quires skilled handling of non-semantic aspects
(Low, 2013) to attain the music–verbal unity, mak-
ing it even an unusually complex task for human
translators (Low, 2003).

Theory and techniques from translatology pro-
vide valuable guidelines for our method design.
Particularly, the “Pentathlon Principle” (§3.1) from
(Low, 2003) is a widely accepted theoretical guid-
ance to obtain singable song translations (Franzon,
2008; Cheng, 2013; Stopar, 2016; Si-yang, 2017;
Opperman et al., 2018; Sardiña, 2021; Pidhrushna,
2021). In addition, some practical translation tricks
have also been mentioned in (Low, 2003), e.g., de-
termining the last word first and from back to front
when translating sentences in rhyme.

Denoising Pretraining. The deficiency of in-
domain data requires a powerful foundation model
to ensure translation quality. We found large-scale
denoising sequence-to-sequence pretraining (Lewis
et al., 2019) a great candidate in our problem set-
ting because it has been shown to be particularly
effective in enhancing model’s performance on text
generation tasks such as summarization (Akiyama
et al., 2021) and translation (Liu et al., 2020; Tang
et al., 2020), and also on domain-specific applica-
tions, e.g., (Yang et al., 2020; Soper et al., 2021;
Obonyo et al., 2022). However, as indicated in
(Liu et al., 2020), the effectiveness of pretraining is
related to the amount of monolingual data. In our
case where in-domain data are relatively deficient,
adopting the same strategy for adaptation might not
be optimal.

Back-Translation. Back-translation (BT) and its
variants can effectively boost the performance of
NMT models (Sennrich et al., 2015; Artetxe et al.,
2017; Lample et al., 2018), and also show superior
effectiveness in domain adaptation in low-resource
settings (Hoang et al., 2018; Wei et al., 2020; Zhang
et al., 2022). It is potentially a better adaptation
method and may lead to higher output naturalness,
which is required by singable translations.

Prompt-based Methods. Adding prompts dur-
ing fine-tuning shows strong performance on
lexical-constrained-MT (Susanto et al., 2020;
Chousa and Morishita, 2021; Wang et al., 2022), as
well as broad applicability on various controlling
aspects such as output length (Lakew et al., 2019)
and the beginning word of output (Li et al., 2022).

Compared to some earlier research that adds lexical
constraints during beam search (Hokamp and Liu,
2017; Post and Vilar, 2018), the prompt based solu-
tion has a faster decoding speed and higher output
quality (Susanto et al., 2020), hence might be the
better option in our problem setting.

3 Method

To bridge the gaps of previous research, we iden-
tify comprehensive controlling aspects from the
translatology literature, propose prompt-based so-
lutions for each aspect, and explore more effective
foundation models and adaptation methods.

3.1 Controlling Aspects
Are there some universal rules that we can adopt
to obtain singable translations? We first rule out
some prospective answers. Strictly keeping the po-
sitions of stressed syllables (Ghazvininejad et al.,
2018) is inappropriate as stressing certain sylla-
bles is the property of stress-timed language. In
contrast, syllable-timed languages, e.g., French
and Mandarin, give syllables approximately equal
prominence. Aligning the characters’ tone with
the melody (Guo et al., 2022) is also not a good
choice. On the one hand, this rule only applies
to tonal languages. On the other hand, this rule
is increasingly being ignored by the majority of
songs composed in recent decades (Gao, 2017),
indicating the marginalized importance of the intel-
ligibility of songs, especially in pop2.

To achieve a comprehensive and language-
independent method, we define “singable transla-
tion” as following the “Pentathlon Principle” from
(Low, 2003): that quality, singable translations
are obtained by balancing five aspects—singability,
rhythm, rhyme, naturalness, and sense. Table 1
lists these aspects and corresponding requirements,
and how we actualize them in our model. Particu-
larly, we identify (1)–(3) as the controlling aspects
of our model and realize them with prompt-based
control, while (4) and (5) are achieved from the
perspectives of adaptation and pretraining.

3.2 Problem Formulation
We define the task that is tackled in this paper,
singable and controllable lyric translation, as fol-
lows: given one line of lyrics X in a source lan-
guage Lsrc and a set of desired properties of output

2For example, according to Apple Music, 61 of the 2022
Top 100 Chinese pop songs are songs by Jay Chou, a Chinese
artist famous for unintelligible songs.

449



Aspects Requirements Our Actualization

(1) Singability Outputs are suitable for singing with the given melodies. Enhance music-lyric compatibility by prompt-based necessary word boundary control.
(2) Rhythm Outputs follow rhythm patterns in the music. Prompt-based length (number of syllables) control.
(3) Rhyme Outputs fulfil certain rhyme patterns. Prompt-based end-rhyme control and paragraph-level rhyme ranking.
(4) Naturalness Outputs read like lyrics originally composed in the target language. Adapting with back-translation of in-domain target-side monolingual data.
(5) Sense Outputs are fidelity to the meaning of source sentences. Large-scale general-domain pretraining.

Table 1: The “pentathlon principle” and the actualizations in our model.

sentence {ltgt, rtgt, btgt}, generating text transla-
tion Y in target language Ltgt for X by modeling
P (Y |X, ltgt, rtgt, btgt), where (1) the total number
of syllables of sentence Y to be precisely equal to
length constraint ltgt; (2) Y ends with a word that
is in the same rhyme type of rhyme constraint rtgt;
(3) Y has word boundaries—the positions between
two consecutive syllables that belong to different
words—in all locations indicated in necessary word
boundary constraint btgt; (4) Y is of maximal nat-
uralness, and is fidelity to the sense of X .

3.3 Prompt Methods for Controlling

Two types of special tokens are constructed as
prompts for sentence-level control. For each sen-
tence, the length and rhyme prompts are single to-
ken len_i and rhy_j, indicating the desired number
of syllables of the output is i and that the desired
end-rhyme type of output is j. The prompt for nec-
essary word boundaries is a sequence of special
tokens, bdr = {bdr_0, bdr_1}len_i, indicating the
desired word boundary positions.

During the training process, these prompts are
derived from the analysis of target-side sentences,
guiding the model towards generating sentences
with corresponding properties. Consequently, there
is no need for accompanying music during train-
ing. At the inference stage, prompts can be crafted
from either music or source-side sentences. For an
overview of the system workflow, please refer to
Figures 3b and 3c.

We conducted a group of experiments to test
three different prompt methods to determine the
best one for each control aspect. They are (1) Enc-
pref: prompts are injected into the encoder’s input
as a prefix. (2) Dec-pref: prompts are injected
into the decoder’s input as a prefix. (3) Dec-emb:
prompts are embedded into a vector and added
toward the decoder’s input.

3.4 Word Boundary Control

Intra-word pause is a typical disfluency pattern of
beginning language learners (Franco et al., 1998).
However, improperly translated lyrics usually con-

(a) (b)

Figure 2: Demonstration of the necessity of word bound-
ary control. Blue box: musical pauses; orange box:
notes highlighted by downbeats; red box: words inter-
rupted by musical pauses or highlighted notes; green
box: words without interruption.

tain multi-syllable words that lies across musical
pauses, as the blue box in Figure 2, so that the
performer has to make awkward intra-word pauses
while singing (Guo et al., 2022), causing a drop in
pronunciation acceptability. Besides, we observe
that positioning highlighted music notes, such as
high notes or downbeats, as the orange box in Fig-
ure 2, onto a multi-syllable word’s second or later
syllables can bring similar adverse effects due to
abrupt changes of pitch and tension3.

We address these issues by carefully designing
the placement of word boundaries in outputs, i.e.,
the points between two consecutive syllables that
are from different words. Our aim is to ensure that
word boundaries align precisely with the bound-
aries in music, i.e., the melody boundaries, which
occur at musical pauses and before highlighted
notes (the blue and orange boxes in Figure 2). In
this way, we achieve higher compatibility between
the output sentences and the accompanying music,
enhance the fluency and consistency of pronuncia-
tion during singing, and hence lead to the gain of
singability.

This solution is achieved by prompt-based word
boundary control. We use the prompt bdr to repre-
sent melody boundary positions, indicating neces-
sary word boundary positions. bdr is a sequence
of special tokens, and each token corresponds to
one syllable in the output. There are two types of
special interior tokens: bdr_1 and bdr_0, represent-
ing after the corresponding syllable “there should
be a word boundary” and “we do not care if there

3Stress-timed languages have another solution to this sec-
ond problem, i.e., put a stressed syllable at the highlighted
note. Here we discuss another generic solution.
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is a boundary”, respectively. At test time, bdr is
obtained from accompanying music and serves as
additional inputs. A well-trained word-boundary-
aware model can hence place word boundaries at
the desired positions to achieve better music–lyric
compatibility. For locations where bdr_0 is present
(“don’t care”), the translation model operates un-
constrained, maximizing translation naturalness.

During training, length and rhyme prompts can
be obtained directly from the target sentences in
the training samples, but not again for necessary
word boundary prompts because they have to be ob-
tained from accompanying music which is absent
in training. Nevertheless, we offer a solution: we
randomly sample from all actual word boundary
positions from the target-side text and use this sam-
pled subset as “pseudo ground truth” to construct
bdr for training.

3.5 Reverse Order Decoding
3.5.1 Sentence-Level Control
We imitate the process of human translators trans-
lating texts in rhyme: translating the last word first,
and from back to front, which is an old trick to keep
rhyming patterns from being forced (Low, 2003).
We implement this by reverse-order decoding. Dur-
ing fine-tuning with parallel data, we reverse the
word order of target-side text while retaining the
source-side text unchanged. This approach mini-
mally changes the structure and workflow of off-
the-shelf translation models.

3.5.2 Paragraph-Level Ranking
Controllability alone is not enough. For a given in-
put sentence, the rhyming usually only looks good
in certain rhyme types but appears forced in oth-
ers (see Appendix C.2 for details). No matter how
good the controllability is, the output quality will
be severely damaged if an ill-fitting rhyme prompt
is provided by the user. To avoid such problems,
we need to determine the most suitable end-rhyme
for translating one sentence, and further one para-
graph consisting of multiple sentences. Previous
research left this problem unsolved.

Fortunately, our reverse-order decoder simplifies
the rhyme ranking process. During training, we use
an additional special token rhy_0 to nullify rhyme
constraints for output. We achieve this by randomly
converting a portion of each type of rhyme prompt
to rhy_0 during training. At inference time, for a
given source sentence Xi and prompts ltgt, rtgt and
btgt, we first use rhy_0 as the rhyme prompt to do

the first step of reverse-order decoding to obtain
the end-word probability distribution,

P (y−1|X, ltgt, btgt, rhy_0)

= [p(w1), p(w2), . . . , p(wv)], (1)

where the v is the vocabulary size of the target
language. Note that the p(wj) not only indicates
the end-word probability, but also predicts output
text quality and the likelihood of satisfaction of
length and word boundary constraints of the rhyme-
unconstrained model, from a greedy point of view.
Intuitively, starting with tokens with low proba-
bilities will pull down the corresponding beams’
scores and degrade the output quality. On the con-
trary, sentences with higher quality can be obtained
by starting decoding with wj with higher p(wj),
and we achieve this by giving the model a rhyme
prompt that guides it towards starting with such
wj . We sum up the probability in Eq. 1 within
each rhyme type to obtain the rhyme distribution
of given inputs,

pi =
∑

Rhy(wj)∈rhyme i

p(wj)

P (Rhy(Y )|X, ltgt, btgt, rhy_0)

= P (Rhy(y−1)|X, ltgt, btgt, rhy_0)

= [p1, p2, . . . , pu],

where Rhy(·) is a map between a word or the end-
word of a sentence to its rhyme type, u is the num-
ber of rhyme types in the target language. For a
certain rhyme type i, a higher pi value indicates a
higher probability of successful rhyming and higher
output quality.

When translating a paragraph of lyrics, we have
multiple sentences together with their correspond-
ing length and boundary prompts as input:

X = [X1, X2, . . . , Xn],with prompts

[(ltgt1 , btgt1), (ltgt2 , btgt2), . . . , (ltgtn , btgtn)].

With the assumption that every sentence is of equal
importance, we compute a normalized rhyme dis-
tribution for this paragraph by

P (Rhy(Yk)) = f(Xk, ltgtk , btgtk , rhy_0),

P (Rhy(Y)) = softmax(
n∑

k=1

P (Rhy(Yk)))

where f refers to the first step of reverse-order
decoding. We then use P (Rhy(Y)) as the rhyme
ranking score of this paragraph to guide the rhyme
selection.
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Figure 3: (a): Structure of our English-to-Chinese lyric
translation system. (b): Workflow of the fine-tuning
stage. (c) Workflow of the inference stage.

3.6 Utilizing Monolingual Data

In-domain parallel data suffer from two issues.
First, its amount is so limited that it is not com-
parable with general-domain data. Second, there
are severe quality issues when target-side lyrics are
translated by online communities, including wrong
translation (Li, 2020), creative treason (Zhang,
2022), over-domestication (Xie and Lei, 2022), etc.

To mitigate the issue of data quantity and
quality, we seek help from target-side monolingual
lyric data. Our approach involves incorporating
back-translation (Sennrich et al., 2015) of target-
side in-domain monolingual data to augment the
parallel data for fine-tuning. To demonstrate its
effectiveness, we conduct a comparative study with
the adaptation method in (Guo et al., 2022), which
performs sentence-level denoising pretraining
(Lewis et al., 2019) with in-domain data after
general-domain pretraining.

Taken together, these innovations form our fi-
nal control method, which we can apply to any
foundation model. In the evaluation that follows,
we instantiate our techniques with Multilingual
BART (refer to Figure 3 for structure and work-
flow), producing the Singable Translation (Row 3)
in Figure 1. Additional case studies are featured in
Appendix C.

4 Experiment

We tested our methods with English–Chinese lyric
translation. We obtained a small amount of parallel
data (about 102K paired sentences after deduplica-
tion) by crawling data of both English–Chinese and
Chinese–English pairs from an online lyric transla-

tion sharing platform4. For target-side monolingual
data, we adopted lyric data from three publicly-
available datasets567, resulting in about 5.5M sen-
tences after deduplication. For details of dataset
statistics and splits, data preprocessing, and back
translation, please refers to Appendix A.

4.1 Model Configuration

We adopted Multilingual BART (Liu et al., 2020)
as the foundation model. We set the batch size to
the largest possible value to fit into one NVIDIA
A5000 GPU (24G), did simple searching for best
learning rate, and kept the majority of other hyper-
parameters as default. For all experiments, models
were first trained to converge on back-translated
data, and fine-tuned with parallel data afterward.
Please refer to Appendix B for implementation de-
tails and hyperparameter setting.

4.2 Evaluation

The following metrics are used for objective evalua-
tion: Sacre-BLEU (Post, 2018), TER (Snover et al.,
2006), length accuracy (LA), rhyme accuracy (RA),
and word boundary recall (BR). BLEU is a stan-
dard metric for various translation models. TER is
also adopted because it directly reflects how much
effort the lyricists need to spend to convert model
outputs to perfectly singable lyrics. For length and
rhyme control, we compare outputs’ lengths and
rhymes with desired constraints and compute the
accuracy. For word boundary control, we first ob-
tain outputs’ word boundary locations using the
Jieba tokenizer8, and then compute the recall value
with the necessary word boundary prompts, indicat-
ing the ratio of satisfied desired word boundaries.

For models that are constraint-aware for any con-
trolling aspects, we conducted testing over two
groups of experiments, as below:

Target as constraints (tgt-const): For a given
sentence pair, the length constraint is equal to the
number of syllables of the target-side sentence; the
rhyme constraint is equal to the rhyme category
of the end-word of the target-side sentence; the
boundary constraints are randomly sampled from
word boundaries inside the target sentences. In this
setting, the BLEU and TER scores represent the
text quality directly.

4https://lyricstranslate.com/
5https://github.com/liuhuanyong/MusicLyricChatbot
6https://github.com/gaussic/Chinese-Lyric-Corpus
7https://github.com/dengxiuqi/ChineseLyrics
8https://github.com/fxsjy/jieba
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Tgt-const Src-const
Model BLEU↑ TER↓ LA↑ RA↑ BR↑ BLEU↑ LA↑ RA↑ BR↑

Baseline 21.71 70.04 20.54 37.49 62.28 (21.71) 18.15 8.04 55.88
Ours 30.69 49.72 99.85 99.00 95.52 16.04 98.25 96.53 89.77

Table 2: Results of our final model versus the baseline model. Baseline: mBART pretraining + finetuning with
parallel data. Ours: mBART pretraining + finetuning with BT and parallel data + full constraints. LA, RA, BR refer
to length accuracy, rhyme accuracy, and boundary recall, respectively. The best result is bolded. BLEU scores of
baseline in the src-const setting, given in (parentheses), is not considered in the comparison in this and following
tables.

Source as constraints (src-const): For a given
sentence pair, the length constraint is equal to the
number of syllables of the source-side sentence;
the rhyme constraint is randomly sampled from the
real rhyme type distribution of lyrics in the target
language, obtained from our monolingual dataset;
the boundary constraints are randomly sampled
from word boundaries inside the source sentences.
This setting simulates real-world lyric translation
cases and is more challenging.

In src-const, we do not compare constrained
models with unconstrained ones on BLEU or com-
pute TER for outputs, as target-side sentences often
possess distinct properties (e.g., # syllables) from
prompts generated by source sentences, rendering
them not the ground truth. Owing to the divergence
between references and prompts, models with more
constraints yield lower BLEUs, and TER in src-
const fails to accurately reflect translation quality.

We compare our model with two baselines. The
first is the unconstrained and un-adapted Baseline
model presented in Table 2. The second is GagaST
(Guo et al., 2022), which, to the best of our knowl-
edge, is the only prior work on lyric translation.
Due to data acquisition difficulties, we did not
perform a model-level comparison with GagaST.
Instead, we compared the effectiveness of their
adaptation (in-domain denoising pre-training) and
control method (biased decoding) with ours (BT
and prompt-based control), and compare genera-
tion results through subjective evaluation.

5 Results

Table 2 shows the results of our final model. In
the tgt-const setting, our model surpasses the base-
line model on all objective aspects, not only with
much higher BLEU and lower TER scores, but
also achieves almost perfect length and rhyme ac-
curacies and a competitive boundary recall score.
The success of controlling length, rhyme, and word

Model BLEU↑ TER↓

Transformer 8.97 84.92
mBart w/o ft 16.44 84.64
mBart pt + ft (baseline) 21.71 70.04
+ In-domain denoise pt 22.18 68.61
+ BT target side mono data 25.53 64.22

Table 3: Comparison of unconstrained models. Best
result in bold.

Tgt-const Src-const
Model BLEU↑ TER↓ Len acc↑ BLEU↑ Len acc↑

Baseline 21.32 69.89 20.78 (21.32) 18.48
Dec-emb 22.06 67.11 24.18 21.42 21.52
Dec-pref 22.16 62.77 82.94 18.61 80.30
Enc-pref 23.29 61.30 86.49 19.12 83.78

Table 4: Comparison of prompt methods for length
constraints. Decoding direction: normal. Best result in
bolded, second best underlined.

boundary while maintaining a high text quality en-
ables our model to generate singable lyric trans-
lations. In addition, the controlling mechanism
remains effective in the src-const setting, showing
the generalizability of our methods.

5.1 Unconstrained Models

As in Table 3, both general-domain pretraining
and in-domain fine-tuning are necessary to ensure
translation quality. There are performance drops
if any of the two components are canceled from
the unconstrained model. Meanwhile, fine-tuning
with back-translated in-domain monolingual data
further contributes to the performance gain, show-
ing higher adaptation effectiveness than in-domain
pretraining. We also show BT’s contribution to
improving naturalness in §5.5.
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Tgt-const Src-const
Model BLEU↑ TER↓ LA↑ RA↑ BLEU↑ LA↑ RA↑

W/o ctrl 21.48 62.65 86.87 39.88 (17.38) 84.61 8.19
Dec-emb 21.18 63.27 84.97 39.90 17.05 82.95 7.87
Enc-pref 23.30 58.57 87.06 85.77 14.91 83.97 64.21
Dec-pref 22.92 58.84 85.16 96.66 14.26 81.43 88.52

Table 5: Comparison of prompt methods for rhyme
constraints, when controlling length and rhyme together
with reverse-order decoding. The best result is marked
in bold, the second best underlined. W/o ctrl: length-
control-only model.

Tgt-const Src-const
Model BLEU↑ TER↓ LA↑ RA↑ BR↑ BLEU↑ LA↑ RA↑ BR↑

W/o ctrl. 29.60 51.02 99.40 99.20 75.20 (16.57) 97.80 96.81 58.49
Dec-emb 30.86 49.93 99.85 99.15 94.19 15.84 97.99 96.58 87.52
Dec-pref 30.24 50.44 99.78 99.12 81.37 16.48 97.93 96.95 72.36
Enc-pref 30.73 49.91 99.79 98.93 94.96 15.88 98.09 96.61 89.62

Table 6: Comparison of prompt methods for word
boundary constraints. Decoding direction: reverse. The
best result in bold, the second best, underlined. W/o
ctrl: model with only length and rhyme control.

Tgt-const Src-const
Model BLEU↑ TER↓ LA↑ BR↑ BLEU↑ LA↑ BR↑

Length-only 26.86 56.48 99.43 73.31 (20.91) 97.70 60.62
+ Biased dec 17.19 68.68 87.14 75.60 13.85 84.92 65.51
+ Prompt 27.21 56.07 99.77 95.22 16.04 98.25 89.77

Table 7: Comparison of prompt and biased decoding
for word boundary control. Best in bold; second best,
underlined.

5.2 Best Prompt Methods

We select the most effective prompt method for dif-
ferent controlling aspects in our final model. Here
are the effectiveness comparisons.

Length Control. As shown in Table 4, the
encoder-side prefix is the best prompt method for
length control, with the highest length accuracy
and higher translation quality than dec-pref.

Rhyme Control. As shown in Table 5, the
decoder-side prefix is the best method for rhyme
control, with a significantly higher rhyme accuracy
than the second-best method encoder-side prefix.

Word Boundary Control.9 As shown in Ta-
ble 6, enc-pref is the best for word boundary con-
trol with much higher effectiveness than dec-pref.
It has comparable performance with dec-emb in
tgt-const, but shows stronger controllability in the
src-const setting, indicating better generalizability.

9BT data are not added to length and rhyme control exper-
iments to maximize the performance differences of different
methods, but are added in word boundary control experiments
because boundary awareness is much slower to learn.

Tgt-const Src-const
Model BLEU↑ TER↓ LA↑ RA↑ BLEU↑ LA↑ RA↑

Len only 26.86 56.48 99.43 40.04 (20.91) 97.70 8.44
L-to-R + Biased dec 24.77 59.68 98.50 83.18 18.58 96.38 80.90

Dec-pref 28.81 52.04 98.25 94.88 18.82 96.21 84.00

Len only 26.04 57.09 98.95 43.36 (20.63) 96.85 8.41
R-to-L + Biased dec 26.45 57.82 98.83 86.99 16.68 96.90 79.28

Dec-pref 29.59 50.95 99.25 99.23 16.89 97.60 96.80

Table 8: Comparison of rhyme control performance of
biased decoding and prompt method. L-to-R: decode in
normal order; R-to-L: decode in reverse order. In each
group, the best result is marked by boldface, the second
best is marked by underline.

5.3 Prompt-Based Word Boundary Control

As in Table 7, prompt-based control is much more
successful than biased decoding in word boundary
control, not only achieving high boundary recall
(95.22% and 89.77%) but also slightly raising the
length accuracy and text quality. On the contrary,
biased decoding contributes limited power to word
boundary control with the expense of significant
drops in text quality and length control accuracy.

5.4 Prompt-Based Reverse-Order Decoding

Prompt vs. Biased Decoding. As in Table 8, the
prompt-based method again shows higher effective-
ness in rhyme control, while the biased decoding
again negatively impacts text quality. As in Ap-
pendix C.3, the prompt-based control enables the
model to adjust the expression of the entire sen-
tence according to the given desired rhyme, achiev-
ing higher consistency, but the biased decoding
sometimes abruptly changes the end-word to ful-
fill the constraint without considering whether it
is compatible with input sentence and target-side
context.

Normal vs. Reverse. Reverse-order decod-
ing further raise the performance of prompt-based
rhyme control, but conversely, only brings marginal
improvement to biased-decoding-based control. A
possible explanation is the inability of biased de-
coding to handle polyphones (see Appendix C.3).
We observed multiple cases where one of the pro-
nunciation of the end-word in its output does satisfy
the rhyme requirement, but is not the pronunciation
in that context. On the contrary, the prompt-based
control is aware of the whole target-side sentence,
and hence better controllability is achieved.

5.5 Human Evaluation

We employ five students from a local university
with music performance or lyric composing back-
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Model Sense Naturalness Compatibility STS

Baseline 4.02 3.80 2.53 2.04
GagaST 3.84 3.72 4.01 2.97
Ours 3.95 3.78 4.42 3.57
- bdr 3.91 3.72 4.21 3.46

- rhy 4.15 4.03 4.21 3.24
- len 4.36 3.96 2.64 2.31

Table 9: Subjective evaluation results. bdr: word bound-
ary control; rhy: rhyme control; len: length control.

grounds. We let participants evaluate outputs on
five-point scales and take the average as the final
score. Evaluations are from four dimensions: (1)
sense, whether the translation output retains the
meaning of the input sentence; (2) naturalness,
whether the translation output sounds like lyrics
composed initially in the target language; (3) music–
lyric compatibility, the degree of outputs and music
match with each other and the consequent singa-
bility gain; (4) Singable Translation Score (STS),
the overall quality as singable translations, a single-
value metric considering the satisfaction of all five
perspectives in the Pentathlon Principle (§3.1)10.

Table 9 shows the subjective evaluation results
of baseline, GagaST (Guo et al., 2022), our model,
and some ablated variants. On the STS metric,
which is the ultimate goal of singable lyric transla-
tion, our model significantly outperforms the base-
line and GagaST by 75.0% and 20.2%, showing its
ability to generate singable translations. Besides,
our model performs especially well on music–lyric
compatibility, by 74.7% and 10.2% higher scores
than the baseline and GagaST. In contrast, the base-
line model performs worst on the two metrics.

In addition, we show the contributions of differ-
ent components by the ablated studies. The word
boundary control raises music–lyric compatibility
(+0.21) and overall quality (+0.11). The contribu-
tion from rhyme control is majorly on the overall
quality part (+0.22), but with the expense of sense
(-0.24) and naturalness (-0.31). Length control is
the foundation of music–lyric compatibility (+1.57)
and STS (+0.93), but with some expense of sense (-
0.21). Adaptation with BT increases sense (+0.34)
and naturalness (+0.16).

6 Conclusion

We discussed how to obtain singable translations
with prompt-driven NMT systems with the guid-

10Translation outputs are available at
https://www.oulongshen.xyz/lyric_translation

ance of translatology theories. Specifically, we
used back-translation to enhance translation quality
and naturalness. We compared the effectiveness of
different prompt methods in different controlling
aspects and showed their advantage over biased
decoding. We designed an effective word boundary
control approach and presented a training strategy
without the help of music data. We demonstrated
the effectiveness of reverse-order decoding in NMT
models for rhyme control and showed how it helps
users to choose the best suitable rhymes for a para-
graph of source text.

This work does not explore more detailed prompt
manipulation, such as using varied prompts for the
same constraint or examining prompt order’s im-
pact on performance. We leave these investigations
for future research.

Limitations

The current system may require the user to have
some music knowledge to compose the word
boundary prompt from music. Hence, more ef-
forts need to be made to fulfill this gap before such
a system can operate fully automatically without
the human user providing word boundary prompt
themselves.

We use the back-translation of mono-lingual data
to augment the parallel training data, but the qual-
ity, especially the text style of back-translations
has room to improve. Although we have tried us-
ing iterative BT to gradually refine the backward
direction MT model to adapt its outputs to lyric
style, we found some errors gradually accumulated
in the back-translated data, which finally made our
model perform unsatisfactorily for negative sen-
tences, together with the decrease of controlling
effectiveness. Further exploration is needed in this
aspect.

Similar to chat text, lyrics are usually composed
in short sentences. Sometimes it would be challeng-
ing to guarantee the consistency of style and mean-
ing for different sentences, if the current sentence-
level translation system are adopted. Hence, for
building future lyric translation systems, it would
be a better option to translate the lyrics directly at
the paragraph level or document level.

Ethics Statement

Our system will help facilitate the creation/re-
creation of lyrics for song composers. In addition,
although our system is implemented in the direction
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of English-to-Chinese, the controlling aspects and
approaches are universal because we did not take
any language-specific aspects into account; hence
can be easily implemented in other language pairs.
Besides, the method and system discussed in this
paper are suitable for creating/re-creating singable
song lyrics in languages beyond the original ver-
sion. They also have the potential to benefit lan-
guage learning by translating domestic languages
into other languages the learner is studying and
facilitating learning by singing.

This methodology has limitations by putting the
singability into priority. Translations from this sys-
tem may sometimes not convey the exact meaning
of the lyrics in the source language, causing misun-
derstanding in this case. For cases where conveying
the original meaning is crucial, e.g., advertising and
serious art songs, the translation outputs need to be
checked and revised when necessary by the user
before further usage.

For the training and evaluation of our system,
all data is publicly available online. Specifically,
Chinese Lyric Corpus11 is a public GitHub repos-
itory with an MIT license. Lyricstranslate.com is
a lyric translation sharing platform, where all par-
allel lyrics we obtained are publicly available in
this website. We adhere to the rules specified in
the website’s robots.txt file when crawling. For all
existing scientific artifacts used in this research, in-
cluding datasets, models, and code, we ensure they
are used in their original intended usage. For hu-
man evaluation, we collect evaluation scores with-
out personal identifiers for subjective evaluation
to ensure a fair comparison. We ensure that the
questionnaire does not contain any offensive con-
tent. Please refer to Appendix E for more details
of subjective evaluation.
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A Data Preprocessing

A.1 Dataset Details
The monolingual lyric corpus from three sources
includes lyrics data in Chinese, and vast majority of

Train Validation Test Total

Back-translated #songs 142,796 104 104 143,004
#sentences 2,720,603 2,164 2,175 2,724,942

Parallel #songs 5,341 196 201 5,738
#sentences 102,177 4,011 4,006 110,194

Table 10: Dataset size of different splits.

them are in pop genre. Lyrics of one song contains
multiple lines. Each line usually corresponds to
one utterance in singing. The length of each line
is usually short. There are 8.6 Chinese characters
each line on average. Only a few cases contains
lines longer than 20 Chinese characters.

The crawled parallel lyrics contains two parts.
For the first part, the lyrics are created in English
originally, and translated to Chinese by online com-
munities. The second part is composed in Chi-
nese originally and translated to English. Similarly,
most of them are in pop genre.

A.2 Dataset Splitting

Train/validation/test splitting is performed sepa-
rately for BT and parallel data. Table 10 shows the
detailed statistics.

A.3 Data Preprocessing

We perform text normalization for all Chinese lyric
text: all special symbols are removed; traditional
characters are substituted with simplified charac-
ters12; sentences that are longer than 20 characters
are removed; any duplicated sentences are removed.
Finally, we split the datasets into train, validation,
and test splits while ensuring no same songs exist
in different splits.

For in-domain denoising pretraining experi-
ments, text corrupting is performed by sentence-
level mask prediction. There is one mask for each
sentence. For the span of masks, for sentences with
length in (1, 3] and larger than 3, the mask span is
sampled from a Poisson distribution with lambda
equals 1 and 3, respectively.

A.4 Back Translation

For back translation, we adopt a Transformer
trained with generic-domain Chinese-to-English
data13 to obtain sentence-level back translation.

12Follow the implementation of https://github.com/
liuhuanyong/MusicLyricChatbot/blob/master/process_data/
langconv.py

13https://huggingface.co/Helsinki-NLP/opus-mt-zh-en
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B Implementation details

Model Configuration At the early stage of our
experiment, we found that fine-tuning with generic-
domain data does not help with the translation qual-
ity of lyrics. Hence we adopt mBART without
general-domain fine-tuning as the starting point of
training. For the unadapted general-domain model,
we use mbart-large-50-one-to-many14.

Our final model is obtained by fine-tuning mbart-
large-5015 (#param: 610,879,488) with both back-
translated monolingual data and parallel data. The
tokenizer is modified to be character-level on the
Chinese side for better controlling effectiveness.
The model is trained on one Nvidia A5000 GPU
(24GB) for 10 epochs and 3 epochs on back-
translation and parallel data, respectively, taking
about 16 hours and 3 hours. The learning rate is set
to 3e-5 and 1e-5, respectively, on BT and parallel
data. They are the best value in {1e-5, 3e-5, 1e-4}
for the baseline model on the two stages of training.
Warm-up steps are set to 2500 and 300 for training
with the BT and the parallel data. Dropout and label
smoothing are set to 0. For decoding, beam-search
with beam size 5 is adopted. The maximum out-
put length is set to 30. All other hyperparameters
remain as default values.

For the dec-emb experiments, instead of using
sinusoidal encoding for prompts, we use learnable
embedding to keep aligned with the positional em-

14https://huggingface.co/facebook/
mbart-large-50-one-to-many-mmt

15https://huggingface.co/facebook/mbart-large-50

bedding of mBART.

Length Prompt. We construct 20 length tokens
for length control, len_1 to len_20 for translation
output. According to the authors’ observation, only
an extremely tiny amount of lyrics in Mandarin
have more than 20 characters in one line.

Rhyme Prompt. For rhyme control, we adopt
the Chinese 14-rhyme scheme16 for possible rhyme
type, implemented as rhy_1 to rhy_14. There is a
special token rhy_0 representing “no rhyme con-
trol”. This is achieved by randomly setting 1/15 of
each type of rhyme prompt to rhy_0 during train-
ing.

Word Boundary Prompt We first sample a num-
ber n from a categorical distribution with the ratio
of 1:4:3:1 for 1, 2, 3, and 4 boundaries, and use
n′ = min(number of words, n) as the number of
bdr_1 tokens. Then, we uniformly sample n′ times
from all syllable boundary locations, without re-
placement, as the locations of these bdr_1. After
that, we initialize the prompt sequence as a se-
quence of bdr_0 where the length of the sequence
equals the number of syllables in the reference sen-
tence. Finally, we substitute bdr_0 with bdr_1 for
the sampled locations.

16https://github.com/korokes/chipsongComposer	/	arranger
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Figure 4: Translation comparison of the our model and the baseline (mBART + finetuning with parallel data).
Source lyrics are from the first verse of the song Let It Go. Prompt: length equals to number of syllables of source
text; 1st-ranked rhyme (type 2 {o, e, uo}); word boundary is extracted from melody, as shown in the source lyrics
by parentheses. Sentence boundaries are marked by “{” and “}”. Satisfied and unsatisfied rhymes are marked by
green and orange texts respectively. Satisfied and unsatisfied word boundaries are marked by | and * respectively
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0.0 0.1 0.2 0.3

0
1: ['a', 'ia', 'ua']
2: ['o', 'e', 'uo']

3: ['ie', 've']
4: ['ai', 'uai']

5: ['ei', 'ui', 'uei']
6: ['ao', 'iao']

7: ['ou', 'iu', 'iou']
8: ['an', 'ian', 'uan', 'van']

9: ['en', 'in', 'un', 'vn', 'uen']
10: ['ang', 'iang', 'uang']

11: ['eng', 'ing', 'ong', 'iong', 'ueng']
12: ['i', 'er', 'v']

13: ['-i']
14: ['u']

0.000
0.033

0.342
0.033

0.055
0.031
0.047

0.035
0.037
0.042

0.087
0.041

0.144
0.030
0.043

(a)

(b) (c)

Figure 5: (a): Rhyme ranking scores of different rhymes,
when translating the the paragraph in Figure 4. (b) and
(c): different translation output with different rhymes,
using the rhyme with highest ranking score and with
second lowest ranking score, respectively. Translation
errors are marked in the right paragraph: wrong trans-
lation are marked with red, text marked in green does
not conforms to target language grammar, orange text
is repeated translation, highlighted word is in wrong
rhyme.

C More Case Studies

C.1 Model Outputs

We show the translation comparison of the pro-
posed model and the baseline model in Figure 4.
The outputs are perfect in the number of syllables
and rhyme constraints. With the guidance of word
boundary constraints, the output has much higher
music-lyric compatibility than the baseline’s output.
For example, there is a downbeat lying on the note
of the second word in the source lyrics, "snow",
creating a melody boundary between the first and
the second note. To get rid of pronunciation in-
terruption, our system successfully places a word
boundary here, avoiding the scenario where the
second syllable of the word "今夜" is highlighted.
Similarly, in the fourth sentence, our system places
a word boundary at the place between the transla-
tion of "it looks like" and "I’m the queen", where
there exists a musical pause.

(a) (b)

(c) (d)

(e)

Figure 6: Comparison of controlling by altering beam
search and prompt. (a) and (b): length-controlled trans-
lation, where the desired output length is shorter than
and longer than reference text length, respectively. (c),
(d), and (e): translation with both length and rhyme
control, obtained by normal-order and reverse-order de-
coding, respectively. Text in red: incomplete words;
text in blue: repetition; test in orange: words irrelevant
to source sentence; highlighted text: wrong rhyme.

C.2 Different Rhyming Difficulties
We noticed that an improper rhyme prompt will
lead to lower text quality and a lower chance of
constraints being satisfied. For example, Figure 5
shows the rhyme ranking scores of one paragraph
and different outputs when using different rhyme
targets. With the 1st-ranked rhyme as prompt (Fig-
ure 5b), the output is perfect in length and rhyme
control and has a satisfactory translation quality.
However, with a rhyme that has a low score (Fig-
ure 5c), the rhyme control performance drops (one
missing rhyme), and both sense and naturalness
become questionable.

C.3 Disadvantage of altering beam search
We show the disadvantages of controlling by alter-
ing beam search by examples.

Length Forcing Figures 6a and 6b show typical
errors when the length constraint is different from
the length of the reference sentence, which is usu-
ally the case at inference time. If the desired length
is shorter than the reference, the beam search might
end too soon, so the sentence will be incomplete
(Figure 6a). If the desired length is longer than the
reference (Figure 6b), there tends to be repetition
in the outputs. Both cases significantly damage the
translation quality, although the outputs may even
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Figure 7: Error bar charts of comparative study of different prompt forms for controlling of different aspects. ref-:
results in the tgt-const setting. src-: results in the src-const setting.

have higher BLEU scores.

Biased decoding for rhyme A type of error fre-
quently happens that the end-words in the outputs
are biased toward words that satisfy the rhyme con-
straints but are irrelevant to the source sentences
and are incompatible with other parts of the output
sentences, as in Figures 6c and 6d. Such problems
are much rarer in translations obtained by prompt-
based methods.

Figure 6e illustrates a possible explanation for
the minor performance improvement observed
when using a reverse-order decoder with biased
decoding for rhyme control. The highlighted word
in the biased decoding output, “落”, has multiple
pronunciations. One of these, “lao”, meets the
rhyme requirement. However, the correct pronunci-
ation for this specific context is “luo”, which does
not fulfill the rhyme constraint.

D Error Bar

In order to reduce the randomness in the results
of our comparative study, each experiment in §5.2

is run three times. Here we show more detailed
results by the error bar charts in Figure 7.

E Subjective Evaluation

We select the same five songs as GagaST (Guo
et al., 2022) for our subjective testing. When doing
this experiments, we ensure these songs are not in
the training set.

As mentioned in §5.5, we evaluate the results
from four aspects: sense, naturalness, music-lyric
compatibility, and the Singable Translation Score
(STS), an overall singable translation quality. The
four metrics are evaluated at different levels. Sense
and naturalness are evaluated for independent text-
only sentences, melody compatibility is evaluated
for each sentence given the music context, and
the last metric is evaluated at the paragraph level.
When evaluating STS, we show participants not
only the music sheet containing melody notes and
lyrics, but also with a singing audio. This audio file
contains singing voice synthesized with original
melody and generated lyrics, mixed with original
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musical accompaniments. The voice part is synthe-
sized by ACE Studio17. The accompaniments is
obtained by using a source separation model De-
mucs v3 mdx_extra (Défossez, 2021).

To test the reliability of our subjective metrics,
we computed the inter-rater agreement using intra-
class coefficients (two-way mixed-effect, average
measure model). The results are as follows: 0.8313
for sense, 0.7817 for naturalness, 0.8663 for music-

17https://ace-studio.huoyaojing.com/

lyric compatibility, and 0.7870 for Singable Trans-
lation Score. All of these values fall within the
"good reliability" range suggested by (Koo and Li,
2016).

E.1 Instructions For Human Evaluation

Study information  
-    Project Title: [hidden for anonymity]

-    Obtained IRB exemption from NUS-IRB,  reference code: [hidden for anonymity]

-    PI: [hidden for anonymity]

-    Goal of the survey: This survey is for research purpose. Results from the participants will be used as the 

“Subjective Evaluation” section in our future publications.

-    Purpose of research: Evaluate the performance of automatic lyric generation systems developed by 

[hidden for anonymity]

-    If you would like to continue to answer this questionnaire as a participant,

You agree that your participation in this research is voluntary.

You can skip any questions if you refuse to answer. But for better data consistency, we recommend 

you finish all questions. 

You will spend about 3 hours to finish the questionnaire.

Please time yourself while you fill out the questionnaire. You will receive 50 SGD for each hour of 

your participation. The maximum amount is 150 SGD. 

Steps of the questionnaire  
The current version of lyric generation system generate lyrics in Mandarine according to given English 

sentences as input. You are going to evaluate these generated lyrics in a series of aspects. There will be two 

sections of evaluation, as in the below two sections.

For each evaluation aspects, you are going to evaluate them by assigning an integer score from 

[1,2,3,4,5].

1 Text-based evaluation  

1.1 You will be shown  

Text of input sentence, and 

Generated lyrics, which is expected to retain the meaning of the input sentence. 

1.2 Evaluation aspects  

Note: for both criteria, evaluation will be sentence-level. You give score to one sentence at a time.

(1) Sense  

Figure 8: Instructions for human evaluation, page 1/4.

462

https://ace-studio.huoyaojing.com/


How to evaluate:  

More meaning of the original sentence is retained in the output, higher score this output deserves.

5 marks - The output perfectly retain the meaning of input sentences. 

4 marks - Between 5 and 3.

3 marks - The output retained the overall meaning of input, but 

some parts are not accurately translated, 

or, some important parts in the input are ignored,

or, there are too much additional words so that the input's main idea slightly changed

2 marks - Although there are some words are successfully translated, but the output majorly change 

the meaning of input sentence.

1 mark - I did not see any relationship between the output and the input.

Note: we do not add penalty to outputs when

Outputs contains extra decorative words that are not in the input sentence in the source language, 

but did not change the main idea of input, or

Words that are not important, in the input sentence, are ignored in the outputs.

If the meaning of input sentence are well maintained in the outputs.

(2) Naturalness  

How to evaluate  

We only look at the output this time without considering input. The more natural the output is, higher 

score it deserve.

5 marks - Output sentence accord with the habit of Mandarin expression, and is in high fluency. 

Moreover, if I see a lyricist writing lyrics like this in a Chinese song, I think it's normal.

4 marks - Between 5 and 3. 

3 marks - The output has good fluency, but not in the usual style of lyrics of Mandarin.

2 marks - The expression is so unnatural so that I don't accept it to be written as song lyrics.

1 marks - Output sentence conflict with Mandarin expression habit. I've never seen someone speak 

Chinese this way. 

Note: Punctuation marks are deleted from output sentences. If you think that a sentence is not natural 

because of this reason, you can try to break the sentence according to the punctuation mark position of the 

input sentence and then assign a mark.

Example  

Input: like a swirling storm inside

5 marks output: 像内⼼汹涌的漩涡；1 mark output: 像旋转的暴⻛⾬

Figure 9: Instructions for human evaluation, page 2/4.
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1.3 Questionnaire  

Please finish the text_based_evaluation.xlsx.

We recommend you to finish it by 2-pass: 1st pass for Sense, and 2nd pass for Naturalness.

2 Listenting evaluation  

Before you start:

We also provide the original version of the song. Please listen to it before your evaluation of our system 

outputs.

2.1 You will be shown  

Original version of song in both audio and sheet format

Music sheet together with generated lyrics, and

Synthesized singing with original music and generated lyrics.

2.2 Evaluation aspects  

(1) Music-lyric compatibility:  

Note: This is a sentence-level evaluation.

How to evaluate  

We look at the output sentence and the melody in music sheet, while listening to the synthesized song. The 

higher the compatibility between the lyrics and the music, the higher the score.

We give score according to "lyric-melody alignment" and "word boundary conflict". 

"lyric-melody alignment": Do we have to divide original musical note to multiple ones, or extend the 

duration of certain words, to make the lyric and melody aligned together? If lyrics have same number of 

syllables with the melody note numbers, we don't need such adjustments.

"word boundary conflict": We consider two types of conflict: (1) a musical pause lies inside a multi-syllable 

word, so the pronunciation have to pause half way. (2) Or, the second (or later) syllable of a word is 

highlighted by the music instead of the first syllable. Usually we do not stress 2nd or later syllable of a word 

in Mandarin speaking, hence making the pronunciation unnatural.

5 marks: Lyrics syllable perfectly align with the music notes. No word boundary conflict. 

4 marks: Lyrics syllable perfectly align with the music notes. There are some word boundary conflicts, 

but is acceptable

3 marks: Lyrics syllable perfectly align with the music notes. However, word boundary conflict is 

everywhere, so I feel weired to listen to the singing. 

2 marks: Lyrics syllable mostly align with the melody notes. 

1 mark: Lyrics basically do not align with the melody so lots of adjustments have been made to the 

melody.

Figure 10: Instructions for human evaluation, page 3/4.
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Mark Example Comment

1

mark

We have to break the last and the 2nd last notes

to multiple pieces to align with "国啊" and "的王".

1

mark

We have to extend the duration of "上" and "⽩"

to align with the notes.

3

marks

There two word boundary conflicts in total: The

word "⻅过" is broken up by a musical pause;

The second syllable of word "脚印", that is "印",

lies on a downbeat.

Example  

 

(2) Singable Translation Score:  

Note: This is a paragraph-level evaluation.

How to evaluate  

This is a overall quality score to evaluate the output's singability and translation quality.

5 marks: It's not strange if you are told the lyrics are composed in Mandarin originally.

4 marks: The output is good in singability and rhyming, has overall accurate translation and 

naturalness, but still has room to improve.

3 marks: The output is good in singability and rhyming, but 

not retain the meaning of original lyrics.

or, not natural

2 marks: The output seems like lyrics, but fails at music-lyric compatibility

Note: if you think rhyming (押韵) will make the song better but this output is not in rhyme, it 

deserve no more than 2 score. However, if you think rhyming is not necessary for this song and 

this output do has greate quality, you can give it higher marks.

1 mark: It's just a "歌词⼤意 (main idea of input)", and nothing else.

2.3 Questionnaire  

Please finish the questionnaire at the google form link.

 

Figure 11: Instructions for human evaluation, page 4/4.
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