
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 4928–4949

July 9-14, 2023 ©2023 Association for Computational Linguistics

Don’t Generate, Discriminate:
A Proposal for Grounding Language Models to Real-World Environments

Yu Gu
The Ohio State University

gu.826@osu.edu

Xiang Deng
The Ohio State University

deng.595@osu.edu

Yu Su
The Ohio State University

su.809@osu.edu

Abstract
A key missing capacity of current language
models (LMs) is grounding to real-world en-
vironments. Most existing work for grounded
language understanding uses LMs to directly
generate plans that can be executed in the en-
vironment to achieve the desired effects. It
thereby casts the burden of ensuring grammati-
cality, faithfulness, and controllability all on the
LMs. We propose Pangu, a generic framework
for grounded language understanding that capi-
talizes on the discriminative ability of LMs in-
stead of their generative ability. Pangu consists
of a symbolic agent and a neural LM working
in a concerted fashion: The agent explores the
environment to incrementally construct valid
plans, and the LM evaluates the plausibility of
the candidate plans to guide the search process.
A case study on the challenging problem of
knowledge base question answering (KBQA),
which features a massive environment, demon-
strates the remarkable effectiveness and flexi-
bility of Pangu: A BERT-base LM is sufficient
for setting a new record on standard KBQA
datasets, and larger LMs further bring substan-
tial gains. Pangu also enables, for the first
time, effective few-shot in-context learning for
KBQA with large LMs such as Codex.1

1 Introduction

Language models (LMs) such as BERT (Devlin
et al., 2019), GPT-3 (Brown et al., 2020), and
Codex (Chen et al., 2021a) have demonstrated an
extraordinary capacity in understanding and gener-
ating both natural language (Minaee et al., 2021;
Liang et al., 2022) and generic programs (e.g.,
Python) (Li et al., 2022; Jain et al., 2022; Austin
et al., 2021). The recent release of ChatGPT and
similar large LMs is elevating this paradigm to
a new level. It seems to point us towards a future
where natural language serves as a universal device,
powered by LMs, for automated problem solving
and interacting with the (computing) world.

1The Pangu library: OSU-NLP-Group/Pangu.

Utterance

Databases Knowledge
Bases

TablesWeb Pages AppsPhysical
World

Environments

Plans

Grammatical

Faithful

Symbolic

NeuralScores

Controllable

Figure 1: A schematic illustration of the proposed frame-
work, Pangu, where a symbolic agent interacts with the
target environment to propose candidate plans, and a
neural LM evaluates the plausibility of each plan. The
agent searches the environment to incrementally con-
struct the plans, and the LM guides the search process.

However, a key missing piece in realizing this
future is the connection between LMs and real-
world environments, including both digital envi-
ronments (e.g., databases, knowledge bases, Excel
spreadsheets, software, websites, among others)
and physical environments (e.g., instruction fol-
lowing robots (Shridhar et al., 2020; Ahn et al.,
2022)). Such environments are where many real
problems lie. For example, a biologist may need
to find all the species of a certain butterfly genus
and their geographic distribution from a biology
knowledge base, a local grocery store owner may
want to visualize the historical sales of different
item categories in Excel to decide what and how
much to restock before the holiday season, and a
physician may need to find patients with specific
conditions in a large database of electronic medi-
cal records to inform the current diagnosis. How
can LMs enable solving all these problems, which
involve seeking information or taking actions in a
specific environment, with natural language?

Each environment is a unique context for in-
terpreting natural language requests from users.
Grounding, i.e., linking of (natural language) con-

4928

https://github.com/OSU-NLP-Group/Pangu

cepts to contexts (Chandu et al., 2021), therefore
becomes the fundamental problem. More precisely,
we need to produce a plan that can be executed in
an environment to achieve the desired effects of
the corresponding language request. When a plan
is described in a formal language (e.g., SQL for
relational databases (Yu et al., 2018) or APIs for
web services (Su et al., 2017; Andreas et al., 2020)),
it is also called a program. The unique challenge
of such grounded language understanding prob-
lems stems from 1) the vast heterogeneity of envi-
ronments and their planning languages (e.g., SQL,
GraphQL/REST APIs, λ-calculus, and robot plan-
ning languages), and 2) the vast, oftentimes infinite,
number of possible instantiations (or states) of each
environment. Some environments can also be dy-
namic, e.g., a database that is constantly updated
or a physical environment with moving objects.

Most existing methods for grounded language
understanding follow the popular sequence-to-
sequence framework (Sutskever et al., 2014; Cho
et al., 2014) and generate the plans/programs in an
autoregressive fashion (Xie et al., 2022; Ye et al.,
2022; Wang et al., 2021; Song et al., 2022a). A
core thesis of this paper is that directly generating
plans may not be the optimal way of using LMs
for grounded language understanding. It requires
LMs to have intimate knowledge about each spe-
cific planning language and environment, neither
of which may be part of an LM’s pre-training, to
ensure the grammaticality and faithfulness of the
generated plans.2 The infinite and dynamic environ-
ment states also reduce the potential effectiveness
of pre-training for improving faithfulness, even if
one manages to do so. Furthermore, autoregressive
generation with a neural LM lacks fine-grained con-
trol over planning; it is cumbersome, though not
impossible, to factor preferences, business logic,
and other values and constraints into the plan gener-
ation process. A focus of recent work is to alleviate
(some of) these limitations by augmenting autore-
gressive generation with environment-specific pre-
training (Yu et al., 2021; Deng et al., 2021) or con-
strained decoding (Scholak et al., 2021; Shin et al.,
2021; Gu and Su, 2022). However, the fundamental
challenges still largely remain.

Mathematically, an LM is simply a joint distribu-

2We generalize the definition of faithfulness to mean plans
that conform to the specifics of an environment such that it
can be successfully executed and achieve non-trivial results,
e.g., a SQL query that is executable in a specific database and
yields a non-empty result set.

tion p(x1, x2, ..., xn) that factors as a product of
conditional distributions

∏n
i=1 p(xi|x1, ..., xi−1).

Existing work leverages the conditional distribu-
tion formulation to generate the plan. It thereby
casts the burden of ensuring grammaticality, faith-
fulness, and controllability all on the LM. The main
proposal of this paper is to disentangle LMs from
these responsibilities and let LMs be what they orig-
inally are—a model that assigns a probability to a
sequence of tokens. In other words, we advocate
for using the joint distribution formulation of LMs
to evaluate the plausibility of (utterance, candidate
plan) pairs instead of directly generating the plan.

To this end, we propose Pangu, a generic frame-
work for grounded language understanding that
capitalizes on the discriminative ability of LMs in-
stead of their generative ability (Figure 1).3 Pangu
consists of a symbolic agent and a neural LM work-
ing in a concerted fashion. The symbolic agent ex-
plores the environment to propose candidate plans,
which are guaranteed by design to be both gram-
matical and faithful. For most real-world environ-
ments, due to the size of the search space or par-
tial observability, it is necessary for the agent to
search in the environment and incrementally ex-
tend or refine the plans. The LM plays a key role
in this search process—it evaluates the candidate
(partial) plans at each search step and guides the
agent towards promising search directions; it also
determines when the search ends. Finally, it is also
easier to control the search process of a symbolic
agent than the generation process of a neural LM.

As a case study, we instantiate the proposed
framework for complex question answering over
knowledge bases (KBQA). KBQA provides an
ideal testbed for grounded language understanding
because of its massive environment—direct gener-
ation with LMs often fails dramatically (Gu et al.,
2021). We show that simply using BERT-base
with Pangu is sufficient for setting a new record
on standard KBQA datasets, and larger LMs fur-
ther bring substantial gains. Pangu also enables,
for the first time, few-shot KBQA by prompting
large language models (e.g., Codex): Using only 10
labeled examples, it outperforms all prior methods
on GRAPHQ (Su et al., 2016). It provides unprece-
dented uniformity for using LMs—one can easily
plug encoder-only LMs, encoder-decoder LMs, or
decoder-only LMs into Pangu, through either fine-

3Pangu is a primordial being in Chinese mythology who
separated heaven and earth. We name our framework after that
for its separating the realm of the neural and the symbolic.

4929

tuning or in-context learning. These results high-
light the remarkable effectiveness and flexibility of
Pangu and validate the proposal of using LMs for
discrimination instead of generation.

2 Related Work

2.1 Generation for Grounded Language
Understanding

The Seq2Seq framework (Sutskever et al., 2014;
Bahdanau et al., 2015) has been the de facto choice
for grounded language understanding, where the
LM directly generates a plan given an input utter-
ance. However, the lack of grounding during pre-
training makes generating valid plans from LMs
challenging. Recent studies endeavor to alleviate
this issue via input augmentation or constrained de-
coding. For input augmentation, the environment
(or some relevant portion of it) is fed to the LM’s
encoder together with the utterance (Hwang et al.,
2019; Wang et al., 2020; Xie et al., 2022). Such
methods rely on the LM to understand the interplay
between the language requests and the environment
and correctly factor that into plan generation. They
therefore require substantial training data to learn
and also provide no guarantee for grammaticality
or faithfulness. In contrast, constrained decoding
methods regulate the decoder’s behavior to guar-
antee grammaticality (Scholak et al., 2021; Shu
et al., 2022) or even faithfulness (Liang et al., 2017;
Gu and Su, 2022). However, such uses still cast
the burden of generating valid plans on the LM
itself; controlling the generation process of an LM
can be difficult and specific to each planning lan-
guage and/or environment. In our proposal, the LM
is only used to discriminate valid plans proposed
by an agent through a controllable search process.
More detailed comparison is presented in §5.3.

2.2 Few-Shot Grounded Language
Understanding with LLMs

Large language models (LLMs) (Brown et al.,
2020; Chen et al., 2021a) have demonstrated strong
few-shot learning capabilities in various tasks, from
writing programs to query structured and unstruc-
tured data (Austin et al., 2021; Rajkumar et al.,
2022; Cheng et al., 2022), interacting with online
websites (Gur et al., 2022; Nakano et al., 2021), to
generating procedural plans and guiding embodied
agents in virtual environments (Singh et al., 2022;
Ahn et al., 2022; Shah et al., 2022; Song et al.,
2022b). Most existing work still capitalizes on the

generative ability of LLMs. A common strategy
to encourage an LLM to produce valid plans is to
directly describe the environment in the LLM’s
context (i.e., input augmentation), which is difficult
for complex environments like KBs. A concurrent
work of ours (Li et al., 2023b) asks the LLM to
directly generate a proxy plan from the input ques-
tion without the environment description, which
is then used to retrieve a valid plan from a set of
candidate plans. However, this design is tailored
specifically to the KB query language and is lim-
ited to generating plans with at most two hops due
to the combinatorial explosion in their candidate
enumeration. In contrast, Pangu shields the LLM
from the complexity of the environment and lets
the LLM focus on evaluating the plausibility of
candidate plans proposed by an agent. One inter-
esting related work is Ahn et al. (2022), where an
LLM is used to score atomic action (skill) propos-
als, which are guaranteed to conform to affordance
constraints, from an embodied agent. Pangu shares
a similar spirit of using LMs for discrimination, but
we support more complex plans through a search
process in the environment guided by an LM.

2.3 Bottom-Up Semantic Parsing

Our instantiation of Pangu on KBQA is closely con-
nected to bottom-up semantic parsing, particularly
SmBoP (Rubin and Berant, 2021), a text-to-SQL
model that iteratively constructs a complex plan
from a set of subplans. Pangu similarly constructs
a complex plan incrementally from smaller sub-
plans, but it makes the following main departures.
First, SmBoP requires all ingredients (i.e., column
headers, table names, and DB values) at the begin-
ning of parsing. This assumption does not generally
hold for more complex or partially observable envi-
ronments, where ingredients need to be discovered
through search. In our method, only topic entities
are needed as the initial plan, which can be read-
ily obtained using an entity linker (Li et al., 2020).
Second, our scoring function is based on a straight-
forward application of LMs, while SmBoP uses a
more intricate architecture with extra parameters.
Also related is an array of earlier KBQA methods
that adopt an enumerate-and-rank approach (Yih
et al., 2015; Gu et al., 2021; Ye et al., 2022). Be-
cause they try to enumerate all candidate plans up
front, the maximum plan complexity is bound to
be small. Our adaptive search process allows for
flexible construction of more complex plans.

4930

Knowledge Base

What is the latest released computer emulator
developed in Java?

t = 1 t = 2

t = 3 t = 4

Input utterance:

Environment:

Target plan:

(a)

(b) Utterance: What is the latest released computer emulator developed in java? Candidate Plan: (AND ComputerEmulator (JOIN LanguagesUsed Java))

[CLS] Utterance [SEP] Candidate Plan [SEP] UtteranceCandidate PlanScore:

Score:

1a. (JOIN ParentLanguage Java)

1b. (JOIN Influenced Java)

1c. (JOIN LanguagesUsed Java)

 : {Java}

3a. (COUNT 2a)

3b. (ARGMIN 2a LatestReleaseDate)

3c. (ARGMAX 2a LatestReleaseDate)

2a. (AND ComputerEmulator 1c)

2b. (AND ComputerSoftware 1c)

2c. (JOIN ReadBy 1c)

4a. (JOIN UsesSoftware 3c)

4b. (JOIN WrittenBy 3c)

4c. (COUNT 3c)

Beam Size = 1

(ARGMAX (AND ComputerEmulator
 (JOIN LanguagesUsed Java))
 LatestReleaseDate)

 : {1c}

 : {3c} : {2c}

Figure 2: (a) An illustration of how an agent collaborates with an LM to incrementally produce a complex target
plan over a KB using beam search (beam size = 1 in this example). At each step, the agent extends the current
plans based on the environment to produce new candidate plans. An LM then scores the candidate plans and returns
the top-ranked ones. The search process terminates when there is no candidate plan that scores higher than the
current best plan (e.g., 4a-c are all worse than 3c). (b) Using different LMs (left: BERT, right: Codex) to evaluate
the plausibility of plan 2a. It resembles using LMs for semantic matching between the utterance and the plan.

3 Approach

An overview of the Pangu framework is presented
in Algorithm 1. An overarching assumption of
Pangu is that a complex plan can be incrementally
constructed by an agent through its exploration in
an environment. Such an agent can be a robot doing
household tasks in a physical environment (Shrid-
har et al., 2020), or a virtual agent that orchestrates
API calls of different web services (Andreas et al.,
2020) or traverses a database/KB (Yu et al., 2018;
Gu et al., 2022). Starting from a set of initial plans
P0 (may be empty), at each step, the agent inter-
acts with the environment E to extend the current
plans into a new set of candidate plans (line 4).
The candidate plans are guaranteed to be valid (i.e.,
both grammatical and faithful). An LM then scores
the candidate plans, and the top K (the beam size)
plans are retained for further exploration in the next
step (line 5). The same procedure loops until a ter-
mination check is passed (line 6); the best plan is
then returned.

Pangu mainly shines in that a symbolic agent
explores the environment to propose valid plans
and shields the LM from having to handle the large
search space for valid plan generation. Instead,
the LM only focuses on evaluating the plausibility
of the proposed plans. An LM can be easily fine-
tuned to excel at this assignment, or, in the case of
LLMs such as Codex, they come with such ability
out of the box, which enables few-shot in-context

Algorithm 1: PANGU

1 Input: utterance q, initial plans P0, environment E
2 t← 1;
3 while True do

// Agent proposes plans
4 Ct ← Candidate-Plans(Pt−1, E)

// LM scores and prunes plans
5 Pt ← Top-K(q, Ct)
6 if Check-Termination() = True then
7 return top-scored plan

8 t← t+ 1

learning. Pangu is a generic framework and can
potentially accommodate many grounded language
understanding tasks by instantiating the various
functions in Algorithm 1 accordingly. Next, we
discuss our instantiation on KBQA. More discus-
sion on Pangu’s applicability to other tasks, with
preliminary results, can be found in Appendix A.

3.1 KBQA: Preliminaries

Without loss of generality, we use KBs as our
target environment and the KBQA task as a con-
crete example for ease of discussion. It is an ideal
testbed because of the massive environment pro-
vided by modern KBs (e.g., FREEBASE (Bollacker
et al., 2008) contains 45 million entities and 3 bil-
lion facts for over 100 domains), which makes
grounding particularly challenging. Given a KB
K ⊂ E × R × (E ∪ L ∪ C), where C is a set of
classes, E a set of entities, L a set of literals and

4931

R a set of binary relations, the task of KBQA is to
find a set of answer entities to an input utterance in
the KB. KBQA is typically modeled as semantic
parsing (Gu et al., 2022), where the utterance is
mapped to an executable program/plan in a certain
formal language (e.g., SPARQL, λ-calculus, or S-
expression) whose denotation is the answer. We
use S-expressions (Gu et al., 2021) for its compact-
ness. An example is shown in Figure 2.

3.2 Candidate Plan Enumeration

To handle the large search space, the agent casts
the task as a step-wise decision-making problem.
A plan for KBQA can be decomposed into a nested
sequence of subplans (Gu and Su, 2022) (Figure 2).
The length of a plan is defined as the number of
atomic subplans it contains.

For KBQA, P0 can be a set of entity proposals
(e.g., {Java}) obtained using off-the-shelf entity
linkers (Li et al., 2020). At step t, the agent con-
siders Pt−1, the length t − 1 plans, and decides
how to further extend them into Ct, the valid plans
of length t, based on the environment. This often
involves executing the current plans in the environ-
ment. Consider the example in Figure 2 at t = 1,
the agent finds all the relations connected to Java
and enumerates all the length-1 valid plans. The
LM scores the candidate plans and prunes all but
the top-ranked plan because beam size is 1. At
t = 2, the agent executes plan 1c to get its deno-
tation (i.e., a set of entities) in the KB, based on
which the agent further discovers the relations and
classes (e.g., ComputerEmulator, ComputerSoftware,
and ReadBy) connected to those entities to form
valid length-2 plans. All the plans produced in this
process are guaranteed to be valid. See Appendix B
for a more detailed discussion of this process.

3.3 LM-Based Scoring

After the agent enumerates a set of candidate plans,
an LM assists with its decision making by evalu-
ating the plausibility of each candidate plan. The
interface for evaluating a plan using LMs resem-
bles using LMs for semantic matching: Given a
pair of (u : utterance, c ∈ Ct : candidate plan), an
LM acts as a scoring function: s(u, c) → R, which
indicates to what extent the candidate plan matches
the intent of the utterance. The plausibility of a
candidate oftentimes can be indicated by simple
linguistic cues, e.g., ComputerEmulator in 2a might
be a strong indicator (Figure 2(a)).

We follow the common practice of using LMs
for semantic matching. For encoder-only LMs like
BERT, we directly get a score from the representa-
tion of the [CLS] token (Figure 2(b)). For encoder-
decoder LMs like T5 (Raffel et al., 2020), we fol-
low Zhuang et al. (2022) to feed both the utterance
and the candidate plan to the encoder and let the
decoder decode only for one step. The decoding
probability over an token that is unused during pre-
training is then repurposed as a proxy for match-
ing score.4 For decoder-only LMs like Codex, we
model the score as the probability of generating
the candidate plan conditioned on the utterance,
i.e., P (c|u). Intuitively, a good scoring function s
should respect the following partial order:

s(u, c1) > s(u, c2), ∀c1 ∈ Gt and ∀c2 ∈ Gt−1,

s(u, c1) > s(u, c2), ∀c1 ∈ Gt and ∀c2 ∈ Ct\Gt,

s(u, c′) > s(u, ci), ∀ci ̸= c′

where Gt is the set of gold (sub-)plans at step t
(i.e., length-t subplans of the target plan), Ct\Gt is
the set of length-t candidate plans except the gold
(sub-)plans, and c′ is the target plan.

In other words, a gold subplan should be scored
higher than (1) any negative (i.e., not gold) plans at
the same step (e.g., 2a should be scored higher than
2c), because they contain information irrelevant to
u, and (2) any gold sub-plans of length < t (e.g.,
2a should be scored higher than 1c) because they
are less complete. In addition, c′ should be scored
higher than any other plan.

3.4 Termination Check

Assuming the LM can assign reasonable scores to
candidate plans following the above partial order,
we can naturally define the condition for termina-
tion in Algorithm 1: It terminates if the highest
score of candidate plans at step t is lower than the
highest score of candidate plans at step t−1, which,
ideally, should indicate no reachable candidate plan
of length ≥ t is better than the plans at step t− 1,
and thus the search process terminates.

3.5 Learning

We discuss the learning procedure for both fine-
tuning LMs (e.g., BERT and T5) and in-context
learning with LLMs (e.g., Codex). For both set-
tings, we use pairs of utterances and gold plans for
supervision.

4We use <extra_id_23> as the proxy token for T5.

4932

Fine-tuning. Given a gold plan of length T , we
first derive its gold sub-plans Gt of each step t ≤ T
(e.g., 1c for step 1 and 2a for step 2 in Figure 2).
Fine-tuning proceeds with beam search similar to
the test-time behavior, but with bottom-up teacher
forcing (Williams and Zipser, 1989; Rubin and
Berant, 2021), i.e., the gold plans of the current
step should always be inserted into the beam. At
each step of beam search, we get the probability of
each candidate plan c ∈ Ct with softmax over the
scores: p(c) = softmax{s(u, c)}c∈Ct∪Gt−1 . Gt−1

is also included here to encourage LMs to explicitly
learn the partial order by minimizing the loss:

− 1

Z

T+1∑

t=1

∑

c∈Ct

p̂(c)log p(c)

where Z is the total number of summed items, and
p̂(c) equals 1 if c ∈ Gt and 0 elsewise. Note that,
for the T + 1 step, we let GT+1 = GT . This
additional step aims to enforce the third condition
in the partial order. Our objective is essentially
a listwise learning-to-rank objective based on the
cross entropy (Cao et al., 2007).

In-Context Learning. We directly use pairs of ut-
terances and gold plans as in-context demonstra-
tions to the LLM, with a simple task instruction in
the prompt: “Please translate the following ques-
tions to Lisp-like programs.” The LLM is therefore
expected to capture the desired partial order by
observing the in-context examples. For concrete
examples of prompts, please refer to Appendix F.
When scoring using LLMs, we normalize the like-
lihood w.r.t. the number of tokens in the plan to
handle plans of varying lengths.

4 Experimental Setup

4.1 Datasets

We experiment with three KBQA datasets of differ-
ent scale and nature (statistics in Table C.3).
GRAILQA (Gu et al., 2021) is a large-scale dataset
that evaluates three levels of generalization, namely,
i.i.d., compositional (novel compositions of seen
constructs), and zero-shot (totally novel domains).
It also features diverse questions of different com-
plexity (e.g., programs may involve up to 4 rela-
tions) and aggregation functions (e.g., compara-
tives, superlatives, and counting).
GRAPHQ (Su et al., 2016) is a moderate-scale
dataset. Due to the small size of its training set

and the non-i.i.d. setting, GRAPHQ is particularly
challenging. In our experiments, we use the pro-
cessed version by Gu and Su (2022), which maps
the original dataset from FREEBASE 2013-07 to
FREEBASE 2015-08-09.
WEBQSP (Yih et al., 2016) is a moderate-scale
dataset with questions from Google query logs. It
mainly tests i.i.d. generalization on simple ques-
tions. It is a clean subset of WEBQ (Berant et al.,
2013) with program annotations.

The gold programs for all three datasets are pro-
vided in S-expressions (Gu and Su, 2022), which
can be determinstically converted into SPARQL
queries to get final execution results.

4.2 Baselines
We mainly compare Pangu with state-of-the-
art baselines that use LMs as a generative
model, including ArcaneQA (Gu and Su, 2022),
TIARA (Shu et al., 2022), DecAF (Yu et al., 2022),
and RnG-KBQA (Ye et al., 2022). Constrained
decoding (i.e., ArcaneQA and TIARA) and input
augmentation (i.e., TIARA, DecAF) are used to en-
hance plan generation. Also, the last three models
use a combination of LMs for multiple purposes
(i.e., retrieval/ranking/decoding). In addition, we
also compare with UnifiedSKG (Xie et al., 2022).
UnifiedSKG assumes a set of schema items are
provided as input, where the gold schema items
are always included and the number of negative
schema items is restricted to 20 for GRAILQA. It
is thus a less fair comparison for other methods,
but we include it anyway because it is a represen-
tative way of autoregressive plan generation using
an LLM. Compared with the baselines, Pangu re-
quires no extra parameter, no modification to the
LM, and no need to combine multiple LMs. Pangu
provides unprecedented uniformity of using LMs
of different nature. More details on baselines can
be found in Appendix C.2.

4.3 Implementation Details
For the fine-tuning experiments, we experiment
with BERT-base, T5-base, T5-large, and T5-3B,
and use the full training set of each dataset for fine-
tuning. For the in-context learning experiments,
we experiment with Codex.5 We randomly sample
10/100/1,000 training examples from each dataset
and use that as the pool for dynamic retrieval. Dur-
ing inference, for each test example, we retrieve

5We opt for Codex because it is free, but small-scale exper-
iments also show competitive performance from ChatGPT.

4933

Overall I.I.D. Compositional Zero-shot Dev Overall

Model EM F1 EM F1 EM F1 EM F1 EM F1

QGG (Lan and Jiang, 2020) − 36.7 − 40.5 − 33.0 − 36.6 − −
BERT+Ranking (Gu et al., 2021) 50.6 58.0 59.9 67.0 45.5 53.9 48.6 55.7 − −
ReTraCk (Chen et al., 2021b) 58.1 65.3 84.4 87.5 61.5 70.9 44.6 52.5 − −
RnG-KBQA (Ye et al., 2022) 68.8 74.4 86.2 89.0 63.8 71.2 63.0 69.2 71.4 76.8
ArcaneQA (Gu and Su, 2022) 63.8 73.7 85.6 88.9 65.8 75.3 52.9 66.0 69.5 76.9
Uni-Parser (Liu et al., 2022) 69.5 74.6 85.5 88.5 65.1 71.1 64.0 69.8 70.8 76.5
TIARA (Shu et al., 2022) 73.0 78.5 87.8 90.6 69.2 76.5 68.0 73.9 75.3 81.9
DecAF (Yu et al., 2022) 68.4 78.7 84.8 89.9 73.4 81.8 58.6 72.3 − 81.4
UnifiedSKG w/ T5-3B (Xie et al., 2022) − − − − − − − − 70.1∗ −
Pangu (this work)

w/ BERT-base 73.7 79.9 82.6 87.1 74.9 81.2 69.1 76.1 75.0 82.1
w/ T5-base 73.6 79.9 84.7 88.8 73.1 80.1 68.6 75.8 76.0 82.8
w/ T5-large 74.8 81.4 82.5 87.3 75.2 82.2 71.0 78.4 75.8 83.3
w/ T5-3B 75.4 81.7 84.4 88.8 74.6 81.5 71.6 78.5 75.8 83.4
w/ Codex (10-shot) 48.9 56.3 51.8 58.1 43.3 51.2 50.1 57.8 − −
w/ Codex (100-shot) 53.3 62.7 54.7 62.9 54.5 63.7 52.3 62.2 − −
w/ Codex (1000-shot) 56.4 65.0 67.5 73.7 58.2 64.9 50.7 61.1 − −

(a) GRAILQA

Model F1

UDEPLAMBDA (Reddy et al., 2017) 17.7♯

PARA4QA (Dong et al., 2017) 20.4♯

SPARQA (Sun et al., 2020) 21.5♯

BERT+Ranking (Gu et al., 2021) 27.0
ArcaneQA (Gu and Su, 2022) 34.3

Pangu (this work)
w/ BERT-base 52.0
w/ T5-base 53.3
w/ T5-large 55.6
w/ T5-3B 62.2
w/ Codex (10-shot) 42.8
w/ Codex (100-shot) 43.3
w/ Codex (1000-shot) 44.3

(b) GRAPHQ

Model F1

QGG (Lan and Jiang, 2020) 74.0
ReTraCk (Chen et al., 2021b) 71.0
CBR (Das et al., 2021) 72.8
Program Transfer (Cao et al., 2022) 76.5∗

RnG-KBQA (Ye et al., 2022) 75.6
ArcaneQA (Gu and Su, 2022) 75.6
Uni-Parser (Liu et al., 2022) 75.8
TIARA (Shu et al., 2022) 76.7
DecAF (Yu et al., 2022) 78.8

Pangu (this work)
w/ BERT-base 77.9
w/ T5-base 77.3
w/ T5-large 78.9
w/ T5-3B 79.6
w/ Codex (10-shot) 45.9
w/ Codex (100-shot) 54.5
w/ Codex (1000-shot) 68.3

(c) WEBQSP

Table 1: Overall results. Pangu achieves a new state of the art on all three datasets and shows great flexibility
in accommodating LMs of different nature. Also, for the first time, Pangu enables effective few-shot in-context
learning for KBQA with Codex. ∗ using oracle entity linking. ♯ results on the original GRAPHQ 2013-07, otherwise
it uses the version from Gu and Su (2022), which is a slightly smaller subset. All baselines after 2020 are trained
using gold programs in S-expressions.

10 in-context examples from the pool using BM25-
based utterance similarity. We use entity linking re-
sults from off-the-shelf entity linkers. More details
on implementations can be found in Appendix C.3.

5 Results

5.1 Main Results

Fine-tuning results. The main results are shown
in Table 1. Using a BERT-base LM, Pangu al-
ready achieves a new state of the art on GRAILQA
and GRAPHQ, and only trails behind DecAF on
WEBQSP, which uses a 3B-parameter LM. On
GRAPHQ, Pangu with BERT-base dramatically
improves the state-of-the-art F1 from 31.8% to
48.2%. These are strong evidence for Pangu be-

ing a better protocol for using LMs for grounded
language understanding. Pangu’s strong generaliz-
ability with limited training data is also confirmed
by its performance on the zero-shot generaliza-
tion of GRAILQA. Our method also shows an un-
precedented uniformity in accommodating differ-
ent LMs (encoder-only, encoder-decoder, decoder-
only, through both fine-tuning and in-context learn-
ing) and a reliable return from model size—using
increasingly larger LMs yields monotonically im-
proved results across the board, with T5-3B set-
ting the new state of the art on all datasets. One
interesting observation is that Pangu slightly under-
performs on the i.i.d. subset of GRAILQA. It turns
out that, because the discriminative task is much

4934

Question I “neil leslie diamond composed what tv song?"
Pangu (AND tv.tv_song (JOIN music.composition.composer m.015_30)) (!)
ArcaneQA (AND music.recording (JOIN music.recording.song (JOIN music.composition.composer m.015_30))) (%)
ArcaneQA△ (JOIN music.composition.composer m.015_30) (JOIN music.recording.song #0) (AND music.recording

#1)

Question II “which software falls into both continuous integration and build automation genres?"
Pangu (AND computer.software (AND (JOIN computer.software.software_genre m.05vvqy) (JOIN com-

puter.software.software_genre m.0h2vrf))) (!)
ArcaneQA (AND computer.software (JOIN computer.software.software_genre m.05vvqy)) (%)
ArcaneQA△ (JOIN computer.software.software_genre m.05vvqy) (AND computer.software #0)

Table 2: Two representative examples that Pangu succeeds while ArcaneQA fails, both w/ BERT-base. △ denotes
the original order of the decoder’s output. The first incorrect token predicted by ArcaneQA is marked in red.

easier for LMs to learn than the generative task,
Pangu converges very fast (at most two epochs)
and gets fewer training steps for overfitting the i.i.d.
setting, in exchange for better non-i.i.d. general-
ization. The strong performance on WEBQSP, an
i.i.d. dataset, further supports this observation, be-
cause now Pangu can more sufficiently fit the i.i.d.
training data.

In-context learning results. For the first time, we
show the feasibility of effective few-shot KBQA
with LLMs. On GRAILQA, Pangu with Codex
achieves an overall F1 of 56.3% with only 10 train-
ing examples. Though there is still a gap to the
full-data fine-tuning results, it is still impressive,
especially considering the massive meaning space
of the KB. On GRAPHQ, Pangu with Codex even
outperforms ArcaneQA using 10 training exam-
ples. This further confirms that Pangu is particu-
larly strong in generalizing to new environments
with limited training data. On WEBQSP, Pangu
trails behind fine-tuning methods when only us-
ing 10 training examples; however, increasing the
size of the pool for retrieval can significantly boost
the performance, which is expected given WE-
BQSP’s i.i.d. nature. While for non-i.i.d. datasets
like GRAILQA and GRAPHQ, the gain from more
training examples is marginal.

Fine-grained performance decomposition by
question complexity can be found in Appendix D,
which show that Pangu works well across questions
of different complexity.

5.2 Sample Efficiency Analysis

Intuitively, by using LMs for discrimination instead
of generation, the task becomes easier for LMs and
thus improves their sample efficiency. Our sam-
ple efficiency experiments in Figure 3 confirm this
hypothesis. We downsample GRAILQA’s training
data and randomly sample 1, 10, 100, and 1,000

1-shot 10-shot 100-shot 1000-shot Full
0

15

30

45

60

75

90

ArcaneQA (BERT-base)
Pangu (BERT-base)

UnifiedSKG (T5-base)
Pangu (T5-base)

UnifiedSKG (Codex)
Pangu (Codex)

Figure 3: Sample efficiency results. We conduct three
runs with different training examples and show the mean
EM; shaded areas denote max/min.

training examples and report the results on 500
random dev examples. We compare Pangu with Ar-
caneQA and UnifiedSKG using the same LMs. We
use oracle entity linking to have a more direct com-
parison with UnifiedSKG (though UnifiedSKG still
has an unfair advantage as previously mentioned).
In addition, we also include Pangu with Codex and
use the downsampled training set as the pool for
retrieval. First, we observe that, when both using
T5-base, UnifiedSKG significantly underperforms
Pangu. The main reason is that most predicted
plans by UnifiedSKG are invalid in the low-data
regime. ArcaneQA uses constrained decoding to
alleviate this issue, but still consistently underper-
forms Pangu when both using BERT-base. For
in-context learning using Codex, Pangu achieves
an EM of over 50% with only one training instance.
It consistently outperforms all fine-tuning models
under low-data settings (i.e., less than 1,000 train-
ing examples). Compared with UnifiedSKG, Pangu
shows both stronger performance and better robust-
ness against different training data selections.

5.3 Pangu vs. Constrained Decoding

To better understand Pangu’s advantage over
generation-based methods, we compare Pangu with

4935

0.0 0.5 1.0

D
en

si
ty

Pangu (BERT-base)Pangu (BERT-base)

0.0 0.5 1.0

ArcaneQAArcaneQA

Probability

seen unseen

Figure 4: Distribution of the probabilities assigned to
predicted programs that are seen and unseen during
training. We use kernal density smoothing for better
visualization, so the x-axis goes over 1.0.

ArcaneQA. ArcaneQA is the only open-source
baseline that uses constrained decoding to enforce
the validity of predicted plans. There are two main
reasons for Pangu’s superiority. First, though con-
strained decoding can also help ensure plan va-
lidity, the autoregressive decoder operates with
token-level local normalization and thus lacks a
global view. As a result, local failures may break
its predictions. For example, a wrong local predic-
tion (e.g., function name) by ArcaneQA leads to
catastrophic errors (Table 2). By evaluating candi-
date plans instead of candidate tokens, Pangu has
a more global view and is less likely to make such
local errors. Second, Pangu is less susceptible to
overfitting and thus achieves better performance in
non-i.i.d. settings. Pangu does not learn to generate
a plan; instead, it learns to evaluate the plausibility
of utterance-plan pairs. Such knowledge is more
transferable. An interesting observation is shown
in Figure 4, where Pangu’s output probability dis-
tributions are consistent across programs seen and
unseen in training. For ArcaneQA, however, there
is a drastic shift from seen to unseen. This is also
consistent with prior findings that autoregressive
models tend to overfit seen structures during train-
ing by Bogin et al. (2022). It makes non-i.i.d. gen-
eralization more difficult.

We also conduct an error analysis in Appendix E,
which sheds some light on future improvements.

6 Conclusions

In this paper, we proposed to capitalize on the dis-
criminative ability of language models (LMs) in-
stead of their generative ability for grounded lan-
guage understanding. Building on this proposal,
we proposed a generic framework, Pangu, which
consists of a symbolic agent and a neural LM work-
ing in a concerted fashion and creates a better sep-
aration between the realm of the neural and the

symbolic. This work opens the door for developing
versatile and sample-efficient grounded language
understanding systems that fully capitalize on the
language understanding ability of LMs while avoid-
ing their limitations. It also sheds light on develop-
ing better neuro-symbolic systems in general.

Limitations

Despite the strong performance of Pangu, we iden-
tify several limitations that call for further improve-
ment. The first major limitation lies in efficiency.
Because Pangu requires an LM to iteratively score
candidate plans, it is resource-consuming in terms
of both time and computing. Compared with Ar-
caneQA, which efficiently handles complex ques-
tions in KBQA, Pangu is about twice as slow for
both training and inference and consumes about
twice as much GPU memory when using the same
LM. Concretely, to predict a plan of L tokens,
generation-based methods involve using an LM
to do L forward passes. For Pangu, the number
of forward passes is proportional to the number of
candidate plans, which can range widely. In the fu-
ture, algorithms with complexity better than O(N),
N being the number of candidate plans, are desired
to find the top-K candidates. That being said, we
would like to note that both ArcaneQA and Pangu
are more efficient than most existing methods due
to their efficient dynamic search design. For ex-
ample, Pangu is 8 times faster than RnG-KBQA,
according to the numbers reported in Gu and Su
(2022). Nonetheless, we list efficiency as a limi-
tation because there is clear potential for further
improvement.

Second, though Pangu has shown some promis-
ing results with Codex, the true potential of en-
abling few-shot grounded language understanding
with Pangu has yet to be fully realized. We only
experiment with a straightforward scoring function
and have not experimented with different prompt
designs systematically. In the future, we plan to
try different prompt designs, retrievers, and scor-
ing functions, including using latest techniques like
chain-of-thought prompting (Wei et al., 2022).

Third, though orthogonal to the general frame-
work of our proposal, in our current instantiation,
we assume gold plans for training. However, gold
plans can be expensive to collect for some envi-
ronments. Exploring fine-tuning LMs with weak
supervision can be an interesting direction. In ad-
dition to proposing candidate plans to the LM, the

4936

agent may also respond to the LM with rewards
based on its decisions (Liang et al., 2017).

Finally, one important merit of Pangu, control-
lability, is under-explored in this paper, because it
is not very necessary for KBQA. While for tasks
like text-to-SQL parsing, controllability could be a
highly desirable property. Intruders may manipu-
late text-to-SQL models to launch database attacks
via SQL injection (Peng et al., 2022). With Pangu,
we can easily get rid of malicious SQL operations
in candidate enumeration. However, for generation-
based methods, such controls are hard to achieve
during generation because the decoding process
can be shortsighted—it is difficult to tell whether
the current predicted token would lead to a mali-
cious operation several steps later. We leave explo-
ration on Pangu’s controllability to future work.

Ethics Statement

LLMs are no longer just a laboratory curiosity;
they are being used in real-world systems to in-
teract with real-world environments (both digital
and physical). To ensure successful deployment of
LLMs in these scenarios, it is essential to improve
their controllability, as failure to do so could lead to
catastrophic results. In digital environments, such
as databases, unexpected behavior could lead to
safety issues with a company’s data and property.
In physical environments, it could even put human
life at risk. Pangu is proposed to provide better
controllability for LLMs when being depolyed to
interact with different environments. Specifically,
safety considerations can be explicitly incorporated
into the agent’s candidate proposal (the symbolic
part of Pangu) for enhanced security (i.e., harmful
actions are directly excluded from the candidates
pool).

Acknowledgements

The authors would like to thank Percy Liang, Ji-
awei Han, Jonathan Berant, Huan Sun, and other
colleagues from the OSU NLP group for their valu-
able feedback. The authors would also like to
thank Shijie Chen and Chan Hee Song for proof-of-
concept implementation of Pangu on other tasks,
Yiheng Shu for sharing their entity linking re-
sults, and Tianbao Xie for clarifications on Uni-
fiedSKG. This research was supported in part by
ARL W911NF2220144, NSF OAC 2112606, and
Ohio Supercomputer Center (Center, 1987).

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen

Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, et al. 2022. Do as i can, not as i say:
Grounding language in robotic affordances. CoRR,
abs/2204.01691.

Jacob Andreas, John Bufe, David Burkett, Charles
Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman, Percy
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse
Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon
Striplin, Yu Su, Zachary Tellman, Sam Thomson, An-
drei Vorobev, Izabela Witoszko, Jason Wolfe, Abby
Wray, Yuchen Zhang, and Alexander Zotov. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556–571.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg,
and Yoav Artzi. 2022. A persistent spatial semantic
representation for high-level natural language instruc-
tion execution. In Conference on Robot Learning,
pages 706–717. PMLR.

Ben Bogin, Shivanshu Gupta, and Jonathan Berant.
2022. Unobserved local structures make composi-
tional generalization hard. CoRR, abs/2201.05899.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247–1250. ACM.

4937

https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2204.01691
https://doi.org/10.1162/tacl_a_00333
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://proceedings.mlr.press/v164/blukis22a.html
https://proceedings.mlr.press/v164/blukis22a.html
https://proceedings.mlr.press/v164/blukis22a.html
https://arxiv.org/abs/2201.05899
https://arxiv.org/abs/2201.05899
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu, Lei
Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao. 2022.
Program transfer for answering complex questions
over knowledge bases. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8128–
8140, Dublin, Ireland. Association for Computational
Linguistics.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: from pairwise ap-
proach to listwise approach. In Machine Learning,
Proceedings of the Twenty-Fourth International Con-
ference (ICML 2007), Corvallis, Oregon, USA, June
20-24, 2007, volume 227 of ACM International Con-
ference Proceeding Series, pages 129–136. ACM.

Ohio Supercomputer Center. 1987. Ohio supercomputer
center.

Khyathi Raghavi Chandu, Yonatan Bisk, and Alan W
Black. 2021. Grounding ‘grounding’ in NLP. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 4283–4305, On-
line. Association for Computational Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin,
Jian-Guang Lou, and Feng Jiang. 2021b. ReTraCk:
A flexible and efficient framework for knowledge
base question answering. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing: System
Demonstrations, pages 325–336, Online. Association
for Computational Linguistics.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2022. Binding
language models in symbolic languages. CoRR,
abs/2210.02875.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

E. F. Codd. 1970. A relational model of data for large
shared data banks. Commun. ACM, 13(6):377–387.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God-
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros
Polymenakos, and Andrew McCallum. 2021. Case-
based reasoning for natural language queries over
knowledge bases. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 9594–9611, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining
for text-to-SQL. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1337–1350, Online. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella
Lapata. 2017. Learning to paraphrase for question an-
swering. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 875–886, Copenhagen, Denmark. Association
for Computational Linguistics.

4938

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2022.acl-long.559
https://doi.org/10.18653/v1/2022.acl-long.559
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73
https://doi.org/10.18653/v1/2021.findings-acl.375
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.48550/arXiv.2210.02875
https://doi.org/10.48550/arXiv.2210.02875
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.18653/v1/2021.emnlp-main.755
https://doi.org/10.18653/v1/2021.emnlp-main.755
https://doi.org/10.18653/v1/2021.emnlp-main.755
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D17-1091
https://doi.org/10.18653/v1/D17-1091

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Yu Gu, Sue Kase, Michelle Vanni, Brian M. Sadler,
Percy Liang, Xifeng Yan, and Yu Su. 2021. Beyond
I.I.D.: three levels of generalization for question an-
swering on knowledge bases. In WWW ’21: The Web
Conference 2021, Virtual Event / Ljubljana, Slovenia,
April 19-23, 2021, pages 3477–3488. ACM / IW3C2.

Yu Gu, Vardaan Pahuja, Gong Cheng, and Yu Su. 2022.
Knowledge base question answering: A semantic
parsing perspective. In 4th Conference on Automated
Knowledge Base Construction.

Yu Gu and Yu Su. 2022. ArcaneQA: Dynamic program
induction and contextualized encoding for knowl-
edge base question answering. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 1718–1731, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Saf-
dari, Austin Huang, Aakanksha Chowdhery, Sharan
Narang, Noah Fiedel, and Aleksandra Faust. 2022.
Understanding HTML with large language models.
CoRR, abs/2210.03945.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
CoRR, abs/1902.01069.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874–880, Online. Association for Computa-
tional Linguistics.

Naman Jain, Skanda Vaidyanath, Arun Shankar Iyer,
Nagarajan Natarajan, Suresh Parthasarathy, Sriram K.
Rajamani, and Rahul Sharma. 2022. Jigsaw: Large
language models meet program synthesis. In 44th
IEEE/ACM 44th International Conference on Soft-
ware Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022, pages 1219–1231. ACM.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Yunshi Lan and Jing Jiang. 2020. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 969–974, Online. Association for
Computational Linguistics.

Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar
Mehdad, and Wen-tau Yih. 2020. Efficient one-pass
end-to-end entity linking for questions. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6433–6441, Online. Association for Computational
Linguistics.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Decoupling the skeleton parsing and schema
linking for text-to-sql. CoRR, abs/2302.05965.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. VisualBERT: A
simple and performant baseline for vision and lan-
guage. CoRR, abs/1908.03557.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023b. Few-shot in-context learn-
ing for knowledge base question answering. CoRR,
abs/2305.01750.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. For-
bus, and Ni Lao. 2017. Neural symbolic machines:
Learning semantic parsers on Freebase with weak
supervision. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 23–33, Vancouver,
Canada. Association for Computational Linguistics.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak,
Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang,
Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert
Yüksekgönül, Mirac Suzgun, Nathan Kim, Neel
Guha, Niladri S. Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2022. Holistic eval-
uation of language models. CoRR, abs/2211.09110.

4939

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.48550/arXiv.2209.04994
https://doi.org/10.48550/arXiv.2209.04994
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://doi.org/10.48550/arXiv.2210.03945
https://arxiv.org/abs/1902.01069
https://arxiv.org/abs/1902.01069
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.emnlp-main.522
https://doi.org/10.18653/v1/2020.emnlp-main.522
https://arxiv.org/abs/2302.05965
https://arxiv.org/abs/2302.05965
http://arxiv.org/abs/1908.03557
http://arxiv.org/abs/1908.03557
http://arxiv.org/abs/1908.03557
https://doi.org/10.48550/arXiv.2305.01750
https://doi.org/10.48550/arXiv.2305.01750
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.48550/arXiv.2211.09110

Ye Liu, Semih Yavuz, Rui Meng, Dragomir Radev,
Caiming Xiong, and Yingbo Zhou. 2022. Uni-
Parser: Unified semantic parser for question an-
swering on knowledge base and database. CoRR,
abs/2211.05165.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. ViLBERT: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks.
In Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 13–23.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Nar-
jes Nikzad, Meysam Chenaghlu, and Jianfeng Gao.
2021. Deep learning–based text classification: A
comprehensive review. ACM Comput. Surv., 54(3).

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff
Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William
Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight,
Benjamin Chess, and John Schulman. 2021. We-
bGPT: Browser-assisted question-answering with hu-
man feedback. CoRR, abs/2112.09332.

Alexander Pashevich, Cordelia Schmid, and Chen Sun.
2021. Episodic transformer for vision-and-language
navigation. In 2021 IEEE/CVF International Confer-
ence on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pages 15922–15932.
IEEE.

Xutan Peng, Yipeng Zhang, Jingfeng Yang, and Mark
Stevenson. 2022. On the security vulnerabilities of
text-to-sql models. CoRR, abs/2211.15363.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabilities
of large language models. CoRR, abs/2204.00498.

Siva Reddy, Oscar Täckström, Slav Petrov, Mark Steed-
man, and Mirella Lapata. 2017. Universal semantic
parsing. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 89–101, Copenhagen, Denmark. Association
for Computational Linguistics.

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-
autoregressive bottom-up semantic parsing. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
311–324, Online. Association for Computational Lin-
guistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Dhruv Shah, Błażej Osiński, brian ichter, and Sergey
Levine. 2022. LM-Nav: Robotic navigation with
large pre-trained models of language, vision, and
action. In 6th Annual Conference on Robot Learning.

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7699–7715, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. ALFRED: A
benchmark for interpreting grounded instructions for
everyday tasks. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pages
10737–10746. IEEE.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
TIARA: Multi-grained retrieval for robust question
answering over large knowledge base. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 8108–8121,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2022. Prog-
prompt: Generating situated robot task plans using
large language models. CoRR, abs/2209.11302.

Chan Hee Song, Jihyung Kil, Tai-Yu Pan, Brian M
Sadler, Wei-Lun Chao, and Yu Su. 2022a. One step at
a time: Long-horizon vision-and-language navigation
with milestones. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 15482–15491.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2022b.
LLM-Planner: Few-shot grounded planning for em-
bodied agents with large language models. CoRR,
abs/2212.04088.

Yu Su, Ahmed Hassan Awadallah, Madian Khabsa,
Patrick Pantel, Michael Gamon, and Mark J. Encar-
nación. 2017. Building natural language interfaces to
web apis. In Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management,

4940

https://doi.org/10.48550/arXiv.2211.05165
https://doi.org/10.48550/arXiv.2211.05165
https://doi.org/10.48550/arXiv.2211.05165
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://doi.org/10.1109/ICCV48922.2021.01564
https://doi.org/10.1109/ICCV48922.2021.01564
https://arxiv.org/abs/2211.15363
https://arxiv.org/abs/2211.15363
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/arXiv.2204.00498
https://doi.org/10.48550/arXiv.2204.00498
https://doi.org/10.18653/v1/D17-1009
https://doi.org/10.18653/v1/D17-1009
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://openreview.net/forum?id=UW5A3SweAH
https://openreview.net/forum?id=UW5A3SweAH
https://openreview.net/forum?id=UW5A3SweAH
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://aclanthology.org/2022.emnlp-main.555
https://aclanthology.org/2022.emnlp-main.555
https://doi.org/10.48550/arXiv.2209.11302
https://doi.org/10.48550/arXiv.2209.11302
https://doi.org/10.48550/arXiv.2209.11302
https://openaccess.thecvf.com/content/CVPR2022/html/Song_One_Step_at_a_Time_Long-Horizon_Vision-and-Language_Navigation_With_Milestones_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Song_One_Step_at_a_Time_Long-Horizon_Vision-and-Language_Navigation_With_Milestones_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Song_One_Step_at_a_Time_Long-Horizon_Vision-and-Language_Navigation_With_Milestones_CVPR_2022_paper.html
https://doi.org/10.48550/arXiv.2212.04088
https://doi.org/10.48550/arXiv.2212.04088
https://doi.org/10.1145/3132847.3133009
https://doi.org/10.1145/3132847.3133009

CIKM 2017, Singapore, November 06 - 10, 2017,
pages 177–186. ACM.

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa,
Izzeddin Gür, Zenghui Yan, and Xifeng Yan. 2016.
On generating characteristic-rich question sets for
QA evaluation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 562–572, Austin, Texas. Associa-
tion for Computational Linguistics.

Yawei Sun, Lingling Zhang, Gong Cheng, and Yuzhong
Qu. 2020. SPARQA: skeleton-based semantic pars-
ing for complex questions over knowledge bases. In
The Thirty-Fourth AAAI Conference on Artificial In-
telligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages
8952–8959. AAAI Press.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Mon-
treal, Quebec, Canada, pages 3104–3112.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Ronald J. Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural Comput., 1(2):270–280.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir R. Radev, Caim-
ing Xiong, Lingpeng Kong, Rui Zhang, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2022. Unified-
SKG: Unifying and multi-tasking structured knowl-
edge grounding with text-to-text language models.
CoRR, abs/2201.05966.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2022. RNG-KBQA: Generation
augmented iterative ranking for knowledge base ques-
tion answering. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6032–6043,
Dublin, Ireland. Association for Computational Lin-
guistics.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1321–1331, Beijing, China. Association for
Computational Linguistics.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206, Berlin,
Germany. Association for Computational Linguis-
tics.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Yiqun Hu, William
Wang, Zhiguo Wang, and Bing Xiang. 2022. De-
cAF: Joint decoding of answers and logical forms for
question answering over knowledge bases. CoRR,
abs/2210.00063.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang,
Yi Chern Tan, Xinyi Yang, Dragomir R. Radev,
Richard Socher, and Caiming Xiong. 2021. GraPPa:
Grammar-augmented pre-training for table semantic
parsing. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,
Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and
Michael Bendersky. 2022. RankT5: Fine-tuning
T5 for text ranking with ranking losses. CoRR,
abs/2210.10634.

4941

https://doi.org/10.18653/v1/D16-1054
https://doi.org/10.18653/v1/D16-1054
https://aaai.org/ojs/index.php/AAAI/article/view/6426
https://aaai.org/ojs/index.php/AAAI/article/view/6426
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://arxiv.org/abs/2201.05966
https://arxiv.org/abs/2201.05966
https://arxiv.org/abs/2201.05966
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.48550/arXiv.2210.00063
https://doi.org/10.48550/arXiv.2210.00063
https://doi.org/10.48550/arXiv.2210.00063
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.48550/arXiv.2210.10634
https://doi.org/10.48550/arXiv.2210.10634

Appendices

In this supplementary material, we provide further
details as follows:

• Appendix A: Broader Applicability of Pangu

• Appendix B: Candidate Enumeration

• Appendix C: Experimental Setup

• Appendix D: Decomposition by Question
Complexity

• Appendix E: Error Analysis

• Appendix F: Examples of Prompts

A Broader Applicability of Pangu

Algorithm 1 describes a generic framework for
grounded language understanding, but the concrete
implementation for the functions in Algorithm 1
may vary for different tasks. We have shown a rep-
resentative instantiation for KBQA. In this section,
we briefly discuss the possible instantiation for two
other tasks of different nature. In addition, we also
present some preliminary results we have obtained
to demonstrate the feasibility of Pangu.

A.1 Text-to-SQL Parsing

Possible Instantiation. Similar to KBQA, Text-
to-SQL parsing also aims to map a natural language
utterance into a program that can be executed over
a relational database (instead of a KB). When the
database schema is reasonably small (generally true
for existing datasets like Spider (Yu et al., 2018)),
we can define P0 as the set of all schema items (i.e.,
column headers and table names) plus the set of cell
values mentioned in the utterance, which should be
straightforward to identify (e.g., with string match-
ing). In this way, the agent can construct candidate
programs similarly to Rubin and Berant (2021).6

The termination check for text-to-SQL parsing can
also be implemented similarly.

Preliminary Results. We test Pangu on Spider, a
popular benchmark on Text-to-SQL parsing, fol-
lowing the aforementioned instantiation. Due to the
smaller environment of relational databases (com-
pared with KBs), schema linking performance on

6One necessary step is to convert a SQL query into an
algebra tree (Codd, 1970), similar to what is done by Rubin
and Berant (2021). In this way, the agent can more easily
enumerate the candidate programs in a bottom-up manner.
When the database schema is too large, we may define P0

only as the set of mentioned cell values, then the process of
candidate enumeration will resemble KBQA (i.e., cell values
can be treated as entities in the KB.)

Spider is already at 99% (Li et al., 2023a). We
therefore start the search assuming ingredients have
been identified (i.e., the initial plan). With the same
language model being used (i.e., CodeBERT (Feng
et al., 2020)), we achieved 70.6% Exact-Match on
Spider dev, comparable to SmBop’s 71.7% (Rubin
and Berant, 2021), a strong bottom-up parser base-
line, when using the same LM. Note that these are
only preliminary results to demonstrate the feasi-
bility of applying Pangu to other tasks. There is
still a large room to improve by, e.g., optimizing
the search process or using stronger LMs.

A.2 Interacting with Real-World
Environments

Possible Instantiation. Pangu can also be used
for guiding bots that interact with real-world envi-
ronments, both online websites (Gur et al., 2022;
Nakano et al., 2021) and physical environments
through embodied agents (Shridhar et al., 2020).
Given a complex task to be accomplished in the
environment, an agent may decompose it into a
sequence of subplans (e.g., making a cup of coffee
entails first finding a cup then picking up the cup,
etc.; Song et al. (2022b)), and combine it with all
executable actions in the environment to enumerate
the candidate plans and select the best action with
an LM. One difference in these cases is that real-
world environments often contain information from
multiple modalities, thus requiring multi-modal lan-
guage models (Li et al., 2019; Lu et al., 2019) that
are capable of jointly handling textual, visual, and
other modalities.

More concretely, let us consider the task of em-
bodied instruction following, on the popular AL-
FRED dataset (Shridhar et al., 2020). We use LMs
as high-level planners for the embodied agent. For
example, for a command like “make me a cup of
coffee", a high-level plan like [Navigate cup, PickUp
cup, Navigate coffee_maker, . . .] is first generated.
The agent is equipped with an object detector and
a low-level planner to execute the high-level plan
from the LM (e.g., navigating to a cup is a classic
object localization problem handled by the low-
level planner). At each search step, the agent gen-
erates a candidate (high-level action, object) pair
for each object observed in the environment as pos-
sible extensions of the current plan. The LM then
scores the candidate expansions similar to KBQA;
the best one is executed by the low-level planner.

Preliminary Results. We use the object detector

4942

Composition Rule Signature Comments

JOIN R× (E ∪ E′)→ E′ a single hop along an edge
AND (T ∪ E′)× E′ → E′ intersection of two sets

ARGMAX/ARGMIN (T ∪ E′)×R→ E′ superlative aggregations
LT/LE/GT/GE R× E → E′ < / ≤ / > / ≥

COUNT E′ → N set cardinality

Table B.1: Functions in KBQA. We follow the defini-
tions in (Gu and Su, 2022). R: relation, T : type, E:
entity, E′: a set of entities, N : integer.

and low-level planner from HLSM (Blukis et al.,
2022), and use GPT-3.5 text-davinci-003 as the
LM with in-context learning using only 100 labeled
examples.7 We achieved 10% overall success rate
and 25% goal completion on ALFRED’s unseen
dev, already outperforming recent baselines (Pa-
shevich et al., 2021) trained with full data (21K+
examples).

B Candidate Enumeration

Our candidate enumeration for KBQA strictly
follows the definition of functions in Table B.1.
Specifically, given a set of current plans Pt, to con-
struct the candidate set Ct+1, for each plan pi in Pt,
the agent executes it and gets types and relations
that are reachable from the denotation of the plan.
For each type t, the agent enumerates (AND t pi) as
a candidate. For each relation r, the agent enumer-
ates (JOIN r pi) as a candidate. If the denotation of
pi is a numerical value, then four similar candidates
with comparatives are also included (LT/LE/GT/GE r
pi). In addition, candidate plans with superlatives
can be enumerated as (ARGMAX/ARGMIN pi r). Also,
(COUNT pi) can always be included to Ct+1. Af-
ter checking each pi independently, the agent then
checks each pair of plans pi and pj from Pt, if the
execution of pi and pj has an overlap, then (AND pi

pj) is also included as a candidate plan. The can-
didate enumeration process is totally transparent
to the LM and can be easily controlled based on
different needs.

C Experimental Setup

C.1 Datasets Statistics

All three datasets provide gold program annota-
tions. For consistency, we use the converted S-
expressions representation provided by Gu and Su
(2022) in our experiments. Concrete statistics of
different datasets are shown in Table C.3.

7Codex was deprecated on March 23, 2023, so we run our
experiments with GPT-3.5 here.

C.2 More Details on Baselines

Different LMs and decoding strategies are used in
the baseline models.
ArcaneQA (Gu and Su, 2022) is an encoder-
decoder model built on top of a BERT encoder.
It leverages constrained decoding and incremen-
tally synthesizes a sequence of subprograms, where
the constraints come from both the grammar and
the execution of existing subprograms, to enforce
grammaticality and faithfulness.
TIARA (Shu et al., 2022) first uses BERT to re-
trieve a set of schema items, which are further used
as the input, together with the question, to T5 for
plan generation. They also apply constrained de-
coding but only for grammaticality.
DecAF (Yu et al., 2022) similarly retrieves a rele-
vant subgraph from the KB using DPR (Karpukhin
et al., 2020), and then input the retrieved items to
FiD (Izacard and Grave, 2021), a T5 model fine-
tuned for question answering.
RnG-KBQA (Ye et al., 2022) first uses BERT to
rank a set of enumerated candidate programs (up
to a limited complexity), and then uses T5 to edit
the top programs into more complex programs.
UnifiedSKG (Xie et al., 2022) also retrieves a sub-
graph from the KB as input to T5. The setting of
UnifiedSKG is different from other baselines. It
assumes the gold schema items are always included
in the retrieved subgraph and restricts the number
of negative schema items in the subgraph (i.e., at
most 20 schema items for GRAILQA). It is thus
a less fair comparison for other methods, but we
include it anyway because it is a representative way
of autoregressive plan generation using a large LM.

A summary of the baselines can be found in Ta-
ble C.2.

C.3 Implementation Details

For GRAILQA we use the entity linking results
from TIARA. For WEBQSP, we get that from
ELQ (Li et al., 2020), which is also used by our
baseline models. For GRAPHQ, get that from Ar-
caneQA. The entity proposals for the input utter-
ance form the initial plans (P0) for our search pro-
cess. We use beam size 5 for all of our fine-tuning
experiments. We run our experiments with T5-3B
using a single NVIDIA A100 80GB card, while
for all other fine-tuning experiments, we run them
using 4× NVIDIA A6000 48GB cards.

For our experiments with Codex, we use a beam
size of 2 and a max number of candidates of 1,000

4943

Model LMs Grounding Strategy Guarantees

ArcaneQA (Gu and Su, 2022) BERT-base Constrained Decoding Grammatical+Faithful
RnG-KBQA (Ye et al., 2022) BERT-base + T5-base Input Augmentation N/A
TIARA (Shu et al., 2022) BERT-base + T5-base Input Augmentation + Constrained Decoding Grammatical
DecAF (Yu et al., 2022) DPR + FiD-3B Input Augmentation N/A
UnifiedSKG (Xie et al., 2022) T5-base(/large/3B) Input Augmentation N/A

Table C.2: A brief summary of main baseline models.

Dataset Training Dev Test

GRAILQA 44,337 6,763 13,231
GRAPHQ 2,381 − 2,395
WEBQSP 3,098 − 1,639

Table C.3: Statistics of KBQA datasets.

for speed concerns, which to some extent sacrifices
the performance. As the first endeavor towards
enabling few-shot KBQA with LLMs, we did not
tune the hyper-parameters very hard. The only
thing we tuned is the scoring function. We tune
the scoring function using 10-shot training data
from GRAILQA with cross-validation. If we di-
rectly use P (c|u) as our scoring function s(u, c)
in Section 3.3, Codex tends to favor programs with
repeated relations. As a result, we add a penalizing
factor to P (c|u), and define s(u, c) as P (c|u)×ηn,
where η ∈ [0, 1] is a hyper-parameter, and n is the
maximal occurrences of a relation in a program.
We set η = 0.7 based on cross-validation using the
10 training examples.

Finally, a small percentage of questions (around
5%) in GRAPHQ and GRAILQA do not have a
topic entity (e.g., “who is the heaviest film direc-
tor?" from GRAILQA, whose target program is
(ARGMAX film.director people.person.weight_kg)). For
these questions, we use the answer types (e.g.,
film.director) predicted in Gu and Su (2022) as our
initial state P0.

D Decomposition by Question Complexity

We present a fine-grained analysis of Pangu with
T5-3B and Codex (100-shot) on questions of dif-
ferent complexity, measured by the number of re-
lations in the gold program, in Table D.4. For
GRAILQA, we report the performance on its dev
set because the test set is hidden. Pangu performs
competitively across all complexity. Note that there
are only two questions in GRAILQA’s dev set with
4 relations, so the results on that may not be in-
dicative. On GRAPHQ, Pangu significantly outper-
forms ArcaneQA. The F1 of Pangu with T5-3B is

of relations 1 2 3 4

RnG-KBQA 79.2 74.8 44.4 100.0
ArcaneQA 80.9 71.1 37.7 100.0
TIARA 85.6 75.8 48.5 83.3
Pangu w/ T5-3B 87.0 78.4 48.1 83.3
Pangu w/ Codex (100-shot) 73.9 43.4 33.0 16.7

(a) GRAILQA

of relations 1 2 3

ArcaneQA 48.2 19.3 9.6
Pangu w/ T5-3B 72.3 55.5 27.8
Pangu w/ Codex (100-shot) 52.2 36.1 17.5

(b) GRAPHQ

Table D.4: F1 decomposition by program complexity
on GRAILQA’s dev set and GRAPHQ’s test set.

almost three times higher than ArcaneQA on ques-
tions with 2 and 3 relations. Interestingly, Pangu
with Codex also outperforms ArcaneQA consider-
ably on questions with 2 and 3 relations. These
findings suggest the superiority of Pangu in gener-
alizing to more complex programs.

E Error Analysis

We analyze 200 incorrect predictions (i.e., EM=0)
randomly sampled from GRAILQA’s dev set for
our best model (i.e., T5-3B). The major errors are
due to unidentified topic entities during entity link-
ing (62%).8 Also, Pangu tends to include unre-
lated entities provided by the entity linker into
the final programs (6.5% of the errors), this is be-
cause Pangu is fine-tuned with gold entities only,
and thus does not learn to handle unrelated enti-
ties. In addition, wrong termination check corre-
sponds to 12.5% of the errors, indicating a venue
for better enforcing the partial order to Pangu.
Apart from these errors, 10.5% of the mistakes are
due to ambiguous annotations or annotation errors
in GRAILQA. The remaining error types include
wrong comparators, answer types, and relations
(particularly relations involve a subtle direction
like cvg.computer_game_engine.predecessor_engine).

8The recall of entity linking on GRAILQA is 88.6% (Shu
et al., 2022)

4944

In addition, for in-context learning with Codex
(100-shot), we also randomly sample 200 wrong
predictions from GRAILQA’s dev set. In addi-
tion to 22% errors caused by missing entities, the
most common errors (25.5%) are due to wrong
schema items. Distinguishing gold schema items
from confusing ones is challenging for in-context
learning. Also, missing constraints (16.5%) and
missing relations (10%) are another two major er-
ror types, because we use a small batch size (i.e.,
2) for Codex and the model tends to prefer short
programs. These two error types are also related
to wrong termination check. Finally, there are 12%
wrong functions. The error types of Pangu w/
Codex are very different from Pangu w/ T5-3B.
This is because for a complex task like KBQA,
the performance of in-context learning with Pangu
still largely lags behind fine-tuning. Particularly,
fine-tuning methods directly learn the partial or-
der among programs during training, while Codex
needs to implicitly infer a partial order by itself,
which is not directly shown in the demonstrations.
As a result, Pangu w/ Codex makes more trivial
mistakes that fine-tuning methods can easily avoid.
More advanced in-context learning techniques to
close this gap remains to be explored.

F Examples of Prompts

We show two examples of prompts with 10 in-
context samples retrieved from the 100 training
data pool in Figure F.1 and Figure F.2 for two dif-
ferent questions from GRAILQA’s dev set. Our
prompt design is very straightforward. More ad-
vanced prompting techniques for Pangu remains to
be explored.

4945

Please translate the following questions to Lisp-like query language.

which automotive designer designed aston martin db7 zagato?
(AND automotive.designer (JOIN automotive.designer.automobiles_designed aston
martin db7 zagato))

d-series machines was designed by which computer designer?
(AND computer.computer_designer (JOIN
computer.computer_designer.computers_designed d-series machines))

who designed both visual basic .net and j#?
(AND computer.programming_language_designer (AND (JOIN
computer.programming_language_designer.languages_designed visual basic .net)
(JOIN computer.programming_language_designer.languages_designed j#)))

which architect designed katherine atkins house by polk?
(AND architecture.architect (JOIN architecture.architect.structures_designed
katherine atkins house by polk))

what is the name of the author who wrote it is an open question whether any
behavior based on fear of eternal punishment can be regarded as ethical or should
be regarded as merely cowardly.?
(AND film.director (JOIN media_common.quotation.author_inv it is an open question
whether any behavior based on fear of eternal punishment can be regarded as
ethical or should be regarded as merely cowardly.))

who was the manufacturer of kosmos 3m?
(AND spaceflight.rocket_manufacturer (JOIN
spaceflight.rocket_manufacturer.rockets_manufactured kosmos 3m))

who is the endorser of coke products?
(AND business.product_endorser (JOIN business.product_endorsement.endorser_inv
(JOIN business.product_endorsement.product coke)))

what short story has a character who also is in doing clarence a bit of good?
(AND book.short_story (JOIN book.short_story.characters (JOIN
book.book_character.appears_in_stories doing clarence a bit of good)))

who was the director of the episode kate jackson/delbert mcclinton?
(AND tv.tv_director (JOIN tv.tv_director.episodes_directed kate jackson/delbert
mcclinton))

what is the identity of the football player who appeared 23 times
internationally?
(AND soccer.football_player (JOIN
soccer.football_player.total_international_appearances 23))

what is the role of opera designer gig who designed the telephone / the medium?

Figure F.1: Example prompt (i) for question “what is the role of opera designer gig who designed the telephone /
the medium?"

4946

Please translate the following questions to Lisp-like query language.

homegrown is a recurring segment on what tv program?
(AND tv.tv_program (JOIN tv.tv_program.recurring_segments homegrown))

on 07/01/1970, which warship v1.1 was hit?
(AND user.patrick.default_domain.warship_v1_1 (JOIN
user.patrick.default_domain.warship_v1_1.struck 07/01/1970))

what is the isbn of the edition with scott fisher on its book cover?
(AND book.isbn (JOIN book.book_edition.isbn_inv (JOIN
book.illustrator.book_edition_covers_inv scott fisher)))

which musical artist stopped being active as musical artist on 1985-06?
(AND music.artist (JOIN music.artist.active_end 1985-06))

the honorary degree recipient that was born most recently is named what?
(ARGMAX education.honorary_degree_recipient people.person.date_of_birth)

the medical trials conducted on safety and effectiveness of giving indinavir
plus stavudine plus lamivudine to hiv-infected children are under the authority
of who?
(AND medicine.medical_trial_health_authority (JOIN
medicine.medical_trial_health_authority.medical_trials safety and effectiveness
of giving indinavir plus stavudine plus lamivudine to hiv- infected children))

bataan 1 and bataan 2 is what aircraft model?
(AND aviation.aircraft_model (JOIN aviation.aircraft_model.aircraft bataan 1 and
bataan 2))

what ingredient is in french cuisine?
(AND food.ingredient (JOIN food.ingredient.cuisine french cuisine))

south kent school and redfield college fall under what category of school?
(AND education.school_category (AND (JOIN
education.educational_institution.school_type_inv south kent school) (JOIN
education.school_category.schools_of_this_kind redfield college)))

chiang kai shek college and sacred heart high school (roseville, michigan) are
in what category of school? (AND education.school_category
(AND (JOIN education.educational_institution.school_type_inv chiang kai shek
college) (JOIN education.school_category.schools_of_this_kind sacred heart high
school (roseville, michigan))))

semaphore railway line is on the rail network named what?

Figure F.2: Example prompt (ii) for question “semaphore railway line is on the rail network named what?"

4947

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

The section after conclusion, following the instruction in the Latex file.

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4.1; Section C.1

�3 B1. Did you cite the creators of artifacts you used?
Section 4.1; Section C.1

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 4.1; Section C.1

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
The used datasets are all widely used for this task and there is no report of identifying or offensive
content as far as we know

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4.1; Section C.1

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section C.1

C �3 Did you run computational experiments?
Section 5.1; Section 5.2; Section D

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4.3; Section C.3

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

4948

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section C.3

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5.1; Section 5.2

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4.3; Section C.3

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

4949

