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Abstract

Open Information Extraction (OIE) seeks to
extract structured information from raw text
without the limitations of close ontology. Re-
cently, the detection-based OIE methods have
received great attention from the community
due to their parallelism. An essential step of
those models is how to assign ground truth la-
bels to the parallelly generated tuple proposals,
which remains under-exploited. The commonly
utilized Hungarian algorithm for this procedure
is restricted to handling one-to-one assignment
among the desired tuples and tuple propos-
als, which ignores the correlation between
proposals and affects the recall of the models.
To solve this problem, we propose a dynamic
many-to-one label assignment strategy named
IOT. Concretely, the label assignment process
in OIE is formulated as an Optimal Transport
(OT) problem. We leverage the intersection-
over-union (IoU) as the assignment quality
measurement, and convert the problem of
finding the best assignment solution to the
one of solving the optimal transport plan by
maximizing the IoU values. To further utilize
the knowledge from the assignment, we design
an Assignment-guided Multi-granularity (AM)
loss by simultaneously considering word-level
and tuple-level information. Experiment results
show the proposed method outperforms the
state-of-the-art models on three benchmarks.

1 Introduction

Open Information Extraction (OIE) aims to extract
structured information from the given text without
the restriction of pre-defined ontology schema, and
it is typically formed as a tuple ⟨subject, relation,
object⟩ (Yates et al., 2007). For example, given
the sentence "Dr. Pim played for Ireland against
England", an OIE system needs to extract ⟨Dr. Pim,
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Figure 1: The toy example of the label assignment pro-
cess from the detection-based OIE models with the Hun-
garian algorithm and the optimal transport strategies.
The element in the matrices represents the IoU value
(for (a)) or assignment probability (for (b) and (c)) be-
tween the implicit tuple proposal (pr) and ground truth
tuple (gt). Elements in red circles mean these pr-gt
pairs are selected for training. ’bg’ is short for the back-
ground label. The Hungarian algorithm assigns only
one pr for each gt, while in optimal transport many prs
could be matched with the same gt.

played for, Ireland⟩ and ⟨Dr. Pim, played against,
England⟩, where there could be several overlapped
elements. Due to the domain-independence and
scalability (Mausam, 2016), OIE is widely used
in various downstream tasks, such as word embed-
ding generation (Stanovsky et al., 2015), knowl-
edge graph completion (Han et al., 2020), multi-
document question answering (Fan et al., 2019).

Recently, since the sequence labelling-based
OIE systems (Stanovsky et al., 2018; Zhan and
Zhao, 2020) do not model the inherent dependen-
cies among the extractions, those methods typically
have relatively low accuracy. In contrast, the se-
quence generation-based OIE methods (Cui et al.,
2018; Kolluru et al., 2020a) perform better, but
the autoregressive strategies heavily reduce the in-
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ference speed. Kolluru et al. (2020a) propose the
OpenIE6 model to be the trade-off between the two
kinds of methods, but the inference speed is still
unsatisfactory. Different from previous paradigms,
Vasilkovsky et al. (2022) first introduce a detection-
based model named DetIE, which formulates OIE
as a direct set prediction problem. It not only has a
much faster inference speed than existing methods,
but also obtains promising results. Concretely, dur-
ing the training stage, DetIE generates a fixed num-
ber of tuple proposals (feature tensors) for each sen-
tence in parallel, where each proposal represents
a certain tuple. Since those proposals are implicit,
DetIE adopts the Hungarian algorithm (Kuhn,
1955) to match ground truth labels (gt) with the pro-
posals (pr), and utilizes the intersection-over-union
(IoU) as the assignment quality measurement. A
larger IoU value indicates the model could make a
more accurate tuple prediction. During the testing
stage, it utilizes the proposals to get the tuple pre-
dictions (more details are illustrated in section 3.1).

However, existing detection-based methods
ignore the correlation between proposals during
the label assignment process. As illustrated in
Fig. 1 (a)(b), the Hungarian algorithm assigns
only one pr for each gt (i.e., one-to-one), thus
some informative tuple proposals (e.g., pr3 that
have similar IoU values with pr2 for gt1) do not
participate in the training process and are forced
to pull away from related proposals. Statistically,
78.3% of sentences in the widely-used CaRB
(Bhardwaj et al., 2019) test set contain less than
three tuples, which is far less than the number of
proposals. For those situations where the number
of gt is much smaller than the number of pr, most
of the proposals would be discarded, which is
not conducive to promoting the coverage and the
learning efficiency of the model. Intuitively, taking
more prs into account could bring better fault
tolerance. To achieve the global optimal assigning
result under the many prs to one gt situation, in this
paper, we formulate the label assignment process
in OIE as an IoU-aware Optimal Transport (OT)
problem. Specifically, we define the transporting
cost of each gt-pr pair as the negative IoU value,
and propose a dynamic k strategy to determine
how many prs should be assigned for each gt based
on the IoU values. Under this formulation, finding
the best assignment solution is converted to solving
the optimal transport plan, which could be solved
by the Sinkhorn-Knopp Iteration (Cuturi, 2013).

Moreover, in the many-to-one label assignment
pattern, the proposals have different correlation
strengths, so they should be treated differently
during training. For example, in Fig. 1 (a)(c),
{pr2,pr3,pr4} are all assigned to gt1, but the IoU
value of the pr4-gt1 pair is much smaller than oth-
ers, indicating pr4 makes an imperfect prediction,
so the importance of pr4 should be less than the
other two proposals. To model the importance
among different prs, an alternative way is to apply
re-weight strategies. In the OIE task, because a sen-
tence may be extracted with multiple overlapped
tuples, an OIE system should treat each tuple as a
whole, rather than just extracting at the word-level.
As defined in the OT process, the IoU values
reflect the correlations between the proposals and
the golden labels, which could provide supervision
from a higher perspective: the tuple-level. As a
result, in this paper, we design an Assignment-
guided Multi-granularity (AM) loss, where the
proposal weights are dynamically determined by
the combination of the predicted logits (word-level)
and the IoU values (tuple-level), and those IoU
values are selected by the OT assignment strategy.

We name the proposed IoU-aware Optimal
Transport method with the Assignment-guided
Multi-granularity loss for OIE as IOT. Experi-
ments on three datasets illustrate that IOT surpasses
state-of-the-art methods and achieves a fast infer-
ence speed. In summary, the contributions of this
paper are as follows:

1) This is the first work to formulate the label as-
signment process in OIE as an IoU-aware optimal
transport problem, which allows multiple tuple pro-
posals to dynamically match with the same ground
truth tuple for training.

2) We argue that IoU provides a higher level of
supervision and introduce an Assignment-guided
Multi-granularity (AM) loss, which explicitly con-
siders word-level and tuple-level information to
weigh different tuple proposals.

3) Experiment results show the proposed ap-
proach outperforms state-of-the-art models on three
benchmarks with a fast inference speed.

2 Related Work

Open Information Extraction (OIE) aims at ex-
tracting the ⟨subject, relation, object⟩ tuples from
unstructured text without limitations on the pre-
defined relation type. RnnOIE (Stanovsky et al.,
2018) and their improved versions (Roy et al., 2019;
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Ro et al., 2020a; Zhan and Zhao, 2020) fulfil the
OIE task by sequence labelling, but those methods
are relatively less accurate. The sequence gener-
ation approaches (Cui et al., 2018; Kolluru et al.,
2020b) produce tuples as sequences, but the uti-
lized autoregressive strategies heavily restrict in-
ference speed. Kolluru et al. (2020a) introduce the
OpenIE6 model to balance the pros and cons of the
two kinds of methods, but the inference speed is
still unsatisfactory. Vasilkovsky et al. (2022) pro-
pose a detection-based OIE model named DetIE,
which owns the advantages of fast speed and great
performance. Nevertheless, they adopt the one-to-
one Hungarian algorithm (Kuhn, 1955) during the
label assignment process of OIE, ignoring the rela-
tions between different tuple proposals.
Label assignment aims at assigning proper predic-
tions to each golden label. Sui et al. (2020) apply
non-autoregressive models to information extrac-
tion and leveraged the Hungarian algorithm for bi-
partite matching. Tan et al. (2021) formulate named
entity recognition (NER) as a sequence-to-set task.
However, those methods utilize the one-to-one la-
bel assignment strategy. Shen et al. (2022) develop
a one-to-many NER model named PIQN based
on machine reading comprehension (MRC), where
each entity can be assigned to multiple instance
queries. However, there are several differences
with the proposed IOT: (1) PIQN utilizes a linear
transformation of the predicted probability as the
cost function, but IOT utilizes the IoU matrix; (2)
PIQN is an MRC-based model for extracting enti-
ties. In contrast, IOT is a detection-based model,
which seeks to extract tuples. (3) PIQN assigns a
fixed number of queries for each entity for train-
ing, but IOT dynamically determines the number
of proposals for each ground truth tuple.
Re-weight Function aims to strengthen important
samples while curbing insignificant ones. For ex-
ample, weighted CE loss (Ronneberger et al., 2015)
utilizes manually designed weights to control the
importance of diverse classes. Focal loss (Lin et al.,
2020) adds a modulated factor on the cross entropy
loss to focus on hard samples. Dice Loss (Milletari
et al., 2016) and DSC loss (Li et al., 2020) are in-
spired by the dice coefficient and Sørensen–Dice
coefficient to get the weights of classes. However,
those methods only consider the importance of each
word. Li et al. (2019) also develop GHM loss in the
computer version field, but it is mainly designed
for foreground/background two classes.

               Predicted Tuples
(Dr. Pim, played against, England),

(Dr. Pim, played for, Ireland)

Dr.   Pim   played   for   Ireland   against   England 

BERT with MLP

N Proposals with Sequence Labelling
Sent: Dr. Pim played for  Ireland against  England

pr 1: Subj Subj  Rel None None Rel Obj

pr 2 : Subj Subj  Rel Rel Obj None None

pr 3: None None None None None None None
...

Aggregate and Filter

Argmax

Training Inference

      Ground Truth Tuples
 (Dr. Pim, played for, Ireland), 

 (Dr. Pim, played against, England)

Reshape Reshape

Hungarian 

Algorithm

Prediction Matrix PPrediction Matrix P

Figure 2: The architecture of the detection-based OIE
model, which generates N proposals for every sentence
and extracts tuples in parallel. The solid and dashed
arrows indicate the training process and the inference
process, respectively.

3 Method

In this section, we first introduce the process of the
detection-based OIE model and then present how
we formulate the label assignment process in OIE
as an IoU-aware Optimal Transport (OT) problem.

3.1 Detection-based OIE Model

Inspired by one-stage anchor-based object detec-
tion methods in computer vision (Liu et al., 2016;
Tan et al., 2020), Vasilkovsky et al. (2022) propose
the DetIE model, which extracts tuples in parallel.
The architecture is illustrated in Fig. 2. Formally,
given an input sequence W = {w1, w2, . . . wT }
containing T words and this sequence has M
golden tuples, DetIE leverages BERT (Devlin
et al., 2019) as the backbone to get the encoded
features. The output features are fed to a multilayer
perceptron (MLP), and then transformed into a
feature matrix P ∈ RT×N×C , where N and C are
the pre-defined number of possible extracted tuples
and the number of classes, respectively. Every
sentence will have N proposals (N is set as 20 in
this experiment), where each proposal is a feature
tensor implicitly representing a certain tuple.

During the training process, since the semantics
of those proposals are implicit and it is hard to
assign golden labels in advance, DetIE calculates
the intersection-over-union (IoU) between the pro-
posal (pr) and golden tuple (gt). The IoU matrix
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Figure 3: The workflow of IOT: (1) The sentence is encoded and reshaped into a feature matrix P. (2) Get the IoU
matrix from P and golden labels L. (3) Utilize the IoU matrix as the input to solve the IoU-aware OT problem. (4)
Leverage P, L, IoU matrix, and the optimal assigning plan π∗ to calculate the AM loss.

IoU ∈ RM×N is defined as:

IoUmn =
Imn

Umn

Imn =
∑

t,c

ltmc · ptnc

Umn =
∑

t,c

ptnc +
∑

t,c

ltmc − Imn

(1)

where ptnc is the element from the output feature
tensor P, and ltmc is the element from ground truth
matrix L. Then, DetIE utilizes the Hungarian algo-
rithm (Kuhn, 1955) that matches one proposal for
each ground truth with the global minimum IoU.

During the inference stage, with the sequence
labelling mechanism, the model leverages matrix
P to classify each word of each proposal whether
belonging to one of the pre-defined classes: sub-
ject, relation, object, or None, then assembles the
predicted results into a set of tuples.

3.2 Background: Optimal Transport

The definition of OT is as follows: assuming there
are M suppliers and N demanders in a certain area.
The m-th supplier has sm units of goods and the n-
th demander needs dn units of goods. The transport-
ing cost for each unit of good from the m-th sup-
plier to the n-th demander is cmn. The goal of opti-
mal transport is to find the best transportation plan
π∗ = {πmn | m = 1, 2, . . .M, n = 1, 2, . . . N}
that requires minimal transportation cost and all
goods from suppliers can be transported to the de-

manders:

min
π

M∑

m=1

N∑

n=1

cmnπmn

s.t.
M∑

m=1

πmn = dn,

N∑

n=1

πmn = sm,

M∑

m=1

sm =

N∑

n=1

dn, πmn ≥ 0,

m = 1, 2, . . .M, n = 1, 2, . . . N.

(2)

OT is a linear program which can be solved in
polynomial time. In this work, we leverage the
Sinkhorn-Knopp Iteration (Cuturi, 2013) to solve
this OT problem.

3.3 IoU-aware OT for Label Assignment
In the context of OIE, we view the ground truth
tuples as suppliers and the model output proposals
as demanders. Besides, we view the number of
transporting goods as the number of labels. Sup-
posing there are M golden tuples in a sentence and
each one can provide sm = k units of labels. Like-
wise, let N be the pre-defined number of possible
extracted tuples, and each one needs one unit of
label (i.e., dn = 1). In addition, the cost cmn for
transporting one unit of label could be defined as
the negative IoU between the m-th gt and the n-th
pr, which means cmn = −IoUmn.

In practice, some proposals are invalid to get tu-
ples, so we introduce another supplier: background.
The cost for transporting one unit from background
to any pr is set as zero, i.e., cbg = 0, and append
to the last row of the cost matrix. Meanwhile,
since the total supply should be equal to the total
demand in standard OT problems, we make the
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background supplier owns sm = N − k ∗M units.
The supplying function s could be formulated as:

sm =

{
k, if m ≤ M
N −M × k, if m = M + 1

(3)

Until now, we have obtained the cost matrix
C ∈ R(M+1)×N , the supplying vector s ∈ RM+1,
and the demanding vector d ∈ RN . Then we could
find the assignment solution π ∈ R(M+1)×N by
applying the Sinkhorn-Knopp Iteration (Cuturi,
2013) to Eq. 2. According to the solution π,
we could get the optimal assignment plan π∗ by
assigning each pr with a gt (including background)
that transports the largest amount of labels (i.e.,
π∗ = argmax

dim=0
(π)).

3.4 Dynamic k Strategy

A naive way for the OT problem is making each
golden tuple gt has a fixed number of goods (i.e.,
setting k in Eq. 3 as a constant). However, those
proposals with similar IoUs to the same golden
label should be grouped together (e.g., {pr2, pr3,
pr4} and {pr1} in Fig. 1 (c)). As a result, it is more
reasonable to assign different golden tuples with
different numbers of proposals.

To achieve this, we propose a simple but
effective method, named dynamic k strategy, to
roughly estimate how many proposals need to be
assigned for each golden tuple. Specifically, given
a sentence containing M golden tuples, for the
m-th golden tuple, instead of using fixed k, we
calculate the top qm proposals according to IoU
values. The top qm number could be obtained by
summing up the corresponding proposals’ IoU
values from the IoU matrix:

qm = ⌈
∑

n

IoUmn)⌉ (4)

where ⌈.⌉ indicates rounding up to an integer. Such
an estimation method is based on the following
intuition: the value of qm should be positively
correlated with the number of proposals that are
well-assigned by the IoU-aware OT.

3.5 AM Loss

Since there are numerous overlapping tuples in
the OIE task, more than just utilizing word-level
information for extraction, an OIE system should
also regard tuples as wholes. As a result, we
introduce an Assignment-guided Multi-granularity

(AM) loss to weigh tuple proposals from the
perspective of both word-level and tuple-level.

The intuition of AM is that the larger the pre-
dicted logits and the larger the IoU, the more ac-
curately the tuple is predicted, thus the larger the
training weights should be assigned. Specifically,
according to the OT assignment solution π∗, ev-
ery proposal from each word would be assigned a
golden label. We define a vector o ∈ RN , where
each element on represents the IoU value of ev-
ery proposal and its matched golden label from
the IoU matrix. For those proposals matched with
the background, we set the IoU values as 0. The
same IoU vector is leveraged for every word in the
sentence, and the sentence assignment IoU matrix
O ∈ RT×N could be obtained by concatenating
vector o over the words. Then, we define the multi-
granularity factor ωtn that considers both IoU val-
ues (tuple-level) and predicted logits (word-level):

atn = otn
∑

c

ptnc ∗ (1− log(ptnc))

ωtn =∥ eα·atn + β ∥2
(5)

where ptnc is the element from the model logit fea-
ture P, otn is the element from O. α and β are
hyper-parameters to control the degree of linearity.
Besides, the multi-granularity factor ωtn is normal-
ized by the L2 normalization.

We utilize the multi-granularity factor ωtn

to dynamically control the whole classification
process and finally get the AM loss as follows:

AM = − 1

T

T∑

t

N∑

n

C∑

c

ωtnltnc log (ptnc) (6)

where ltnc is the element from the ground truth
label matrix L.

3.6 Inference and Post-process
As illustrated in Fig. 2, during the inference stage,
we need to aggregate the results from the proposals.
Specifically, for each proposal of each word, the
argmax operation is applied to get the predicted
type. Moreover, we filter the aggregated results
by restricting the output tuples that should contain
subject, relation, and object simultaneously.

Additionally, since IOT is a many-to-one assign-
ment strategy, one golden value could be assigned
with multiple proposals during the training process.
As a result, the model may produce multiple du-
plicate predictions. In order to solve this problem,
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Algorithm 1 The procedure of IOT
Input: W is the input sentence

L is the ground truth label matrix
N is the pre-defined number of tuple proposals
M is the golden number of tuples;

Output: The predicted tuples set Ψ
// Training process

1: P← Forward(W)
2: IoU← (P,L) based on Eq. 1
3: sm(m = 1, 2, . . . ,M)← dynamic k strategy
4: sm+1 = N − k ∗M ← background supplier
5: C = −IoU
6: Append cbg to C
7: π ← SinkhornKnopp(C, s,d) based on Eq. 2
8: π∗ = argmax

dim=0
(π)

9: loss← AM(P,L, IoU,π∗) based on Eq. 6
// Inference process

10: Ψ← argmax(P), aggregate, filter, and post-process
11: return Ψ

we design a simple post-process method, which
directly removes exactly the same prediction re-
sults at the inference time, obtaining the final set of
tuples Ψ. The architecture of the proposed IOT is
illustrated in Fig. 3. The detailed procedure of IOT
is shown in Algorithm 1.

4 Experiment

4.1 Experiment Setup

Datasets and Evaluations. Following the experi-
mental setup of Vasilkovsky et al. (2022), we con-
duct the experiments on two English benchmarks:
IMoJIE (Kolluru et al., 2020b), LSOIE (Solawetz
and Larson, 2021), and all the models are evaluated
on LSOIE, CaRB (Bhardwaj et al., 2019) corpora.
To validate the multi-lingual ability of the mod-
els, we also introduce a multilingual benchmark
Synth (Vasilkovsky et al., 2022) for training, and
evaluate the models on MultiOIE2016 (Ro et al.,
2020b). The multilingual benchmarks contain data
in English (EN), Spanish (ES), and Portuguese
(PT). Table 1 gives the detailed data statistics. For
evaluation, we adopt CaRB(1-1), CaRB, OIE16-C,
Wire57-C as the evaluation metrics. Except for
Wire57-C metric that only calculates F1 score, the
others requires to report both F1 score and AUC.
The AUC is measured by the area under receiver
operating characteristic (ROC) curve, where the
horizontal axis is the false positive rate (FPR) and
the vertical axis is the true positive rate (TPR). As
for those methods that does not provide confidence
scores, the AUC values are approximated from a
single TPR-FPR point.
Implementations. All the experiments are con-

Split Dataset Sentences Tuples

Train
IMoJIE 91,725 190,661
LSOIE 34,780 100,862
Synth 10,000 41,645

Test
LSOIE 7,900 17,459
CaRB 641 2,715

MultiOIE2016 595 1,508

Table 1: Dataset statistics, where MultiOIE2016 and
Synth are multilingual datasets, and the numbers are
given for each language.

ducted with Pytorch Lightning1 on one V100 GPU.
We utilize bert-base-multilingual-cased weight
from HuggingFace (Wolf et al., 2020). The batch
size is set as 32, and the maximum number of train-
ing epochs is set to 100. We apply the early stop
strategy to avoid over-fitting. We train the models
with an Adam weight decay optimizer with an ini-
tial learning rate of 4e-5. The detection number
N is set as 20. The Sinkhorn-Knopp iterates 50
times during label assignment. α and β for the AM
loss are set as 1 and -0.5, respectively. The optimal
hyper-parameters are obtained by grid search.

4.2 Experimental Results

Baselines. We compare the proposed methods on
the CaRB and LSOIE datasets with the state-of-
the-art approaches, which include: (1) non-neural
models: MinIE (Gashteovski et al., 2017); ClausIE
(Corro and Gemulla, 2013); OIIIE (Mausam et al.,
2012); ReVerb (Fader et al., 2011); OpenIE4
(Christensen et al., 2011); OpenIE5 (Saha et al.,
2017; Saha and Mausam, 2018); (2) sequence la-
belling based methods: RnnOIE (Stanovsky et al.,
2018); SenseOIE (Roy et al., 2019); SpanOIE
(Zhan and Zhao, 2020); (3) generation based meth-
ods: NeuralOIE (Cui et al., 2018); IMoJIE (Kolluru
et al., 2020b); OpenIE6 (Kolluru et al., 2020a); (4)
detection-based model DetIE (Vasilkovsky et al.,
2022), which could also be applied to the IGL-CA
model in OpenIE6 with ’simplified’ texts. Please
note that we utilize the provided checkpoint from
DetIE to reproduce the experiment, so the results
may be different from the original paper.
Main Results. The experiment results on CaRB
and LSOIE benchmarks are illustrated in Table 2
and Table 3, respectively. We can conclude that:
(1) Compared to regular sequence labelling-based
or sequence generation-based methods, detection-
based models generally obtain better experiment

1https://github.com/Lightning-AI/
lightning
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Model
CaRB evaluation schemes

Speed(sent./sec)CaRB CaRB(1-1) OIE16-C Wire57-C
F1 AUC F1 AUC F1 AUC F1

MinIE 41.0 - 38.4 - 52.3 - 28.5 8.9
ClausIE 45.0 22.0 40.2 17.7 61.0 38.0 33.2 4.0
OpenIE4 51.6 29.5 40.5 20.1 54.3 37.1 34.4 20.1
OpenIE5 48.0 25.0 42.7 20.6 59.9 39.9 35.4 3.1
SenseOIE 28.2 - 23.9 - 31.1 - 10.7 -
SpanOIE 48.5 - 37.9 - 54.0 - 31.9 19.4
RnnOIE 49.0 26.0 39.5 18.3 56.0 32.0 26.4 149.2
NeuralOIE 51.6 32.8 38.7 19.8 53.5 37.0 33.3 11.5
IMoJIE 53.5 33.3 41.4 22.2 56.8 39.6 36.0 2.6
IGL-OIE 52.4 33.7 41.1 22.9 55.0 36.0 34.9 142.0
CIGL-OIE 54.0 35.7 42.8 24.6 59.2 40.0 36.8 142.0
OpenIE6 52.7 33.7 46.4 26.8 65.6 48.4 40.0 31.7
DetIE(LSOIE) 42.2 26.4 31.0 16.7 48.7 31.8 29.3 708.6
DetIE(IMoJIE) 49.6 34.4 37.8 22.2 53.3 36.0 34.2 708.6
DetIE(LSOIE)+IGL-CA 36.6 27.0 34.0 22.7 62.4 46.8 30.4 112.2
DetIE(IMoJIE)+IGL-CA 44.2 33.3 40.5 27.8 66.0 51.0 35.5 112.2
IOT(LSOIE) 42.5 27.1 32.2 17.7 53.3 36.0 30.0 691.7
IOT(IMoJIE) 52.7 37.0 40.1 24.0 55.9 38.5 36.1 691.7
IOT(LSOIE)+IGL-CA 39.2 28.3 35.9 23.6 64.6 50.1 32.9 108.5
IOT(IMoJIE)+IGL-CA 48.3 35.8 43.7 29.5 67.9 53.8 38.4 108.5

Table 2: Experiment results on CaRB test set. Best results are shown in bold, and second bests are in underlined.

Model Rec. F1 AUC
OIIIIE - 36.8 16.7
ReVerb - 36.8 16.9
OpenIE4 - 54.6 32.3
OpenIE5 - 49.5 25.8
CIGL-OIE - 59.7 48.0
OpenIE6 - 51.6 32.7
DetIE(IMoJIE) 47.0 46.3 34.2
DetIE(LSOIE) 59.5 62.7 50.4
DetIE(IMoJIE)+IGL-CA 47.5 35.1 30.4
DetIE(LSOIE)+IGL-CA 59.9 49.4 42.6
IOT(IMoJIE) 49.3 52.2 39.3
IOT(LSOIE) 64.7 65.8 54.0
IOT(IMoJIE)+IGL-CA 49.1 40.9 34.2
IOT(LSOIE)+IGL-CA 63.4 51.1 45.5

Table 3: Experiment results on LSOIE test set with the
original CaRB evaluation scheme. ‘Rec.’ means recall.

results and more accelerated inference speed, il-
lustrating the superiority of capturing features
from multiple tuples in parallel. (2) Among the
detection-based methods, IOT achieves the best or
the second-best results while retaining the same
amount of inference speed (the inference speed
reduction is mainly due to the post-process). We
attribute those improvements to that the many-to-
one label assignment method from OT outperforms
those in a one-to-one manner. Meanwhile, the tu-
ple proposals could be effectively weighted by the
AM loss. (3) For the experiments on the LSOIE
test set, IOT surpasses strong baseline DetIE. Espe-
cially when trained with LSOIE training set, IOT
obtains a gain of 3.1% and 3.6% on F1 and AUC,

respectively. The improved ratio is larger than in
CaRB dataset, indicating OT allows for better label
assignment for datasets with the same annotation
principles. (4) An interesting finding is that IOT
model typically gets a higher recall than DetIE,
which is consistent with our intuition that com-
pared to those one-to-one label assignment meth-
ods, the many-to-one mechanism could find the
results more comprehensively.
Experiment on MultiOIE2016 dataset. To val-
idate the generality of the model on multilingual
OIE situations, we also conduct experiments on the
MultiOIE2016 dataset. There are strong baselines:
(1) ArgOE (Gamallo and García, 2015); (2) Pred-
Patt (White et al., 2016); (3) Multi2OIE (Ro et al.,
2020b). From the experiment results in Table 4,
we observe that IOT obtains the best F1 scores in
all three languages, showing the generalizability of
the model on the multilingual OIE task.
Ablation Study. To investigate the effect of each
component, we conduct an ablation study by: (1)
replacing the Hungarian algorithm (HA) with the
optimal transport algorithm (OT); (2) replacing the
cross entropy loss (CE) with the AM mechanism;
(3) appending the dynamic k strategy (dyk); (4) ap-
pending the post-process (post). The results are
listed in Table 5, and we observe: first, introducing
different modules brought certain performance im-
provements to the model, proving the effectiveness
of each module. Secondly, AM further promotes
the model performance for HA and OT methods,
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Lang. Model F1 Prec. Rec.

En

ArgOE 43.4 56.6 35.2
PredPatt 53.1 53.9 52.3
Multi2OIE 69.3 66.9 71.7
DetIE(IMoJIE) 76.6 90.3 66.5
DetIE(IMoJIE+Synth) 77.7 89.2 68.8
IOT(IMoJIE) 77.8 90.4 68.3
IOT(IMoJIE+Synth) 79.1 91.1 69.8

PT

ArgOE 38.3 46.3 32.7
PredPatt 42.9 43.6 42.3
Multi2OIE 59.1 56.1 62.5
DetIE(IMoJIE) 73.4 89.2 62.4
DetIE(IMoJIE+Synth) 73.9 89.4 63.1
IOT(IMoJIE) 73.0 86.9 62.9
IOT(IMoJIE+Synth) 74.3 88.4 64.1

ES

ArgOE 39.4 48.0 33.4
PredPatt 44.3 44.8 43.8
Multi2OIE 60.2 59.1 61.2
DetIE(IMoJIE) 74.3 89.5 63.6
DetIE(IMoJIE+Synth) 74.5 88.3 64.5
IOT(IMoJIE) 74.4 88.6 64.1
IOT(IMoJIE+Synth) 75.8 88.8 66.1

Table 4: Binary extraction performance on Multi-
OIE2016, which contains data in English (EN), Spanish
(ES), and Portuguese (PT). ‘Prec.’, and ‘Rec.’ are short
for precision and recall, respectively.

Model F1 AUC
HA + CE 49.6 34.4
HA + AM 51.1 35.4
OT + CE 51.2 35.2
OT + CE + dyk 51.7 35.9
OT + AM + dyk 52.4 36.8
OT + AM + dyk + post 52.7 37.0

Table 5: Ablation study results on CaRB test set with
the original CaRB evaluation scheme.

demonstrating the generality of AM.
Effectiveness of k. We conduct experiments to
show the results under different settings of k, which
controls how many labels each ground truth label
supplies. As listed in Table 6, we could find that:
when k = 1, the OT mechanism becomes the one-
to-one assigning strategy, which is the same as
in the Hungarian algorithm, and it does not per-
form well. When k rises from 1 to 3, the model
performance improves. However, as k continues
raising, the performance decreases instead. Espe-
cially when k = 8, the performance is even worse
than k = 1. The reasons are as follows: since the
total number of prs is constant (20 in our experi-
ments), setting k too large will result in many prs
matching the same gt, resulting in some prs are not
assigned to the corresponding gt. However, as for
the dynamic k strategy, the value of k is updated
continuously with the change of IoU, thus obtain-
ing a more promising result.

k F1 AUC
k=1 51.7 35.7
k=2 52.1 36.5
k=3 52.3 36.6
k=4 52.0 36.1
k=8 50.2 33.8

dynamic k 52.7 37.0

Table 6: Analysis of various of k and dynamic k strategy
on the CaRB test set and CaRB evaluation scheme.

Model word tuple F1 AUC
OT + CE ✓ 51.9 36.0
OT + DSC ✓ 52.0 36.2
OT + weighted CE ✓ 52.2 36.5
OT + focal ✓ 52.3 36.4
OT + I-DSC ✓ ✓ 52.4 36.5
OT + I-focal ✓ ✓ 52.5 36.7
OT + AM ✓ ✓ 52.7 37.0

Table 7: Effectiveness of different re-weight functions
on CaRB test set. All the experiments are conducted
with dynamic k and post-process mechanisms. ‘word’
and ‘tuple’ indicate whether to utilize the word-level
and tuple-level supervision, respectively.

Effectiveness of AM. We compare the proposed
AM loss with several strong re-weight functions:
(1) weighted CE loss (Ronneberger et al., 2015);
(2) DSC loss (Li et al., 2020); (3) focal loss (Lin
et al., 2020). Besides, we also apply the IoU fusion
mechanism in AM to focal loss (I-focal) and DSC
loss (I-DSC). The experiment results are listed in
Table 7, and we observe that: among those strong
re-weight baselines, because our AM mechanism
considers IoU and is able to further calculate the
weight of each sample from the tuple perspective,
it achieves the best experimental result. Moreover,
after integrating the IoU supervision on focal loss
and DSC loss, the performance further improves.
This finding illustrates the effectiveness and gener-
ality of the supervision from IoU at the tuple-level.
Error Analysis. Following the settings in
Vasilkovsky et al. (2022) and Kolluru et al. (2020a),
we conduct the error analyzing experiment by ran-
domly sampling 100 sentences from the CaRB test
set, and we identify four typical errors: (1) Bound-
ary identification, which counts for 9%. This error
means that the predicted results are partially mis-
matched with golden tuples due to punctuation,
extra words (e.g., and, to, of ), etc. (2) Tuple miss-
ing, which accounts for 6%. This error means some
tuples are not extracted from the final predictions.
(3) Co-reference, which accounts for 5%. This
error means there are co-reference problems (e.g.,
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Boundary
identification

Sentence 32.7 % of all households were made up of individuals...
Golden (32.7 % of all households, were made, up of individuals)

Prediction (32.7 % of all households, were made up of, individuals)

Co-reference
Sentence A Democrat , he became the youngest mayor...
Golden (he, became, the youngest mayor)

Prediction (A Democrat, became, the youngest mayor)

Tuple missing
Sentence

A cafeteria is also located on the sixth floor,
a chapel on the 14th floor...

Golden
(A cafeteria, is also located, on the sixth floor)

(a chapel, is located, on the 14th floor)
Prediction (A cafeteria, is also located, on the sixth floor)

Misunderstand
semantics

Sentence
After this point many of the republicans were arrested in Free State

“ round ups ” when they had come out of hiding and returned home...

Golden
(they, had come out of, hiding)

(they, had returned, home)
Prediction (they, had come out of hiding and returned, home)

Table 8: Case study on CaRB test set, where there are four typical errors, including: boundary identification,
co-reference, tuple missing, and misunderstand semantics.

he and a democrat). (4) Misunderstand seman-
tics, which accounts for 3%. This error means the
model does not fully understand the semantics of
the text. Several typical error cases are shown in
Table 8.

5 Conclusions

This paper introduces IOT, which formulates the
OIE task as an IoU-aware optimal transport prob-
lem. Under this formulation, multiple implicit tu-
ple proposals could be dynamically matched with
the same golden label during training. To deter-
mine how many proposals should be assigned for
each golden tuple, we design a dynamic k strategy
based on the IoU values. Moreover, to weigh differ-
ent tuple proposals, we introduce an Assignment-
guided Multi-granularity (AM) loss, which takes
both word-level and tuple-level information into
account. Experiments show that our method sur-
passes strong state-of-the-art baselines on three
benchmarks with a fast inference speed.

Limitations

Although the effectiveness of the IoU-aware op-
timal transport mechanism and the Assignment-
guided Multi-granularity loss has been verified
by empirical results on three datasets, the pro-
posed IOT framework may still suffer from im-
precise boundary identification and co-reference
handling, as identified in our earlier discussion in

error analysis. Moreover, IOT post-processing may
bring additional computational cost during infer-
ence, although we did not observe significant loss
in efficiency during our experiments on datasets
in moderate scale. Considering IOT outperforms
other detection-based methods in terms of perfor-
mance and its inference speed is significantly better
than other sequence labelling-based or sequence
generation-based methods, we believe this cost is
acceptable.
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