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Abstract

Peer review constitutes a core component of
scholarly publishing; yet it demands substan-
tial expertise and training, and is susceptible to
errors and biases. Various applications of NLP
for peer reviewing assistance aim to support
reviewers in this complex process, but the lack
of clearly licensed datasets and multi-domain
corpora prevent the systematic study of NLP
for peer review. To remedy this, we introduce
NLPEER – the first ethically sourced multido-
main corpus of more than 5k papers and 11k re-
view reports from five different venues. In addi-
tion to the new datasets of paper drafts, camera-
ready versions and peer reviews from the NLP
community, we establish a unified data repre-
sentation and augment previous peer review
datasets to include parsed and structured pa-
per representations, rich metadata and version-
ing information. We complement our resource
with implementations and analysis of three
reviewing assistance tasks, including a novel
guided skimming task. Our work paves the path
towards systematic, multi-faceted, evidence-
based study of peer review in NLP and beyond.
The data1 and code2 are publicly available.

1 Introduction

Research publication is the primary unit of scien-
tific communication. To ensure publication quality
and to prioritise research outputs, most scientific
communities rely on peer review (Johnson et al.,
2018) – a distributed procedure where independent
referees determine if a manuscript adheres to the
standards of the field. Despite its utility and wide
application, peer review is an effortful activity that
requires expertise and is prone to bias (Tomkins
et al., 2017; Lee et al., 2013; Stelmakh et al., 2021).
An active line of research in NLP for peer review
strive to address these challenges by supporting the

1https://tudatalib.ulb.tu-darmstadt.
de/handle/tudatalib/3618

2https://github.com/UKPLab/nlpeer

Figure 1: NLPEER unites openly licensed datasets from
different research communities, reviewing systems and
time periods, including three previously unreleased text
collections: ARR-22, COLING-20 and F1000-22.

underlying editorial process (e.g. Price and Flach,
2017; Kang et al., 2018; Shah, 2019), decision
making (e.g. Shen et al., 2022; Dycke et al., 2021;
Ghosal et al., 2019), review writing (Yuan et al.,
2022), and by studying review discourse (e.g. Ken-
nard et al., 2022; Kuznetsov et al., 2022; Hua et al.,
2019; Cheng et al., 2020; Ghosal et al., 2022b).

Despite the methodological advancements, sev-
eral factors prevent NLP research for peer review
at large. The computational study of peer review
lacks a (1) solid data foundation: reviewing data
is rarely public and comes with legal and ethical
challenges; existing sources of peer reviewing data
and the derivative datasets are not licensed, which
legally prevents reuse and redistribution (Dycke
et al., 2022). Peer reviewing practices vary across
research communities (Walker and Rocha da Silva,
2015; Bornmann, 2011) – yet the vast majority of
NLP research in peer review so far focused on a
few machine learning conferences that make their
data available through the OpenReview.net plat-
form (e.g. Kennard et al., 2022; Shen et al., 2022).
A (2) multi-domain perspective on peer review is
thus missing, and the transferability of findings be-
tween different communities and reviewing work-
flows remains unclear. Finally, a (3) unified data
model for representing peer reviewing data is lack-
ing: most existing datasets of peer reviews adhere
to task-specific data models and formats, making it
hard to develop and evaluate approaches for peer
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review support across datasets and domains.

To address these issues, we introduce NLPEER.
We apply a state-of-the-art workflow (Dycke et al.,
2022) to gather ethically and legally compliant
reviewing data from natural language processing
(NLP) and computational linguistics (CL) commu-
nities. We complement it with multi-domain re-
viewing data from the F1000 Research3 platform
and historical data from the openly licensed portion
of the PeerRead (Kang et al., 2018) corpus. The
resulting resource (Figure 1) is the most compre-
hensive collection of clearly licensed, open peer
reviewing datasets available to NLP to date.

NLPEER includes peer reviews, paper drafts and
revisions from diverse research fields and review-
ing systems, over the time span from as early as
2012 until 2022. This – for the first time – en-
ables systematic computational study of peer re-
view across domains, communities, reviewing sys-
tems and time. The paper revisions make NLPEER

well-suited for the study of collaborative text work.

To facilitate the analysis, we unify the datasets
under a common data model that preserves docu-
ment structure, non-textual elements and is well
suited for cross-document analysis. To explore
the new possibilities opened by our resource, we
conduct cross-domain experiments on review score
prediction (to encourage consistent review scores),
pragmatic labeling (to encourage balanced re-
views) and the novel guided skimming for peer
review task (to help guide review focus), along
with easy-to-extend implementations. Our results
indicate substantial variation in performance of
NLP assistance between venues and research com-
munities, point at synergies between different ap-
proaches to review structure analysis, and pave
the path towards exploiting cross-document links
between peer reviews and research papers for lan-
guage model benchmarking.

In summary, this work contributes (1) the first
unified, openly licensed, multi-domain collection
of datasets for the computational study of peer re-
view, including (2) two novel datasets of peer re-
views from the NLP and CL communities, and com-
plemented by a (3) descriptive analysis of the re-
sulting data and (4) extensive experiments in three
applied NLP tasks for peer reviewing assistance.

3https://f1000research.com/

2 Background

2.1 Peer Reviewing Terminology

During peer review, authors submit their paper4

to the editors, often via a peer reviewing platform.
The manuscript is distributed among reviewers who
produce reviewing reports – or reviews – evaluat-
ing the submission. As a result, the submission
might be accepted, rejected or further adjusted,
producing a revision. Some reviewing systems al-
low additional exchange, e.g. author responses and
meta-reviews. However, here we focus on papers,
reviews and revisions, which constitute the core of
peer reviewing data.

There exist different implementations of peer
review, including blind review (where reviewer
and/or author identities are hidden to promote ob-
jectivity) and open review (identities are open).
Moreover, reviewing standards and practices vary
by research community, venue and publication type.
Review forms and templates are one important
varying factor; in the following, we differentiate be-
tween unstructured (only one main text) and struc-
tured (several predefined sections) review forms.
We refer to the particular implementation of peer re-
view at a certain venue as reviewing system. Along
with the natural domain shift based on research
field, the reviewing system contributes to the com-
position of the peer reviewing data it produces.

2.2 Existing Data

Peer review is a hard, time-consuming, subjective
task prone to bias, and an active line of work in
NLP aims to mitigate these issues. NLP for peer re-
view crucially depends on the availability of peer re-
viewing data – yet open data is scarce. The majority
of existing NLP studies on peer review (e.g. Kang
et al., 2018; Yuan et al., 2022; Hua et al., 2019;
Kennard et al., 2022; Cheng et al., 2020; Ghosal
et al., 2022a; Shen et al., 2022) draw their data from
a few machine learning conferences on the Open-
Review.net platform which – at the time of writing
– does not attach explicit licenses to the publicly
available materials, making reuse of the derivative
data problematic. In addition, over-focusing on
few selected conferences in machine learning lim-
its the utility of NLP approaches to peer review
for other areas of science and reviewing systems,
and leaves the question of cross-domain applica-
bility open. While the recent F1000RD corpus

4We use the terms manuscript, paper etc. interchangeably.
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(Kuznetsov et al., 2022) addresses some of these
issues, it lacks data from NLP and CS communities,
and does not contain blind reviewing data, although
single- and double-blind review are arguably stan-
dard in most research fields (Johnson et al., 2018).

Ethical, copyright- and confidentiality-aware
collection of peer reviewing data (Dycke et al.,
2022), and transformation of this data into unified,
research-ready datasets, require major effort. The
purpose of NLPEER is to provide the NLP commu-
nity a head-start in ethically sound, cross-domain
and cross-temporal study of peer review.

2.3 NLP Approaches to Aiding Peer Review

Recent years have seen a surge in NLP approaches
to aid peer review; ranging from early works study-
ing reviewing scores (Kang et al., 2018) to more
recent approaches attempting to align author re-
sponses to review reports automatically (Kennard
et al., 2022). The goal of our work is to provide di-
verse and clearly licensed source data to support the
future studies in NLP for peer review assistance.

In addition, we explore the potential for cross-
domain NLP-based peer reviewing assistance on
three tasks detailed in Section 5. Review score
prediction has been first introduced in (Kang et al.,
2018) and further explored in (Ghosal et al., 2019).
While following a similar setting, our study con-
tributes to this line of research by exploring the
task of score prediction across domains and re-
search communities and provides new insights on
the factors that impact the transferability of the
task between reviewing systems. Pragmatic label-
ing has been previously explored in (Hua et al.,
2019; Kuznetsov et al., 2022; Kennard et al., 2022)
and is usually cast as a discourse labeling task on
free-form peer review text. Yet, many reviewing
systems enforce the same discourse structure by
employing structured peer review forms. Comple-
menting the prior efforts, we explore the potential
synergies between the two approaches. The guided
skimming for peer review task is novel and builds
upon the recent work in cross-document model-
ing for peer review by Kuznetsov et al. (2022) and
other related works (Qin and Zhang, 2022; Ghosal
et al., 2022a).

Figure 2: Unified data structure of NLPEER.

3 NLPEER

3.1 Datasets

NLPEER consists of five datasets: two datasets
from previous work, two entirely new datasets from
the NLP domain, as well as an up-to-date crawl of
the F1000Research platform.

Prior datasets Parts of the PeerRead data (Kang
et al., 2018) have been created with explicit con-
sent for publication and processing by both review-
ers and authors, and we include them into our re-
source. ACL-175 and CONLL-166 contain peer
reviews and papers from the NLP domain, stem
from a double-blind reviewing process, and use un-
structured review forms with a range of numerical
scores, e.g. substance and soundness. The data is
licensed under CC-BY.

F1000-22 is collected from F1000Research – a
publishing platform with an open post-publication
reviewing workflow. Unlike other datasets in
NLPEER, F1000-22 covers a wide range of re-
search communities from scientific policy research
to medicine and public health. The reviewing
process at F1000Research is fully open, with re-
viewer and author identities known throughout the
process, contributing to the diversity of NLPEER.
F1000Research uses unstructured peer reviewing
forms coupled with a single 3-point overall score
(approve, reject, approve-with-reservations). The
paper and review data are distributed under CC-BY
license, which we preserve.

555th Annual Meeting of the Association for Computa-
tional Linguistics (ACL)

6Conference on Computational Language Learning 2016
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New Datasets Existing Datasets

ARR-22 COLING-20 ACL-17 CONLL-16 F1000-22 total

reviewing system blind blind blind blind open both
domain NLP/CL NLP/CL NLP/CL NLP/CL multi multi

time (20XX) 21-22 20 16-17 15-16 12-22 12-22

# papers 476 89 136 22 4949 5672
% accepted 100% 93% 67% 50% 34% 69%∗

# reviews 684 112 272 39 10418 11515
reviews per paper 1.43± 1.1 1.27± 0.5 2.0± 0.8 1.77± 0.6 2.11± 0.71 1.72∗

#sent. per paper 220± 62.9 195± 47.9 208± 42.3 199± 35.6 158± 90.3 196∗

#sent. per review 31± 27.0 30± 22.8 41± 24.6 32± 12.4 34± 27.6 32.2∗

total #tok reviews 266k 45k 100k 16k 3.8M 4.2M

Table 1: For the datasets in NLPEER, we report the mean and standard deviation of per-paper and per-review
statistics. We report % of accepted papers; for F1000-22 this is the % of version one drafts with unanimous scores of
"accept", as acceptance conceptually does not exist here. Total statistics are summed and averaged (∗), respectively.

COLING-20 (New) was collected via a
donation-based workflow at the 28th International
Conference on Computational Linguistics, in
the NLP and computational linguistics domain.
The data stems from a double-blind reviewing
process; review forms include free-form report
texts and multiple numerical scores, e.g. relevance
and substance. We release this data under the
CC-BY-NC-SA 4.0 license.

ARR-22 (New) was collected via the donation-
based workflow proposed by Dycke et al. (2022) at
ACL Rolling Review (ARR) – a centralized system
of the Association for Computational Linguistics.
NLPEER includes peer reviewing data for papers
later accepted at two major NLP venues – ACL
20227 and the NAACL 20228 – covering submis-
sions to ARR from September 2021 to January
2022. The reviewing process at ARR is double-
blind and uses standartized structured review forms
that include strengths and weakness sections, over-
all and reproducibility scores, etc. We release this
data under the CC-BY-NC-SA 4.0 license.

3.2 Unification

The diverse source datasets in NLPEER were cast
into a unified data model (Figure 2). Each paper is
represented by the submission version and a revised
camera-ready version, and is associated with one
or more review reports. In the case of F1000-22 all
revisions and their reviews are present. To unify

760th Annual Meeting of the ACL
82022 Annual Meeting of the NAACL

the papers, we converted all drafts and revisions in
NLPEER into intertextual graphs (ITG) – a recently
proposed general document representation that pre-
serves document structure, cross-document links
and layout information (Kuznetsov et al., 2022).
We extended the existing ITG parser9 and com-
bined it with GROBID (GRO, 2008–2023) to pro-
cess PDF documents and preserve line number in-
formation whenever available. Papers were sup-
plemented with the PDF, XML and TEI source
whenever available. Reviews were converted into a
standardized format that accommodates structured
and free-text reviews and arbitrary sets of scores.
As paper revisions were not collected for some of
the NLPEER datasets, we have complemented ex-
isting data with camera-ready versions obtained via
the ACL Anthology10. Papers, reviews and datasets
are accompanied with metadata, e.g. paper track in-
formation and licenses for individual dataset items.
Further dataset creation details are provided in the
Appendix A.

3.3 Ethics, Licensing and Personal Data

All datasets included in NLPEER are distributed
under an open Creative Commons license and were
collected based on explicit consent, or an open li-
cense attached to the source data. The ARR-22
data collection process allowed reviewers to ex-
plicitly request attribution, and this information is
included in the dataset. F1000Research uses open

9https://github.com/UKPLab/
intertext-graph

10https://aclanthology.org/
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reviewer and author identities throughout the re-
viewing process; this information is preserved in
F1000-22. Finally, the authors of camera-ready
publications included in NLPEER are attributed.
In all other cases, review reports and paper drafts
throughout NLPEER are stripped of personal meta-
data; in addition, the reviews of all datasets apart
from F1000-22 have been manually verified by at
least one expert from our team to not contain per-
sonal information. Due to the practices of scientific
publishing in the selected communities, NLPEER

only includes texts written in English.

4 Statistics

The datasets in NLPEER originate from different
domains and peer reviewing systems, each with its
own policies, reviewing guidelines, and commu-
nity norms. While a comprehensive comparison
of publishing and reviewing practices lies beyond
the scope of this work, this section provides a brief
overview of the key statistics for NLPEER datasets.

Documents and Texts Table 1 reports the textual
statistics of NLPEER, comprising more than 4M
peer review tokens in total, with more than 400K
review tokens in the NLP/CL domain. The resource
is diverse, and we observe high variability in review
and paper composition among the datasets. For
example, papers in F1000-22 come from a wide
range of domains and cover a wide range of article
types from case reports to position papers, reflected
in the low number of sentences per paper (158)
with high variance(±90.3) compared to the other,
NLP-based datasets with roughly 200 sentences per
paper and lower variance. Yet, we note that review
lengths exhibit smaller variance across the datasets.
Every paper in NLPEER is associated with at least
one review and one revision, making it suitable for
the study of cross-document relationships.

Scores and Acceptance The data collection
workflow impacts the proportion of accepted pa-
pers in the dataset: from 100% in ARR-22 which
uses a strict confidentiality-aware collection pro-
cedure, to 34% in F1000-22, where manuscripts
are made available prior to peer reviewing and ac-
ceptance. Yet, acceptance per se is not an accurate
proxy of review stance: a paper that is eventually
accepted can receive critical reviews. To inves-
tigate, we turn to reviewing scores. Each of the
reviewing systems in NLPEER requires reviewers
to assign a numerical rating to the papers. However,

Figure 3: Normalized overall score per dataset (KDE
estimate) with "borderline" (dotted).

scoring scales and semantics differ across datasets:
the NLP and CL conferences employ fine-grained
scales (5- and 9-point), while F1000 Research uses
a very coarse scale (3-point). Figure 3 shows the
normalized distribution of overall scores for each
dataset in NLPEER. We observe that scores near
the arguably most interesting region around the bor-
derline to acceptance are well-represented, with a
skew towards the positive end of the review score
scale otherwise. For the donation-based datasets
(all except F1000-22), this is likely due to partici-
pation bias (Dycke et al., 2022); for F1000-22, it is
a result of the post-publication, revision-oriented
reviewing workflow. This fundamental difference
between the peer reviewing systems in NLPEER

makes it an interesting and challenging target for
the computational study of reviewing scores across
reviewing systems and research communities.

Domain Structure The vocabulary of a text col-
lection is an important proxy for describing its lan-
guage variety (Plank, 2016), and higher vocabu-
lary overlap indicates shared terminology and top-
ical alignment between datasets. To investigate
the domain structure of NLPEER, we measure
the vocabulary overlap of review texts based on
the Jaccard metric for the top 10% most frequent
lemmas excluding stopwords similar to Zhang
et al. (2021). As Figure 4 demonstrates, reviews
from the NLP/CL communities (ARR-22, ACL-17,
COLING-20) are most similar (0.37-0.53), while
F1000-22 is most similar to ARR-22 with a notably
lower score than the within-community comparison
(∆ ≈ 0.25). This illustrates that despite domain
differences, the review reports do share general
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Figure 4: Vocabulary overlap based on the Jaccard met-
ric on review lemmas of the datasets in NLPEER.

The paper presents a new…

I really liked the idea of…

Line 114: please elaborate…

The results are biased…

Neutral

Strength

Request
Weakness

Score: 4

Check: yes

(a)

(b) (c)

(d)

report paper

Figure 5: NLPEER tasks: given a review and a paper,
we (a) predict the review score, (b) predict pragmatic
class per review sentence, and (c) use explicit links to
(d) find review-focus paragraphs in new papers.

wording (e.g. "model", "method", "author") that
is independent from lower-frequency field-specific
terminology (e.g. "cross-entropy", "feed-forward",
"morpheme"). NLPEER includes datasets with lin-
guistically diverse review reports while maintain-
ing a domain-independent base vocabulary charac-
teristic for the genre of peer reviews.11 This makes
the investigation of cross-domain NLP for review-
ing assistance a promising research avenue.

5 Reviewing Assistance with NLPEER

NLPEER is a unique resource for the study of com-
putational assistance during peer review authoring.
To demonstrate its versatility, we define three tasks
– review score prediction, pragmatic labeling and
guided skimming – that are anchored in realistic
assistance scenarios and targeted towards helping
junior reviewers to improve their review. Figure
5 illustrates the tasks. For readability, we use s to

11The paper vocabulary overlap follows a similar trend, see
Appendix (Figure 7).

denote sentences, par for paragraphs, and sec to
denote sections for reviews (e.g. sR) and papers
(e.g. sP ), respectively. We report the main results
here, and refer to the Appendix B for details and
the Limitations Section for an ethical discussion of
risks and opportunities of these tasks.

5.1 General Setup
Baseline Models Our experiments aim to assess
the difficulty of each assistance task across the sub-
sets of NLPEER. Hence, we base our experiments
on well-established large language models (LLM)
from the general and scientific domain – RoBERTa
(Liu et al., 2019), BioBERT (Lee et al., 2020) and
SciBERT (Beltagy et al., 2019) – with the recom-
mended default hyperparameter settings.

Fine-tuning and Evaluation For each task, we
split the data into a training (70%), development
(10%) and test set (20%), and fine-tune the pre-
trained LLM on the training split using a task-
specific prediction head. To account for small
dataset sizes, we fine-tune each model with small
learning rates ([1, 3× 10−5]) and a linear warm-up
schedule, and allow training for up to 20 epochs,
following existing recommendations (Mosbach
et al., 2021). We repeat the experiments ten-times
with different random seeds and report the median
and standard deviation of each performance metric
across the runs. All experiments were run on a
single NVIDIA A100 GPU, summing to a total of
roughly seven days computing time all together.

5.2 Review Score Prediction
Reviewer rating behavior is heterogeneous; the
correspondence between review ratings and re-
view texts often lacks consistency (Wang and Shah,
2019). The differences in rating assignment might
exist both on the individual level (i.e. due to lack of
experience) and on the community level (i.e. when
reviewing for a large multi-track conference). Here,
a review score prediction model can suggest a score
to the reviewer that is typical for the given report
and sub-community. This suggestion can serve as
feedback to revise inconsistent scores.

Task. Following prior work (Kang et al., 2018;
Ghosal et al., 2019; Stappen et al., 2020), we cast
review score prediction (RSP) as a regression task
where given the review text in R and the paper
abstract aP the model should predict the overall
review score qR mapped to the respective scale.
We provide the paper abstract as an input to the
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model to allow to contextualize the review text;
hereby, the model can resolve coreferences and
weigh review statements in relation to the paper.
We measure the performance by the mean root
squared error (MRSE). As one key challenge of
review scoring is the mapping of an overall assess-
ment to a discrete score scale, we also measure the
classification performance of the regression model
in terms of the F1-score by splitting the real-valued
outputs into equally sized intervals according to
the respective review score scale. We highlight that
this task framing does not account for specific score
semantics, but in exchange permits direct model
transfer and comparison across domains. We leave
the in-detail study of RSP as a classification task,
for instance using in-context learning (Brown et al.,
2020) on score semantic labels, to future work.

Setup. For each dataset in NLPEER, we consider
all reviews of the initial paper draft; this means, for
F1000-22 we include only the reviews of the first
paper version. As the input, we concatenate the
review report sections secR1 , secR2 ... ∈ R and the
paper abstract aP , which we separate by a special
token. To account for the limitations of the LLMs,
we truncate the resulting text to 512 tokens. For
training, we normalize the scores qR to the inter-
val [0, 1] considering the maximum and minimum
scores of the respective rating scale. The same pa-
per can receive multiple reviews; we ensure that
all reviews of the same paper belong to the same
data split. For representative sampling, we ensure
that the distribution of reviews per paper is similar
across splits (see Appendix B).

Results. Table 2 summarizes score prediction re-
sults for the best-performing LLM by dataset. Neu-
ral models substantially outperform the mean score
baseline for ARR-22 and F1000-22, yet for ACL-
17, CONLL-16 and COLING-20 they perform on-
par or worse. We note that the latter datasets also
have the lowest number of samples. To investigate
a potential connection, we have trained a RoBERTa
model on 30% of the ARR-22 training set, resulting
in a median 0.44 MRSE and 0.24 F1-macro score
on the test set – on par with the mean baseline, and
comparable to the similarly-sized ACL-17. This
suggests that the dataset size has the strongest im-
pact on score prediction performance, encouraging
future reviewing data collection efforts, as well as
the study of few-shot transfer between high- and
low-resource peer reviewing systems and domains.

MRSE ↓ F1-macro ↑
ARR-22† .45 / .37 ±.02 .24 / .46 ±.04

COLING-20† .22 / .45± .08 .23 / .15± .01
ACL-17‡ .78 / .76± .06 .06 / .11 ±.04

CONLL-16† .78 / .77± .04 .08 / .08± .00
F1000-22‡ .41 / .21 ±.01 .19 / .41±.04

Table 2: RSP performance: baseline (mean-score) /
median ± standard deviation. MRSE lower is better, F1
higher is better. Reporting best performing LLM; † =
RoBERTa, ‡ = BioBert; full results in Appendix B.

5.3 Pragmatic Labeling

The core function of peer review is to assess and
suggest improvements for the work at hand: a good
review summarizes the work, lists its strengths and
weaknesses, makes requests and asks questions.
Although some venues employ structured review
forms to encourage review writing along these di-
mensions, issues of imbalanced feedback (e.g. fo-
cus only on weaknesses) (Hua et al., 2019), incon-
sistent uses of review sections, and lack of guidance
for free-form reviews persist. Here, a pragmatic la-
beling model can provide feedback to reviewers to
potentially revise, balance or rearrange their review
report. Following up on prior studies on argumenta-
tive and pragmatic labeling schemata for free-form
peer reviews (Hua et al., 2019; Kuznetsov et al.,
2022, etc.), we use NLPEER to explore the con-
nection of pragmatic labels and structured review
forms for the purpose of this assistance scenario.

Task We cast pragmatic labeling as a sentence
classification task, where given a review sentence
sRi , the model should predict its pragmatic label
ci ∈ C. For this experiment we use the data from
two distinct reviewing systems: F1000Research
employs free-form full-text reviews; a subset
of F1000-22 has been manually labeled with
sentence-level pragmatic labels in the F1000RD
corpus (Kuznetsov et al., 2022). ACL Rolling
Review, on the other hand, uses structured re-
view forms split into sections, which we align to
the F1000RD classes: Strength, Weakness,
Request (Todo in F1000RD) and Neutral
(Recap, Other and Structure in F1000RD).
See Appendix B for more details.

Setup For F1000RD we consider all 5k labeled
sentences mapped to the respective classes. For
ARR-22, we take review sentences longer than five
characters (to filter out splitting errors), and label
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ARR-22 F1000RD

ARR-22† 0.72± 0.01 0.50± 0.01
F1000RD† 0.54± 0.01 0.87± 0.01

baseline (maj.) 0.11 0.152

Table 3: Pragmatic labeling performance using
†RoBERTa. Rows: training. Columns: test. Macro-F1,
median ± standard deviation, vs majority class baseline.

them by their respective review section, resulting
in around 14k labeled sentences. For each dataset,
we split the instances at random disregarding their
provenance to maximize the diversity across splits.

Results Table 3 presents the pragmatic labeling
results in- and cross-dataset. Expectedly, neural
models outperform the majority baseline in-dataset
by a large margin. Yet, cross-dataset application
also yields non-trivial results substantially above
the in-dataset majority baseline, despite the domain
shift between the ARR-22 and F1000RD data. This
has important implications, as it suggests that data
from structured reviewing forms (entered by re-
viewers as part of the reviewing process) can be
used to train free-text pragmatic labeling models,
thereby significantly reducing the annotation costs.
Nevertheless, the gap to the in-distribution super-
vised model remains, constituting a promising tar-
get for the follow-up work, that would need to dis-
entangle the effects of domain, task and reviewing
system shift on pragmatic labeling performance.

5.4 Guided Skimming for Peer Review

Review writing typically requires multiple passes
over the paper to assess its contents. Different pa-
per types (e.g. dataset or method papers) require
different reviewing strategies (Rogers and Augen-
stein, 2020); hence, the regions that require most
scrutiny and rigor during reading vary across pa-
pers. Suggesting passages most relevant to the
required reviewing style could encourage higher
quality of reviewing and serve as a point of refer-
ence to junior reviewers. We model this scenario
via the novel guided skimming for peer review task,
in line with Fok et al. (2023) who integrate pas-
sage recommendations into reading environments,
reporting improved reading performance.

Task We model the task as follows: given a paper,
the model should rank its paragraphs parP by rele-
vance to the critical reading process. The training

data for this task is derived from explicit links, e.g.
mentions of line numbers or sections in the reviews,
which can be reliably extracted from reports in a
rule-based fashion (see B.3 for details) and used
to draw cross-document links between review re-
port sentences sR and the paragraphs of the papers
they discuss parP (Kuznetsov et al., 2022)12. Paper
paragraphs with incoming explicit links are then
considered "review-worthy", and the task is to rank
such paragraphs above others for previously unseen
papers with no available review reports. While the
resulting task is a simplification of the actual skim-
ming process during peer review, it is a first step
towards exploring review-paper-links for modeling
actual reviewer focus. We encourage future work
to follow-up on this line of inquiry.

Setup We use the ARR-22 and ACL-17 datasets,
as they are of sufficient size and offer line numbers
in the paper drafts. We extend and apply the ex-
plicit link extractor proposed by Kuznetsov et al.
(2022), resulting in a total of 229 papers with 743
relevant passages with an average of 3.24± 3.2 of
linked passages for ARR-22 and 87 papers, 308
passages and 3.54 ± 3.13 linked paragraphs per
paper for ACL-17. We fine-tune LLMs using a
binary classification objective, batching linked and
unlinked paragraphs of the same paper together and
rank by the output softmax of the positive score.
We compare to a random baseline. Datasets are
split by paper while ensuring a similar distribution
of passages per paper across splits (see app. B).

Results Figure 6 summarizes the Precision and
Recall at k for the best performing SciBERT model
and the random baseline on ACL-17. Both recall
and precision exceed the random baseline by a
large margin and for all considered k. At around
k = 3 roughly 50% of the relevant passages are
retrieved; while at the same rank around 21% of
the retrieved paragraphs are actually linked by the
reviewers. The mean reciprocal rank (MRR) mea-
sures the average position of the first relevant result
within the rankings. SciBERT achieves an MRR of
0.41± 0.05 on ACL-17 and 0.34± 0.03 on ARR-
22, outperforming the random baseline by 0.23
and 0.18, respectively. Overall, the LLM perform
substantially above random despite discarding all
context information of a paragraph (see appendix C
for a detailed analysis). While guided skimming is

12We opt against implicit links, i.e. links without explicit
markers, as their automatic detection remains challenging.
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Figure 6: Precision (left) and recall (right, dotted lines)
at k for SciBERT and random baseline on ACL-17.

a non-trivial task, the above-random performance
of the given LLM baseline shows promise for fur-
ther research in this direction, which could also
include an in-depth study considering the context
of paragraphs – e.g. their position in the logical
structure of the paper.

6 Further Applications

NLPEER includes rich representations and meta-
data for a large number of inter-linked peer review
and manuscript texts. This enables new NLP stud-
ies for peer reviewing assistance and beyond. In
this section we highlight and critically reflect on
further applications of NLPEER in general NLP
research and in practice.

Peer review reports are expert-written texts that
typically reflect deep understanding of the under-
lying paper. Hereby, they can serve as a valuable
resource for distant or direct supervision of general-
purpose machine learning models. For instance,
paper summaries in review reports can be used as
a basis for a challenging document summarization
task; aspect score disagreements between reviews
may serve as a weak supervision signal for aligning
arguments for and against the paper across reviews.

On the other hand, NLPEER and peer reviewing
data in general might be exploited to train models
with dual uses and practical risks. One such exam-
ple is automatic review generation, where given a
paper the model should generate a review report.
While a resulting model may be used benevolently
as a paper-writing aid or an analytical device for the
study peer review, using it to avoid the reviewing
effort or replace the reviewer bears a wide range

of risks. As it is implausible that current state-of-
the-art NLP models could produce a non-generic,
meaningful review of a novel paper (Yuan et al.,
2022), such applications could compromise the aca-
demic quality assurance process. Due to the central
role of peer review in research and publishing, we
emphasize that future work should carefully reflect
on the real-world impact of any models developed
based on NLPEER.

7 Conclusion and Intended Use

We have presented NLPEER– the first clearly li-
censed large-scale reference corpus for the study
of NLP for peer review. NLPEER opens many
new opportunities for the empirical study of schol-
arly communication. For NLP, it allows devel-
oping new annotated datasets based on clearly
licensed, richly formatted, unified corpora that
span multiple research domains, reviewing sys-
tems and time periods. It can be used as a test-
ing ground for domain transfer (Gururangan et al.,
2022; Chronopoulou et al., 2022), and enables the
study of cross-document relationships between pa-
pers, paper revisions and peer reviews (Kuznetsov
et al., 2022). From the meta-scientific perspective,
it allows comparing peer reviewing practices across
research communities, and can provide crucial in-
sights into how researchers review and revise sci-
entific texts. Our task implementations and results
can guide the development of NLP assistance sys-
tems and can be used for systematically comparing
pre-trained language models in the context of peer
reviewing applications. Finally, our resource can
serve as a blueprint for future aggregate resources
for the study of peer review in NLP.
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Limitations

While we hope that our approach to data collection
can serve as a benchmark for future NLP studies be-
yond peer review, we deem it equally important to
explicitly outline the potential risks and limitations
of NLPEER and NLP for peer review in general.
Our discussion below encourages future research
in ethics and applied NLP for peer review; many of
our considerations are not specific to peer review
and are equally relevant to the applications of NLP
in general.

From the data perspective, we deem it impor-
tant to clearly state what NLPEER is not meant
for. Our data collection campaigns for ARR-22
and COLING-20 included an explicit disclaimer on
the risks of author profiling on the peer reviewing
data; we stress that such applications violate the
intended use of NLPEER. Furthermore, NLPEER

enables a wide range of new NLP assistance tasks
for peer review. Yet, we encourage future studies
of NLP for peer review to reflect carefully about
the potential risks and benefits of new task defi-

13https://intertext.ukp-lab.de/

nitions atop of peer reviewing data in general and
NLPEER specifically. For instance, the full automa-
tion of peer review, i.e. the generation of review
reports given a paper, bears risks and dual uses.

Considering diversity in NLP datasets, we stress
that even NLPEER only covers a fraction of peer
reviewing across all fields of science, and more
data needs to be collected to enable fully repre-
sentative NLP-based study of peer review. Due
to the genre standards of scientific publishing our
dataset only covers papers and reviews in English
language. Multilingual scholarly document pro-
cessing is overall poorly represented in NLP, and
constitutes a promising avenue for future research.
While our resource contains data from a wide range
of domains, research in arts and humanities is
under-represented due to the poor data availabil-
ity. The trend towards open science and the adop-
tion of responsible data collection practices (Dycke
et al., 2022) might bring reviewing data from previ-
ously unexplored domains and languages into NLP.
We stress that any direct comparison based on our
corpus would need to take into account reviewing
practices and guidelines adopted by the respective
communities. Specifically, potential biases result-
ing from the donation-based collection for ARR-22
and COLING-20 should be taken into account.

From the task side, we highlight that implementa-
tions and resulting models presented here are meant
to exemplify the proposed tasks, determine their
technical feasibility, and serve as a starting point
for developing future NLP for peer review assis-
tance systems. As such, the provided implementa-
tions have limitations: for example, sentence-level
pragmatic labels derived from structure-based ARR
forms might contain noise since ARR forms group
text on section level; guided skimming does not
make use of implicit links, and explicit links are
mostly based on line numbers and quotes, limit-
ing the recall. Since we did not perform extensive
hyperparameter search and tuning of the models,
our results should not be interpreted as a claim to-
wards superiority of a particular model, approach
or reviewing system.

We highlight that high intrinsic task performance
does not necessarily translate into the extrinsic util-
ity of NLP support in real-world reviewing environ-
ments. We thus deem it crucial to study the factors
that affect the success of NLP assistance for peer
reviewing. This includes the study of the human-
machine interaction dynamics and its desiderata;
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for example, review score recommendations should
be accompanied by explanations. We encourage
extensive research on risks of biases and errors
in NLP assistance models; for instance, a review
score prediction model might learn undesirable bi-
ases against certain types of papers. Review writing
assistance implemented in a real reviewing system
should always be accompanied by carefully de-
signed guidelines and policies.

Finally, we invite the community to reflect on
the potential societal consequences of the indi-
vidual NLP assistance tasks, even if NLP models
accomplish them well. To provide an example, our
newly introduced guided skimming task assists dur-
ing the effortful and time-intensive, yet crucial step
of reading the paper under review. Although the
guided skimming for peer review task models an
intermediate step during reading and is intended
to serve as an additional point of reference during
the iterated skimming steps of peer review, such a
technology might encourage reviewers to read only
the paragraphs suggested by the model. We argue
that this risk of "lazy reading" is independent of the
technology at hand; a reviewer that is institutionally
incentivized to perform reviews as quick as possi-
ble, may read a paper superficially and settle with
heuristics for their assessment (Rogers and Augen-
stein, 2020) regardless of assistance. A greater risk,
however, may be imposed by potential biases and
errors of a guided skimming model, which could
distract less experienced reviewers. While recent
work on skimming assistance in scholarly articles
(Fok et al., 2023) suggests a mature and reflected in-
teraction of users with highlight recommendations
and possible errors, this needs a specific investiga-
tion for the use case during peer review. On the
other hand, a critical reading model may serve as
a useful point of reference to guide reviewers to
employ more scrutiny on the parts of the paper
appropriate for this specific paper type, which ulti-
mately may improve reviewing quality. We assess
that the opportunities provided by the introduced
review assistance tasks outweigh the potential risks
in general, yet highlight that a targeted study is
necessary to substantiate this assessment.
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A Corpus Creation Details

A.1 Overview

Revision Matching Our data model assumes that
each paper is associated with at least one revision –
yet some of the existing peer review datasets only
provide the submitted drafts. To remedy this, we
augment ACL-17, CONLL-16 and COLING-20
with camera-ready versions by matching the ac-
cepted paper draft titles and abstracts against the
ACL anthology14.

For each of the papers in the mentioned datasets,
we extracted the title and abstract either from the
provided meta-data or the PDF. We then consid-
ered all papers of the respective conference in the
ACL anthology and retrieved the top five entries
according to the sentence BLEU15 of the title and
abstract with the paper at hand. Exact matches
were included without manual verification, for the
others the authors checked if the papers plausibly
align. When in doubt, we opted to not include the
matched camera-ready version.

Paper Parsing For all datasets except F1000-22,
the raw paper inputs are PDFs, which are processed
using GROBID (GRO, 2008–2023) and translated
into the ITG data model (Kuznetsov et al., 2022)
that captures the structural information (i.e. sec-
tions, subsections, etc.), linking information (i.e.
citations and references) and layout information
(i.e. lines and pages) of a document. For the
datasets with line numbers in paper drafts (ACL-
17, CONLL-16, ARR-22), we first remove line
numbers for parsing and then match the line and
page information heuristically to the processed pa-
pers. Although manual spot checks suggest a high
quality of GROBID and ITG parsing, errors are
inevitable and we provide papers both in raw and
parsed form. To process F1000 Research XML
papers, we extend and modify the existing parser
provided in the ITG library.

Review Parsing The reviews are converted into
a standardized format that supports structured and
unstructured reviews, with and without scores. This
means that for ARR-22, COLING-20, ACL-17,
and CONLL-16 we include the rich set of review
scores, and for ARR-22 the diverse review sections
(strengths, weaknesses, etc.) remain intact.

14https://aclanthology.org/
15Using NLTK 3.7, see https://www.nltk.org/
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Metadata and Versions NLPEER includes all
available revisions of a paper. For F1000-22, each
paper may have multiple revisions. Other datasets
include at least the paper draft and if the paper was
eventually published a camera-ready version of the
paper. We associate rich metadata with each pa-
per version, including the extracted title, abstract,
authors (for accepted papers), and, if available, in-
formation on the paper type.

Personal data check To ensure that the pub-
lished reviews pose no risks related to personal
information, each peer review text in NLPEER –
including the data adopted from prior work – was
additionally validated by at least one NLP expert
from our group. The initial analysis has identi-
fied 25 potentially problematic cases, of which 10
were deemed relevant upon a second check. Most
of these cases contained either anonymous Open-
Review.net identifiers within the review texts or
included notes to the area chairs within the review
main body. Despite low risk of cross-linking this
information, we opted to discard these potentially
privacy relevant sentences from the respective re-
views.

A.2 COLING-2020 Collection
The data for the COLING-20 dataset was collected
during the 28th International Conference on Com-
putational Linguistics. Independent from the actual
reviewing process, we asked authors and review-
ers to donate their anonymized drafts and reviews,
respectively.

Workflow After reviewing was completed, we
reached out to authors and reviewers, asking them
to consent to the research use of their data and
to grant a CC0 license to their texts, with the the
silence period of two years after COLING-20 ac-
ceptance decisions (October 2020). Reviewers and
authors were informed about the risks of author
profiling based on their provided textual artifacts.
In total roughly 1500 anonymous reviews and 150
drafts were donated in this way. To adhere to the
principles proposed by Dycke et al. (2022), we only
include reviews and paper drafts for which both
authors and reviewers agreed to donation; hereby
avoiding any possibility of leaking confidential re-
search ideas from the papers.

A.3 ARR-2022 Collection
ACL Rolling Review (ARR) is the unified and con-
tinuous reviewing system of the Association for

Computational Linguistics (ACL). Papers are sub-
mitted in regular intervals, the cycles, receive re-
views and a meta-review. In case of a positive meta-
review, the paper becomes eligible for submission
to any of the ACL conferences including the An-
nual meeting of the ACL and Empirical Methods
for Natural Language Processing, where program
chairs make the final acceptance decision. Other-
wise, the paper is revised, resubmitted and typically
reviewed by the same set of reviewers in a later cy-
cle.

Workflow We followed the workflow with the
exact same license transfer agreements proposed
by Dycke et al. (2022) to collect peer reviewing
data of the cycles September 2021 trough January
2022 covering papers later accepted at the annual
meeting of the ACL (ACL 2022) and the annual
meeting of the north-american chapter of the ACL
(NAACL 2022). Independent from the reviewing
process, reviewers were presented the option to do-
nate all peer reviews of each cycle in bulk anytime
during the reviewing period. After acceptance deci-
sions for the conferences were released, we reached
out to the authors of accepted papers roughly one
month before the actual conference took place. Au-
thors and reviewers were informed about the risks
of author profiling and review release. The col-
lected dataset contains reviews for the final draft of
a paper, but none of the previous revisions. Some
reviews included in the dataset are therefore revi-
sions of previous reviews or may contain references
to those.

A.4 F1000-22 Creation

F1000Research is an open post-publication review-
ing platform covering articles from various fields,
from clinical medicine to scientific policy research
to R package development, as well as different arti-
cle types, including case studies, literature reviews,
research articles and code documentation. Pub-
lications are published prior to acceptance, and
then can be approved, rejected or approved-with-
reservations by one several invited reviewers. Pub-
lications can have multiple versions; each version
is accompanied by open peer reviewing reports, au-
thor responses and amendment notes. All data on
F1000Research is provided under an open license
(CC-BY) in an easy-to-process JATS XML format.
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Figure 7: Vocabulary overlap on paper abstracts based
on the Jaccard metric on lemmas of the datasets in
NLPEER.

Workflow F1000 Research provides an official
API for collecting peer reviews and articles16. We
retrieved the index of articles and reviews in July
2022 and subsequently downloaded all articles with
reviews for all versions and in XML, as well as PDF
format. We discarded 34 articles with invalid file
formatting and roughly 2000 articles that lacked
reviews for the first version, as these indicate stale
submissions. We extract meta-data, reviews and
author responses from the article JATS XML files.

A.5 Extended Datasets Analysis

We complement the domain overlap analysis be-
tween reviews by the same analysis on paper ab-
stracts. The vocabulary overlap in Figure 7 is gener-
ated under the same configuration (Jaccard metric
on the top 10% of the lemmas), but computed on
paper abstracts for all datasets. We see that the
vocabulary overlap in abstracts is very similar to
the overlap in review texts. However, the absolute
similarity values are overall lower. This supports
the observation that reviews have a wider cross-
domain shared vocabulary, while papers apparently
employ a more specialized register.

B Experiment Details

B.1 Fine-tuning Setup

The goal of our experiments is to identify the diffi-
culty of each task and observe domain differences

16https://f1000research.com/developers

Learning Rate Batch Size

RoBERTa 2.00× 10−5 16
BioBERT 1.00× 10−5 16
SciBERT 3.00× 10−5 32

Table 4: Hyper-paramters for fine-tuning the large lan-
guage models consistent across tasks.

across datasets in NLPEER. We therefore fine-tune
well-established large language models (LLMs) on
each of the tasks; while the training objectives and
approaches vary, we omit extensive fine-tuning of
the LLMs and instead focus on a base set of hyper-
parameters close to the recommended ones. Dur-
ing a pilot study we observed relatively unstable
training, which rendered extensive random hyper-
parameter search infeasible for the scope of this
work.

Fine-tuning Table 4 depicts the different fine-
tuning parameters per LLM used for all experi-
ments unless stated otherwise. We use the hugging-
face transformers implementation of RoBERTa17

with roughly 125 million parameters, BioBERT18

with around 110 million parameters, and SciB-
ERT19 with roughly 110 million parameters. We
follow recommendations (Mosbach et al., 2021) for
fine-tuning LLM on comparatively small datasets.
For all of the models and datasets, we allow up
to 20 epochs of training, employ a linear warm-
up schedule (for 6% of the training steps) with
non-bias weight decay of 0.1 and have 10 repeated
measures on different random seeds to account for
different random initializations of the task-specific
classifier heads.

We implement the training and testing pipeline
in pytorch lightning20 using huggingface transform-
ers21. For each run, we select the model with the
best performance on the validation set at the end of
each epoch. We implement an early stopping mech-
anism that stops fine-tuning if no improvement is
observed after at most 8 epochs.

17roberta-base, https://huggingface.co/
roberta-base

18dmis-lab/biobert-v1.1, https://
huggingface.co/dmis-lab/biobert-v1.1

19allenai/scibert_scivocab_uncased,
https://huggingface.co/allenai/scibert_
scivocab_uncased

201.7.7, https://www.pytorchlightning.ai/
214.22.2, https://huggingface.co/docs/

transformers/index
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Repeated Measures For each task and language
model, we apply the fine-tuning procedure de-
scribed above using the test and development sets.
We repeat fine-tuning including model selection in
total 10 times for each model and task. In each fine-
tuning run we vary the random seed influencing the
order of batches and randomly initialized weights
of the model. We report the used random seeds
within the code provided along the submission.

Stratified Splitting For the tasks review score
prediction and guided skimming for peer review,
we split the datasets with a special stratification
criterion. For review score prediction, we require
that the distribution of reviews per paper is similar
across splits. For guided skimming, we make sure
that the splits have a similar distribution of relevant
paragraphs per paper. To achieve this, we employ
sklearn’s stratified, binary split function22 while
mapping the considered numerical stratification
criterion to a discrete space by assigning the real
numbers to buckets. To realize a split into three
datasets, we realize repeated binary splits.

B.2 Pragmatic Labeling

For pragmatics labeling we map the semi-
structured review form of ARR and the labels of
the F1000RD dataset (Kuznetsov et al., 2022) to
the same set of labels. The mapping of labels is
summarized in Table 5. We highlight that, unlike
the manually curated labels of F1000-RD, the sen-
tences of ARR-22 are just extracted from the re-
view forms which do not enforce full consistency
with the respective section implying certain levels
of noise in labels. For instance, some reviewers
do mention strengths in the summary section of a
review. Hence, our experiments are also targeted
towards determining if this scalable approach to
acquire a supervision signal is feasible; a further,
detailed analysis of the quality of labels is a promis-
ing future direction of research.

B.3 Guided Skimming for Peer Review

We formulate guided skimming as a ranking task
on the paragraphs of a paper considering their rele-
vance to the writing of a peer review. To approach
this task, we exploit explicit links from the review
reports to the paper indicating that reviewers dis-
cuss a specific paragraph.

22train_test_split of sklearn 0.0 https://
scikit-learn.org

Explicit Link Detection Kuznetsov et al. (2022)
propose a regular-expression-based algorithm to
detect anchors (i.e. explicit mentions of structural
elements in the paper) in review reports. The au-
thors report an F1 score of 0.77 (with a precision
of 0.81) for anchor identification and 0.64 (with a
precision of 0.66) for their approach at matching
explicit anchors to regions in the paper compared
to human annotations. We conclude that the ex-
traction of explicit links works reasonably well to
be used as a proxy for reviewers’ focus regions in
the paper. Manual checks support this observation,
in particular we see that explicit links seem to be
identified with high precision, but comparatively
low recall. Consequently, the resulting labels do
contain certain levels of noise and reflect only a
subset of the regions of the paper that are actually
discussed in the reviews. We also highlight that
implicit links in reviews, i.e. discussions of paper
aspects that do not use explicit identifiers for paper
regions, are not considered, as they are not readily
available at scale.

Table 6 shows the regular expressions used for
the extraction of explicit anchors in reviews. We
extend the existing set of rules by line numbers and
formulas as supported in ARR-22 and ACL-17. For
matching these, we rely on the layout information
extracted heuristically from the PDFs allowing a
reliable mapping of paragraphs to line ranges. We
aggregate the explicit links of all reviews for a pa-
per to derive the set of focused paragraphs. We
omit the frequency of links to paragraphs and con-
sider only binary labels (linked or not-linked), to
simplify the task and avoid making additional as-
sumptions. While we in principle allow for any
kind of explicit link (to paragraphs, sections, etc.)
during extraction, we only include those that can
be mapped to one specific paragraph leaving only
quotes and line references in practice.

Relevant Paragraph Distribution within Papers
In total the papers of ARR-22 have 12636 para-
graphs of which 1100 (roughly 9%) are linked. In
the ACL-17 dataset 600 of 4642 paragraphs (13%)
are referenced by reviewers explicitly. We inves-
tigate the types of explicit links in each dataset.
For ARR-22 64% of the relevant paragraphs are
extracted from line-mentions in the reviews, while
for ACL-17 these amount to 57%. Figures 8 and 9
show the histograms of text lengths for the relevant
(i.e. linked) and not relevant (i.e. not linked) para-
graphs of the papers. Overall, the length of relevant
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Label ARR Review Section ARR-22 F10000-RD F1000-22

Neutral Summary 3466 Recap, Other, Structure 1932
Strength Strengths 2565 Strength 415
Weakness Weaknesses 4458 Weaknesses 811
Request Questions and Requests 4257 Todo 1514

14746 4672

Table 5: Pragmatic label mapping unifying F1000-RD and the ARR review form sections. The column ARR-22 and
F1000-22 indicate the number of sentences with the given label within the respective datasets. The bottom row
shows the total amount of sentences within each of the datasets.

paragraphs tends to be higher than that of short
paragraphs. We suspect that this phenomenon is
encouraged by two interacting factors: first, paper
parses are not perfect especially for splitting PDFs
into structural elements leading to differently sized
paragraphs in addition to naturally occurring size
variations. Second, in combination with the first
factor, longer paragraphs are simply more likely
to be linked, because they have more content that
can be discussed. This encourages a further line
of work based on length-normalized paragraphs;
we also investigate paragraph length as a spurious
feature for the skimming task in the following.

Further on, we investigate the position of rel-
evant paragraphs within the document hierarchy
(sections, subsections, etc.) of the papers. For
ARR-22 around half of the paragraphs originate
from the level of sections rather than sub-sections,
while for ACL-17 roughly two thirds lie on section
level. This suggests no substantial bias towards a
level in the document hierarchy.

Finally, we analyse the distribution of linked
paragraphs within a set of canonical sections typ-
ical for NLP papers, including e.g. introduction,
method, and results. Figure 10 and 11 show the
frequency of links to each of these canonical sec-
tion types. We map non-canonical section titles
to the "other" category. In both datasets the num-
ber of explicit links pointing to the introduction is
the highest when ignoring the section type "other".
For ARR-22 this phenomenon is less pronounced,
while the results section is slightly more often ref-
erenced than in ACL-17. Overall, there appear to
exist natural areas of focus for reviewers as approx-
imated by explicit links, but paragraphs of many
different section types are in fact covered in both
datasets. As our baseline models don’t take struc-
tural information into account the observed light
skews towards certain sections is unlikely to be
the primary explanation for the non-trivial perfor-

Figure 8: Distribution of paragraph lengths for ACL-
17, where "relevant" marks paragraphs that were in fact
referenced by reviewers.

mance of the LLM reported in Section 5.4.
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Type Rule Example

fig-ix [Ff]igure | [Ff]ig(\.?) Figure 3 shows...

table-ix [Tt]able (\.?)
I don’t understand [...]
mentioned in table 1.

sec-ix [Ss]ection | [Ss]ec (\.?)
There is a typo in the
title of sec 3.

sec-name
(?P<ix>[A-Z][A-z]+) | [“"’](?P<ix>[A-Z][A-z ]+)[”"’]
[Ss]ection | (?P<ix>\b[Tt]itle\b)

In the "Methods" section
[...].

quote
omitted due to excessive length – including various forms
of quotation marks

The authors claim "...".

ref-ix [Rr]ef(̇|erence)? ?(?P<ix>\d+) ref 23 is mal-formatted.
page (\bp\.?|page) On page 1 [...].

paragraph \b(pp\.?|paragraph|para\.?) ?(?P<ix>\d+)
paragraph 3 introduces
[...].

line
\b(line|l\.?) ?(?P<ix>\d+) | (?P<ix>first) | (?P<ix>second) |
(?P<ix>third) | [IiOo]n lines? (?P<ix>\d+) | [IiOo]n l\.?
(?P<ix>\d+) | [IiOo]n ll\.? (?P<ix>\d+) | (

¯
?P<ix>).(st|nd|rd)

On lines 23-28 [...]

page
\b(?P<ix>\d)(st|nd|rd) | (?P<ix>first) | (?P<ix>second) |
(?P<ix>third)

On page 7 [...].

formula \b[Ee]q(uations?|?̇) ?(?P<ix>\d+)
There is an error in
equation 3

Table 6: Selection of the regular expressions used for identifying explicit anchors in review reports. The horizontal
line separates the rules proposed by Kuznetsov et al. (2022) from the extended rules introduced in this work. The
full set of rules is provided in the code associated with this work. For each type of explicit link, we provide an
example.
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Figure 9: Distribution of paragraph lengths for ARR-
22, where "relevant" marks paragraphs that were in fact
referenced by reviewers.

Figure 10: Distribution of links by normalized section
type for ARR-22. Sections with non-standard names
are mapped to the other category.

Figure 11: Distribution of links by normalized section
type for ACL-17. Sections with non-standard names are
mapped to the other category.

C Detailed Results

C.1 Review Score Prediction

We report the complete and more detailed results
of the review score prediction models including all
tested large language models (RoBERTa, BioBERT,
SciBERT) and the mean score baseline in Table 7.

Additional Metrics All metrics are computed on
the actual review score scale; hence model outputs
are mapped back from the normalized scale. In
addition to the mean root squared error (MRSE)
and the F1-macro on discretized output predictions,
we report the R2 metric to measure the degree of
fit of the regression models, as well as an addi-
tional score diversity criterion. For this criterion,
we compute the overall score distribution for a
model across all samples of the test set and compare
it with the true, human score distribution (using
KL-divergence) to measure whether the diversity
of model scores aligns with human reviewers. A
model that learns reviewers’ rating behavior well,
should also predict scores from a similar range of
scores as humans do. Models over-focusing or ig-
noring single scores would have high scores; hence
lower is better in this case.

KL-Divergence Interpretation We see that the
mean overall score consistently shows the highest
scores meaning the lowest similarity to the human
score distribution. While the best model according
to MRSE tends to have one of the lowest scores,
this is not consistently true (e.g. RoBERTa on
F1000-22). For COLING-20 and CONLL-16 the
models perform on-par with mean baseline suggest-
ing that they converged to predicting scores very
close to the mean. Overall, even the best models
still show notably different rating behavior from
humans across all samples and datasets.

C.2 Pragmatic Labeling

We extend the results presented in the main body of
the paper by a concise error analysis for the within
and out-of dataset experiments. In the following re-
port the confusion matrices for the best performing
LLM (RoBERTa) of the model that achieved the
reported median performance.

Within-dataset Errors Table 8 shows the confu-
sion matrix for RoBERTa on the F1000-RD dataset.
We see the highest model confusion for the neutral
class; strengths, weaknesses and requests are all
most commonly confused with a neutral statement
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MRSE ↓ R2 ↑ F1-macro ↑ Score KL-Divergence ↓
ARR-22

RoBERTa 0.37± 0.02 0.16± 0.05 0.46± 0.04 0.28± 0.11
BioBERT 0.45± 0.03 −0.03± 0.07 0.29± 0.06 0.71± 0.33
SciBERT 0.38± 0.03 0.13± 0.08 0.40± 0.09 0.45±−1.00

mean score 0.45 −0.02 0.24 2.21

COLING-20
RoBERTa 0.45± 0.08 −0.33± 0.24 0.15± 0.01 1.74± 0.07
BioBERT 0.44± 0.09 −0.31± 0.27 0.15± 0.07 1.74± 0.17
SciBERT 0.47± 0.06 −0.38± 0.16 0.15± 0.01 1.74± 0.09

mean score 0.22 −0.06 0.23 1.74

ACL-17
RoBERTa 0.79± 0.04 −0.02± 0.05 0.06± 0.01 2.38± 0.07
BioBERT 0.76± 0.06 0.02± 0.07 0.11± 0.04 1.76± 0.34
SciBERT 0.78± 0.07 −0.00± 0.09 0.08± 0.04 2.31± 0.42

mean score 0.78 0 0.06 2.38

CONLL-16
RoBERTa 0.77± 0.04 0.01± 0.05 0.08± 0.00 2.81± 0.00
BioBERT 0.87± 0.04 −0.12± 0.05 0.08± 0.01 2.81± 0.41
SciBERT 0.89± 0.29 −0.15± 0.38 0.08± 0.12 2.81±−1.00

mean score 0.78 0 0.08 2.81

F1000-22
RoBERTa 0.20± 0.01 0.47± 0.03 0.38± 0.09 0.75± 0.29
BioBERT 0.21± 0.01 0.44± 0.02 0.41± 0.04 0.60± 0.10
SciBERT 0.21± 0.01 0.45± 0.02 0.40± 0.06 0.65± 0.18

mean score 0.41 0 0.19 1.28

Table 7: MRSE is measured on non-normalized scores (i.e. absolute values cannot be compared across datasets);
here, lower is better. F1-macro computed on discretized scores, where higher is better. KL-Divergence is computed
relative to the human score distribution across all samples of each dataset; hence, a lower value indicates a more
similar distribution compared to humans. We report the median score over ten runs and provide the standard
deviation.

and vice-versa. We highlight that in our experi-
ments the class neutral subsumes the more fine-
grained neutral labels of F1000-RD like summary
or structure, which might be one factor con-
tributing to harded delineation.

In Table 9 we report the confusion matrix for
RoBERTa on the ARR-22 dataset. Generally, we
seem a similar pattern as for F1000-RD: the neu-
tral class is most often confused with the others.
As the review forms are not strictly enforced, it is
likely that strengths and weaknesses are already
reported in the summary section correlating to the
neutral label encouraging this confusion. Like-
wise several neutral, factual sentences exist in the
strength and weaknesses sections. This shows one
limitation of using structure review forms as a

proxy for review sentence pragmatic. Interestingly,
we see that requests and weaknesses are very com-
monly confused. While the noisy supervision la-
bels might again be a contributing factor, this aligns
with the reported highest human disagreement for
these two classes by Kuznetsov et al. (2022).

Out-of-dataset Errors We inspect the errors of
the best performing models trained on ARR-22
and tested on F1000-RD, and vice versa. Table
10 reports the confusion matrix for the first case.
We see that unlike the in-domain trained model
on F1000-RD weaknesses are frequently confused
with requests and vice versa. This confirms that the
request and weaknesses sections in the ARR review
forms lead to the most ambiguity in the supervi-
sion labels as already hypothesized in the previous
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strength weakness request neutral

strength 63 1 0 7
weakness 3 144 5 14
request 4 6 270 6
neutral 11 31 23 346

Table 8: Confusion matrix of RoBERTa on F1000-RD. The entry in row i and column j denotes that the label j was
predicted by the model for a sample of true class i.

strength weakness request neutral

strength 356 30 13 103
weakness 29 579 207 59
request 30 254 565 22
neutral 49 60 11 581

Table 9: Confusion matrix of RoBERTa on ARR-22. The entry in row i and column j denotes that the label j was
predicted by the model for a sample of true class i.

paragraph. Similar to the in-domain trained model
the neutral class is the hardest to predict for the
model. Overall, the transfer performance lies in
a promising range that suggests more efforts on
few-shot and cross-domain transfer of models are
good future directions of research.

The transfer of a model trained on F1000-RD
to ARR-22 aligns with previous observations for
the within evaluation on ARR-22: most confusion
is observed for the neutral class. Additionally, the
model predicts the class request very frequently
for sentences belonging to weaknesses. This
supports the hypothesis that many sentences in the
weakness section of ARR are actually requests, as
the model trained on F1000-RD is based off of
human gold annotations.

C.3 Guided Skimming for Peer Review

In addition to the at-k-measures and aggregate met-
rics of the skimming performance, as reported in
the main body of this work, we provide the full
results of all models and additional metrics in this
section.

Paragraph Length Baseline As reported in B.3,
the length distribution of linked and non-linked
paragraphs might be a useful spurious feature for
ranking the paragraphs by relevance to the guided
skimming process. While the truncation of model
inputs of the used large language models to 512
tokens makes is unlikely that the models are at
risk of exploiting sequence length to achieve non-
trivial performance, future approaches using, for

instance, the full paper text or full paragraphs might
do so. Hence, in the following we also report the
performance of the baseline that ranks paragraphs
by their number of characters.

Ranking Measures Table 12 reports the perfor-
mance of the LLMs and the baselines on ACL-17.
We consider the mean reciprocal rank (MRR) and
the area under the receiver operating characteristic
curve (AUROC) as overall measures of the rank-
ing quality in addition to the at-k-measures. For
ACL-17, SciBERT shows the best performance ac-
cording to MRR, AUROC and Precision@3. While
the model performs substantially above the random
baseline, the margin towards the length baseline
is small, especially for the AUROC. Overall, the
ranking produced by SciBERT leads to a higher
precision in the top ranks, but seemingly performs
on-par with the length baseline for the overall rank-
ing performance. This shows the difficulty of the
task at hand, but at the same time suggests that
there is a useful training signal in the paragraph
texts beyond their mere length.

The results on ARR-22 as shown in 13 are very
similar. Although all models perform above ran-
dom, the paragraph length baseline is hard to beat.
Here, we can observe some improvements in terms
of recall and precision in the top ranks, but the
overall ranking performance lies below the length
baseline.

Conclusion The length of the paragraphs seems
a relevant feature that might be exploited as a spu-
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strength weakness request neutral

strength 54 7 2 8
weakness 4 106 55 1
request 2 75 209 0
neutral 33 171 127 80

Table 10: Confusion matrix of RoBERTa trained on ARR-22 and transferred to F1000-RD. The entry in row i and
column j denotes that the label j was predicted by the model for a sample of true class i.

strength weakness request neutral

strength 299 9 19 175
weakness 38 295 290 251
request 30 160 451 230
neutral 65 32 26 578

Table 11: Confusion matrix of RoBERTa trained on F1000-RD and transferred to ARR-22. The entry in row i and
column j denotes that the label j was predicted by the model for a sample of true class i.

Figure 12: Precision (left) and recall (right, dotted lines)
at different ranks k for SciBERT, random and length
baseline on ACL-17.

rious decision criterion by the models. However,
especially in the top ranks for ACL-17 (see 12) the
LLM seem to pick up information beyond mere
paragraph length. We suspect that structural and
contextual information would be beneficial for this
hard task that would increase the margin towards
the paragraph length baseline. Additionally, more
elaborate training regimes considering list-wise
losses a interesting future directions. To eliminate
the risk of learning paragraph length as a spurious
pattern the normalization of paragraph lengths by
different segmentation techniques is promising.

Figure 13: Precision (left) and recall (right, dotted lines)
at different ranks k for SciBERT, random and length
baseline on ARR-22.
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MRR ↑ AUROC ↑ Precision @ 3 ↑ Recall @ 3 ↑
RoBERTa 0.46± 0.05 0.73± 0.06 0.22± 0.03 0.53± 0.05
BioBERT 0.40± 0.11 0.76± 0.06 0.19± 0.05 0.47± 0.08
SciBERT 0.43± 0.06 0.77± 0.04 0.21± 0.04 0.50± 0.12

Length Baseline 0.34± 0.00 0.76± 0.00 0.17± 0.00 0.50± 0.00
Random Baseline 0.14± 0.05 0.47± 0.06 0.08± 0.03 0.20± 0.08

Table 12: Performance on ACL-17. Mean Reciprocal Rank (MRR), area under the receiver operating characteristic
curve (AUROC) and precision and recall at k = 3 reported for the LLM, length baseline and random baseline. For
all metrics, higher is better.

MRR ↑ AUROC ↑ Precision @ 3 ↑ Recall @ 3 ↑
RoBERTa 0.30± 0.04 0.68± 0.03 0.15± 0.03 0.33± 0.05
BioBERT 0.35± 0.02 0.69± 0.03 0.17± 0.03 0.38± 0.04
SciBERT 0.35± 0.03 0.70± 0.02 0.17± 0.03 0.40± 0.05

Length Baseline 0.31± 0.00 0.75± 0.00 0.15± 0.00 0.28± 0.00
Random Baseline 0.18± 0.04 0.49± 0.02 0.07± 0.02 0.20± 0.05

Table 13: Performance on ARR-22. Mean Reciprocal Rank (MRR), area under the receiver operating characteristic
curve (AUROC) and precision and recall at k = 3 reported for the LLM, length baseline and random baseline. For
all metrics, higher is better.
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