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Abstract
Pre-trained language models (PLMs) demon-
strate excellent abilities to understand texts in
the generic domain while struggling in a spe-
cific domain. Although continued pre-training
on a large domain-specific corpus is effective,
it is costly to tune all the parameters on the
domain. In this paper, we investigate whether
we can adapt PLMs both effectively and effi-
ciently by only tuning a few parameters. Specif-
ically, we decouple the feed-forward networks
(FFNs) of the Transformer architecture into two
parts: the original pre-trained FFNs to main-
tain the old-domain knowledge and our novel
domain-specific adapters to inject domain-
specific knowledge in parallel. Then we adopt a
mixture-of-adapters gate to fuse the knowledge
from different domain adapters dynamically.
Our proposed Mixture-of-Domain-Adapters
(MixDA) employs a two-stage adapter-tuning
strategy that leverages both unlabeled data
and labeled data to help the domain adap-
tation: i) domain-specific adapter on unla-
beled data; followed by ii) the task-specific
adapter on labeled data. MixDA can be seam-
lessly plugged into the pretraining-finetuning
paradigm and our experiments demonstrate
that MixDA achieves superior performance
on in-domain tasks (GLUE), out-of-domain
tasks (ChemProt, RCT, IMDB, Amazon), and
knowledge-intensive tasks (KILT). Further
analyses demonstrate the reliability, scalabil-
ity, and efficiency of our method.1

1 Introduction

Pre-trained language models (PLMs) have achieved
a multitude of successful applications in natural
language understanding (Devlin et al., 2018; Liu
et al., 2019; He et al., 2021b) and generation (Lewis
et al., 2019; Zhang et al., 2020; Yang et al., 2020;
Brown et al., 2020). The predominant methodol-
ogy for domain adaptation is fine-tuning on labeled

*Equal Contribution.
1The code is available at https://github.com/

Amano-Aki/Mixture-of-Domain-Adapters.

domain-specific data or continued pre-training (Gu-
rurangan et al., 2020) on unlabeled domain-specific
data. Although effective, both fine-tuning and con-
tinued pre-training methods require tuning all the
parameters of a PLM, raising high costs beyond
many institutions’ reach. To mitigate this, multi-
ple parameter-efficient fine-tuning (PEFT) methods
are proposed, including prompt-based tuning (Gao
et al., 2021; Liu et al., 2021b; Schick and Schütze,
2021; Li and Liang, 2021; Liu et al., 2021a), and
adapter-based tuning (Houlsby et al., 2019; Pfeif-
fer et al., 2020b; Hu et al., 2021). However, they
are more concerned about task adaptation and it
is still unclear how to regularly, and inexpensively
inject domain knowledge into PLMs for different
domain-specific tasks. Moreover, directly tuning
PLMs on a domain-specific corpus with PEFT
methods will lead to the catastrophic forgetting
problem (Yogatama et al., 2019; Gururangan et al.,
2020). These limitations highlight an important re-
search question: how to adapt PLMs with the new
domain knowledge while keeping the old-domain
knowledge unmodified?

Inspired by the recent studies (Geva et al., 2021;
Cao et al., 2021; Meng et al., 2022) that found
knowledge is stored in feed-forward networks
(FFNs), we decouple the FFNs into two parts:
the original pre-trained FFNs to maintain the old-
domain knowledge and our novel domain-specific
adapters to inject domain-specific knowledge in
parallel. Specifically, we propose Mixture-of-
Domain-Adapters (MixDA), a mixture of several
domain adapters to inject domain-specific knowl-
edge without affecting the old-domain knowledge.
Our model has two stages: piq domain-specific
tuning multiple knowledge adapters on unlabeled
data and then piiq task-specific tuning adapters on
labeled data. In the first stage, we train several do-
main adapters on both domain-specific corpus and
pre-training corpus simultaneously while keeping
the original feed-forward networks unchanged. In
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the second stage, we train a mixture-of-adapters
gate to dynamically select the desired knowledge
adapter and a task-specific adapter for task adapta-
tion.

We conduct experiments on a broad range
of tasks, including 4 out-of-domain datasets, 9
in-domain datasets, and 2 knowledge-intensive
datasets. Our experimental results demonstrate
the effectiveness of MixDA on 15 datasets, span-
ning biomedical, computer science publications,
news, and reviews. Further analysis displays three
key properties of our proposed approach: piq Re-
liability: it shows superior performance on both
in-domain and out-of-domain tasks. piiq Scala-
bility: it scales well to the increasing number of
domains. piiiq Efficiency: it adds only a small
number of parameters per domain. We claim that
these properties are helpful for language models
as a service, where a frozen PLM is served, and
multiple adapters are inserted to support different
customized services.

2 Related Work

In this section, we will review four research lines
related to injecting domain knowledge into pre-
trained language models: knowledge injection, do-
main adaptation, parameter-efficient fine-tuning,
and mixture-of-adapters.

2.1 Knowledge Injection

Knowledge can be injected into PLMs by pre-
training or fine-tuning, each corresponding to a sep-
arate research direction. During pre-training, the
knowledge carried by knowledge graphs (Zhang
et al., 2019; He et al., 2020), entities (Sun et al.,
2019; Xiong et al., 2020), n-grams (Diao et al.,
2020), knowledge embedding (Wang et al., 2021b),
synonym and hyponym-hypernym relations in
WordNet (Lauscher et al., 2019), word-supersense
knowledge (Levine et al., 2020), and knowledge
bases (Peters et al., 2019) can be injected into
PLMs by feeding knowledge inputs and design-
ing new objectives. However, pre-training-based
methods are costly, making the application to huge
PLMs (e.g., models with 175 Billion parameters)
impossible. Fine-tuning-based methods only re-
quire an additional fine-tuning process. Some stud-
ies inject extra information into the input sentences,
like knowledge triples from knowledge graphs (Liu
et al., 2020) and knowledge context (Faldu et al.,
2021), while other studies explored specific model

and training designs, like knowledge adapter net-
works (Wang et al., 2021a), graph convolutional
networks and LSTMs (Lin et al., 2019), and meta-
learning (Sinitsin et al., 2020). Zhu et al. (2020)
formulated knowledge injection as a constrained
optimization problem by adding a constraint on the
loss on the unmodified facts. Recent studies (Geva
et al., 2021; Cao et al., 2021; Meng et al., 2022)
reveal that knowledge is stored in the feed-forward
networks in PLMs. Inspired by these studies, we
propose a new efficient tuning method to inject do-
main knowledge into feed-forward networks with
minimal costs.

2.2 Domain Adaptation
Previous studies have observed that language mod-
els suffer from a significant performance drop dur-
ing the domain shift (Beltagy et al., 2019; Alsentzer
et al., 2019; Huang et al., 2019; Lee et al., 2020; Ke
et al., 2022b). Effective strategies that can bridge
the domain gap are introduced. Pre-training lan-
guage models from scratch is effective but costly,
like SciBERT (Beltagy et al., 2019), BioBERT (Lee
et al., 2020), and ClinicalBERT (Alsentzer et al.,
2019). Recent studies explored continued pre-
training (Gururangan et al., 2020) and adapter net-
works (Diao et al., 2021) to save time by training
on unlabeled downstream task data. In this paper,
we introduce plug-in domain adaptors for domain
adaptation, which are effective and mitigate catas-
trophic forgetting issues because of the explicit
learning strategy and efficient model architecture.

2.3 Parameter-Efficient Fine-tuning
Another relevant research direction is parameter-
efficient fine-tuning (PEFT), which only fine-tunes
a small number of parameters. Existing works
solve this problem from two perspectives: prompt-
based tuning (Gao et al., 2021; Liu et al., 2021b;
Schick and Schütze, 2021; Li and Liang, 2021; Liu
et al., 2021a), and adapter-based tuning (Houlsby
et al., 2019; Pfeiffer et al., 2020b; Hu et al.,
2021). Several works in adapter-based tuning
are closely related to ours. AdapterFusion (Pfeif-
fer et al., 2021) aims to combine multiple task
adapters but does not offer specific architecture
or training strategies to learn external knowledge.
DEMix (Gururangan et al., 2022) and MixDA both
train adapters that specialize in domains and use
mechanisms to route different adapters, but dif-
fer in routing methods, base models, and training
strategies. K-Adapter (Wang et al., 2021a) is re-
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stricted by its training on T-REx triples and lacks
the flexibility to train on unstructured knowledge.
Similar to MixDA, CPT (Ke et al., 2022a) inte-
grates domain knowledge into LMs, but it employs
a different approach. While MixDA uses domain
adapters to substitute FFN layers and task adapters
to perform end tasks, CPT adds CL-Plugins that
learn domain knowledge. Recent work by He et al.
(2021a) presents a unified framework that estab-
lishes connections across different PEFT methods.
Our work can leverage any PEFT method and com-
plement them.

2.4 Mixture-of-Experts

Mixture-of-Experts (MoE) (Shazeer et al., 2017)
is introduced with several expert networks, gating
networks, and load-balancing techniques. The fol-
lowing studies improve MoE on initialization and
training schemes (Fedus et al., 2022), routing mech-
anisms (Zuo et al., 2021; Yang et al., 2021), and
load-balancing issues (Lewis et al., 2021; Roller
et al., 2021). AdaMix (Wang et al., 2022) proposed
a mixture of adapters to improve the downstream
task performance. Instead of mixing different de-
signs of adapters, our domain adapter is a feed-
forward network specifically designed for domain
knowledge.

3 Approach

Given a pre-trained language model M, the input
is a sentence X “ t1t2 ¨ ¨ ¨ ti ¨ ¨ ¨ tT (ti indicates
the i-th token) and the output is the representa-
tion of each token. The overall architecture of our
model is shown in Figure 1. The training process
is divided into two-stage. In Stage 1 (Figure 1
(a)), we inject new feed-forward networks (FFNs)
(namely domain-adapter) paralleled to the original
pre-trained FFNs in some Transformer layers, act-
ing as a key-value memory. The newly injected
domain-adapter is trained on both domain-specific
unlabeled data and original pre-training unlabeled
data to store new factual associations while keeping
old-domain ones. All modules are frozen except
domain-adapter in this stage. In Stage 2 (Figure
1 (b)), we train a mixture-of-adapters (MoA) gate
and a task-adapter on downstream tasks with la-
beled data, and only these two new modules are
updated. The MoA gate receives outputs from the
old-domain FFNs and domain-adapter, then out-
puts a weighted sum of them. An additional task-
adapter is inserted in each Transformer block to

facilitate downstream tasks. Figure 1 (c) shows the
structures of the domain-adapter and the MoA gate.

In this section, we first introduce domain-
adapter, which learns and stores domain-specific
knowledge, and then describe task-adapters that
perform the downstream task. Finally, we discuss
how the MoA gate integrates the outputs from the
FFN and the domain-adapter.

3.1 Domain-Adapter
Previous studies (Geva et al., 2021; Cao et al., 2021;
Meng et al., 2022) suggest that factual associations
are stored in the FFNs of some Transformer lay-
ers. To help models learn domain-specific knowl-
edge, we propose a lightweight domain-adapter
that works parallel to the FFNs, and a training
method to learn domain-specific knowledge along-
side keeping old-domain ones. Domain-adapter
has a simple bottleneck architecture consisting of
a down projection layer, a nonlinearity (such as
ReLU (Agarap, 2018)), and an up projection layer.
This helps keep the parameter size low (Houlsby
et al., 2019) with competitive performance.

In Stage 1, the domain-adapter is trained with
the domain-specific and old-domain datasets in one
batch. Note that all other parameters are frozen
except the domain-adapter at this stage. Let LK de-
note the knowledge loss related to domain-specific
knowledge, and LS denote the sampling loss re-
lated to old-domain knowledge. The knowledge
loss is a cross-entropy loss on predicting masked
tokens, and the sampling loss is designed to align
the latent spaces of the old-domain knowledge and
new domain-specific knowledge. The total loss L
is given by a weighted sum of the two, that is:

L “ λ ¨ LK ` LS , (1)

where λ is a weight for the knowledge loss.
The knowledge loss is implemented by using

cross-entropy loss. Given a sentence with M mask
tokens whose answers are m1,m2, ¨ ¨ ¨ ,mM , re-
spectively, the knowledge loss LK is given by

LK “ ´ 1

M

Mÿ

i“1

log ppmiq, (2)

where ppmiq is the probability for token mi output
by M. Our model accepts two types of domain-
specific knowledge as follows, showing improved
versatility.
‚ Structured knowledge If the knowledge dataset

is structured (e.g., ConceptNet (Speer et al.,
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Figure 1: The overall structure of the model. Our training method includes two stages: (a) In Stage 1, we introduce
domain-adapters into the model and freeze other parameters. The model learns from domain-specific knowledge
(knowledge loss LK) and keeps similar outputs with the FFN on old-domain knowledge (sample loss LS). LK

and LS are then combined into the total loss L. (b) In Stage 2, we introduce the mixture-of-adapters gate and
task-adapters, then freeze the domain-adapter. The model is trained to perform downstream tasks, which gives us
the total loss L. (c) shows the detailed structures of the domain-adapter and the MoA gate.

2016)), we translate each relation into a sentence,
and then mask out its object. For example, the
relation “the Eiffel tower–/r/LocatedAt–Paris” is
translated into “The Eiffel Tower is located at
Paris.”, then “Paris” is substituted with the mask
token, and the model is trained to fill the mask.

‚ Unstructured knowledge For unstructured
knowledge (e.g., downstream unlabeled texts),
we use the masked language model (MLM) sim-
ilar to RoBERTa pretraining. Some tokens are
randomly sampled from the input sentence and
replaced with the special token <mask>, and the
model is trained to predict the masked token.
The cross-entropy loss is calculated to optimize
the model.
For old-domain knowledge and sampling loss,

we train the model on general corpora including
Wikipedia and BookCorpus (Zhu et al., 2015).
Specifically, for each batch, sentences randomly

sampled from the dataset are input into the model.
Given L layers that have domain-adapters installed,
for each such layer l, we collect token representa-
tions from the FFN Fl, and representations from
the domain-adapter Kl. The goal is to keep them
as similar as possible. Thus, we calculate the sam-
pling loss LS with L2 loss:

LS “ 1

L

Lÿ

l“1

||Fl ´ Kl||22. (3)

3.2 Task-Adapter
After training domain-adapters, the model is aware
of the domain knowledge, which is not directly re-
lated to downstream tasks though. Therefore, we
add task-adapters on top of the domain-adapter to
adapt to downstream tasks. For example, a domain-
adapter trained in biomedical knowledge can sup-
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Domain Tasks Domain Knowledge # Tokens Size

Biomed ChemProt, RCT 2.68K papers about biology and chemistry from S2ORC (Lo et al., 2020) 33.6M 144MB
Review Amazon, IMDB 24.75K randomly selected Amazon reviews 7.4M 34MB
ID GLUE tasks Corpus of GLUE tasks 29.0M 146MB
KI FEVER, CSQA Corpus of both CommonsenseQA and FEVER datasets 5.9M 34MB

Table 1: Domain knowledge in Stage 1 training.

port different tasks in the domain, while training
it on a task limits its capability to the specific task.
Task-adapters can be any adapter architecture or
other parameter-efficient fine-tuning methods, such
as the Houlsby adapter (Houlsby et al., 2019), Pfeif-
fer adapter (Pfeiffer et al., 2020b), prefix-tuning (Li
and Liang, 2021), and so on. At Stage 2, all pa-
rameters other than the task-adapters and the MoA
gate (Section 3.3) are frozen. The training of the
adapter follows its corresponding approach, despite
the addition of domain-adapters. For example, for a
text classification task, we add a classification layer
on top of the model, freeze all parameters other
than the classification layer, the MoA gate, and the
task-adapters, feed input texts into the model, and
use cross-entropy as the loss.

3.3 Mixture-of-Adapters Gate

On downstream tasks, it is possible that the output
from the FFN, or a weighted sum of the two, pro-
duces better results. Therefore, in Stage 2, we train
an additional mixture-of-adapters (MoA) gate si-
multaneously. The MoA gate receives the outputs
from the attention layer q, the domain-adapter K,
and the FFN F . q is first sent into a multi-layer
perceptron (MLP):

h “ MLPpqq. (4)

The MLP is composed of a down-projection layer
Wd and an up-projection layer Wu, and h “
WuσpWdqq, where σ is the nonlinearity function.
Then, h is input into a Sigmoid layer to generate the
weights of the FFNs and other domain-adapters:

w “ Sigmoidphq. (5)

The final output o is a weighted sum of the out-
puts of the FFNs and the domain-adapter:

o “ wrK;F s, (6)

where r; s denotes matrix concatenation.

4 Experimental Settings

In this section, we first introduce the datasets, then
the baseline models, the evaluation metrics, and
implementation details in the following four sub-
sections, respectively.

4.1 Datasets
We conduct experiments on three types of datasets:
in-domain (ID) tasks that require general-domain
knowledge; out-of-domain (OOD) tasks that re-
quire domain-specific knowledge; knowledge-
intensive (KI) tasks that require commonsense
knowledge.
‚ ID: GLUE Benchmark (Wang et al., 2018)

including MNLI (Williams et al., 2017),
CoLA (Warstadt et al., 2019), MRPC (Dolan
and Brockett, 2005), SST-2 (Socher et al., 2013),
RTE (Dagan et al., 2005; Haim et al., 2006; Gi-
ampiccolo et al., 2007; Bentivogli et al., 2009),
STS-B (Cer et al., 2017), WNLI (Levesque
et al., 2012), QNLI (Rajpurkar et al., 2016), and
QQP (Iyer et al., 2017).

‚ OOD: ChemProt (Kringelum et al., 2016),
RCT (Dernoncourt and Lee, 2017), IMDB (Maas
et al., 2011), and Amazon (He and McAuley,
2016). ChemProt is a manually annotated
chemical-protein interaction dataset extracted
from 5,031 abstractions. RCT is a dataset based
on PubMed for sentence classification. IMDB
provides 25,000 movie reviews for sentiment
analysis. Amazon is a dataset containing prod-
uct reviews from Amazon, annotated with user
ratings.

‚ KI: FEVER (Thorne et al., 2018) and Common-
senseQA (CSQA) (Talmor et al., 2019). FEVER
consists of 185,445 claims that correspond to
Wikipedia articles and are classified as supported,
refuted, and not enough information. Common-
senseQA consists of 12,247 questions with 5
choices and requires commonsense knowledge
to predict the correct answers.
For Stage 1, we train the domain-adapter with

unstructured knowledge related to the dataset fol-
lowing Section 3.1. The unstructured knowledge
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used is listed in Table 1. We also experiment with
structured knowledge in Section 6.2. For Stage 2,
we adopt the true few-shot setting following (Perez
et al., 2021) to demonstrate the effectiveness of
MixDA. For each dataset class, we randomly sam-
ple K “ 16 examples from the original training
set as the new training set, and another different
K “ 16 examples as the validation set. The origi-
nal validation set will be used as the test set. The
Pfeiffer adapter is used in Stage 2 unless stated
otherwise.

4.2 Baselines
In our experiments, we use the following models
as the main baselines. For convenience, we refer
to them with the abbreviations in the parentheses
later.
‚ HOULSBY (HO): Houlsby adapter (Houlsby

et al., 2019) plugged into the RoBERTa-large
model for downstream tasks. Only adapter pa-
rameters are trained. It adds two adapter blocks
consisting of bottleneck networks in each Trans-
former block.

‚ PFEIFFER (PF): Pfeiffer adapter (Pfeiffer et al.,
2020b) plugged into the RoBERTa-large model.
This is similar to the Houlsby adapter, but with a
different architecture. Pfeiffer adapter has only
one adapter layer in each Transformer block,
while Houlsby has two. Also, Pfeiffer makes
minor tweaks in the adapter architecture, such as
the layer norm and nonlinearity.

‚ LORA (LO): LoRA (Hu et al., 2021) applied
to the RoBERTa-large model. LoRA freezes
the MLP modules and represents updates to the
attention weights with two low-rank matrices,
thus saving space.

‚ PREFIX-TUNING (PT): Prefix-Tuning (Li and
Liang, 2021) with the RoBERTa-large model.
Prefix-Tuning trains a number of prompt em-
beddings for each task and pre-pends it before
tokens.

‚ FINE-TUNING (FT): Fine-tuning all of the pa-
rameters of the RoBERTa-large model on down-
stream tasks.

4.3 Evaluation Metrics
We adopt the Pearson correlation for STS-B since
it is a regression task. The remaining are text clas-
sification tasks. Following Wang et al. (2018); Gu-
rurangan et al. (2020); Diao et al. (2021), we adopt
macro-F1 for MRPC and QQP, and micro-F1 for
others as evaluation metrics. Macro-F1 computes

the F1 independently for each metric, while micro-
F1 computes an average metric of all classes. To
account for the instability of small datasets, we
report the average performance and the standard
deviation of 3 runs with different random seeds.

4.4 Implementation

We implement our RoBERTa-large model based on
the Transformers library from HuggingFace2. The
Houlsby adapter, the Pfeiffer adapter, and Prefix-
Tuning are implemented based on the adapter-
transformers library (Pfeiffer et al., 2020a). LoRA
is implemented based on OpenDelta (Ding et al.,
2022). During Stage 1, we train the domain-adapter
with learning rate 1e-4, batch size 20, and weight
decay 0.05. The knowledge loss factor λ is set to
0.5. We train the 7 and 11 layers of RoBERTa-large
with domain-adapter in 10 epochs. In Stage 2, we
use the Pfeiffer adapter as the default task-adapter
and train 20 epochs. All the experiments are con-
ducted on Nvidia 2080Ti GPUs. We find the best
hyper-parameters through grid search and the best
results are listed in Appendix A. The computation
time can be found in Appendix B.

5 Experimental Results

We compare the performance of MixDA with our
baselines on 15 datasets. First, we train the domain-
adapter for each domain individually and then per-
form each task with its corresponding domain-
adapter, which shows significant improvement over
our baselines. Next, we plug in several domain-
adapters trained on different domains parallelly to
verify the scalability of our model.

5.1 Single Domain Adapter

Table 2 shows the performance of a single domain
adapter compared with baselines. It is only trained
on unstructured knowledge during Stage 1 in the
following experiments. Results show that Mixture-
of-Domain-Adapters outperforms our baselines in
most datasets, with an average of 3.5% improve-
ment over the best baseline adapter (i.e., Pfeiffer),
and 3.3% over fine-tuning. Our method even out-
performs fine-tuning in most datasets, despite far
less training time and smaller parameter size. Over
the datasets, MixDA shows the most significant im-
provement on ChemProt, with 6.9% over Pfeiffer
and 2.7% over fine-tuning. One possible reason
is that MixDA learns the necessary knowledge to

2https://github.com/huggingface/transformers
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Datasets HO PF LO PT FT MixDA

OOD

ChemProt 47.1˘12.2 53.7˘8.2 24.2˘11.6 17.1˘7.3 57.9˘4.0 60.6˘4.9

RCT 25.2˘2.6 21.9˘2.5 18.5˘3.7 24.4˘3.7 21.0˘3.2 26.4˘0.8

IMDB 56.0˘5.7 55.4˘5.6 43.7˘7.7 53.3˘2.6 46.3˘13.7 58.1˘5.1

Amazon 48.8˘3.2 49.7˘1.4 51.5˘3.9 52.7˘2.8 51.7˘6.2 54.7˘1.6

Avg. 44.3 45.2 34.5 36.9 44.2 50.0

ID

MNLI 37.2˘0.3 35.7˘0.1 34.8˘1.5 35.4˘0.0 35.3˘0.2 37.3˘1.5

COLA 17.6˘5.5 9.1˘5.0 7.1˘3.0 12.1˘5.5 21.3˘1.7 20.1˘6.3

MRPC 81.2˘0.2 80.7˘0.6 64.0˘20.5 81.6˘0.5 81.3˘0.1 81.6˘0.5

SST2 54.7˘3.6 53.3˘1.9 50.5˘1.0 52.5˘1.2 54.8˘1.4 56.4˘3.5

RTE 53.5˘1.4 54.1˘1.3 53.4˘2.1 53.4˘1.1 54.7˘1.3 54.9˘1.5

STS-B 88.1˘1.6 90.6˘0.1 89.5˘0.8 85.6˘4.1 78.4˘8.0 89.8˘0.4

WNLI 57.3˘1.3 58.1˘2.5 59.1˘1.2 57.3˘0.7 58.7˘1.8 60.1˘1.8

QNLI 53.0˘0.1 51.9˘0.8 53.3˘1.3 52.1˘0.9 51.3˘0.1 54.8˘1.8

QQP 54.7˘0.6 55.2˘1.0 53.0˘2.0 55.3˘0.3 55.3˘0.3 56.1˘0.6

Avg. 55.3 54.3 51.6 53.9 54.6 56.8

KI
FEVER 20.2˘4.3 27.4˘7.5 22.6˘10.6 31.1˘3.6 36.1˘6.7 32.6˘9.4

CSQA 27.3˘0.7 34.1˘8.7 20.3˘10.9 29.6˘4.2 29.6˘3.0 38.9˘4.0

Avg. 23.8 30.8 21.5 30.4 32.9 35.8

Avg. 48.1 48.7 43.0 46.2 48.9 52.2

Table 2: The overall performance of single MixDA and baselines on the downstream tasks. We use K “ 16 (per
class) for few-shot experiments. The best result for each dataset is made bold. We report mean and standard
deviation over 3 runs with different random seeds.

Amazon IMDB FEVER WNLI QQP RTE MRPC Avg.

Pfeiffer 49.7˘1.4 55.4˘5.6 27.4˘7.5 58.1˘2.5 55.2˘1.0 54.1˘1.3 80.7˘0.6 54.4
Single 54.7˘1.6 58.1˘5.1 32.6˘9.4 60.1˘1.7 56.1˘0.6 54.9˘1.5 81.6˘0.5 56.9
Parallel 51.6˘2.4 47.9˘2.1 34.5˘0.5 58.7˘1.8 57.8˘3.5 53.8˘0.9 81.0˘0.2 55.0

Table 3: The performance of parallel domain-adapters on the chosen downstream tasks. Parallel, Single, and Pfeiffer
denote parallel domain-adapters, single domain-adapter, and vanilla RoBERTa + Pfeiffer, respectively. The best
result for each dataset is made bold.

detect the chemical-protein interaction. For exam-
ple, MixDA shows more familiarity with words
associated with that field, such as “gefitinib” and
“tyrosine kinase inhibitor”. In contrast, MixDA
falters on STS-B, falling behind Pfeiffer by 0.8%.
This is because the knowledge in Stage 1 is not ef-
fectively utilized. STS-B consists of sentence pairs
like “The cat sat on the mat” and “The cat did not sit
on the mat”, with little need for additional knowl-
edge. Across the three task domains, MixDA has
an average improvement of 4.8% over RoBERTa
+ Pfeiffer on out-of-domain tasks, 2.5% on in-
domain tasks, and 5.0% on knowledge-intensive
tasks. It shows that MixDA is not only effective for
out-of-domain tasks and knowledge-intensive tasks
that require additional knowledge but is helpful
for general-domain language tasks as well, demon-
strating its ability to excel at both in-domain and
out-of-domain tasks (reliability).

5.2 Parallel Domain Adapters

In the previous section, we explored using a single
domain-adapter for each downstream task. Next,
we show the scalability of MixDA by using paral-
lel domain-adapters and only train the MoA layer
and task-adapters in Stage 2. The training process
in Stage 2 follows the previous experiments. Ta-
ble 3 shows the comparison across single domain-
adapter, parallel domain-adapters, and RoBERTa +
Pfeiffer on 7 datasets. On average, parallel domain-
adapters show an improvement of 0.6% over vanilla
RoBERTa + Pfeiffer, even though they fall behind
the single domain adapter by 1.9%. This could
be attributed to the MoA gate choosing the sub-
optimal domain-adapter for some test data. Still,
considering its improvement over Pfeiffer, the MoA
gate chooses the correct domain-adapter in most
cases. Therefore, MixDA demonstrates its scala-
bility, allowing end users to train Stage 1 on dif-
ferent datasets and combine them later. Overall, in
both single and parallel situations, MixDA signifi-
cantly improves upon the vanilla RoBERTa + Pfeif-
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Datasets ChemProt IMDB MRPC STS-B CSQA Avg.

MixDA 60.6˘4.9 58.1˘5.1 81.6˘0.5 89.8˘0.4 38.8˘4.0 65.8

– MoA 55.7˘1.8 49.8˘0.0 80.9˘0.5 88.4˘0.4 28.3˘1.3 60.6
– Old 54.3˘6.5 41.4˘3.6 78.7˘3.7 90.0˘0.4 27.1˘0.3 58.3
– DA 21.2˘4.7 56.8˘3.9 81.0˘0.5 80.8˘2.4 27.4˘0.5 53.4

AdapterFusion 47.7˘0.1 54.4˘2.0 78.0˘1.5 90.3˘0.3 25.0˘1.7 59.1
K-Adapter 58.2˘5.0 55.6˘4.5 53.9˘5.9 89.7˘0.4 26.2˘4.7 56.7
CPT 45.9˘0.3 56.1˘5.2 81.0˘0.5 90.2˘0.1 33.7˘2.7 61.4

Table 4: Ablations of the MoA gate, old-domain knowledge, and the domain-adapter structure and comparisons
with other adapter-based tuning methods. For – Old, we omit old-domain knowledge in Stage 1 training. For – DA,
we remove the domain-adapter structure and conduct both stages of training only with Pfeiffer adapters. The best
results for each dataset are made bold.

Datasets MRPC STS-B FEVER CSQA Avg.

MixDA 81.6˘0.5 89.8˘0.4 20.2˘4.3 38.8˘4.0 57.6
+ ConceptNet 81.7˘0.3 90.1˘0.1 30.5˘3.1 40.0˘0.2 60.6

Table 5: The results of MixDA trained on structured
and unstructured knowledge. + ConceptNet stands
for domain-adapters trained on both the unstructured
knowledge and ConceptNet.

fer model with a small increase in model size. This
is due to the ability of MixDA to capture knowl-
edge and the MoA to select useful knowledge for
downstream tasks.

6 Analysis

In this section, we analyze the respective contribu-
tions of each part of MixDA through detailed anal-
ysis, including the Stage 1 training, task-adapters
in Stage 2, and the mixture-of-adapters gate.

6.1 Ablation Study
In this section, we conduct an ablation study to
reveal the contributions of each part of the model.
There are three variants: (1) We remove the MoA
gate and choose the domain-adapter instead of the
RoBERTa feed-forward layer (–MoA). (2) We ex-
clude old-domain knowledge during Stage 1 (–Old).
(3) To examine whether the training procedures,
rather than the MixDA structure, contribute the
most to our results, we conduct Stage 1 and Stage
2 training only with task-adapters (–DA). Table 4
shows the results of the ablation study. As ex-
pected, the average performance drops in all three
settings. Without MoA gate, old-domain knowl-
edge FFNs, and structure knowledge, it is observed
a drop of 5.2%, 7.5%, and 12.4%, respectively,
showing that the MoA gate, the old-domain knowl-
edge, and the MixDA structure are all fundamental
in the model. Relatively, the MoA has the smallest
impact because the old-domain knowledge in Stage

1 can also help the model retain the knowledge in
RoBERTa. The domain-adapter has the largest im-
pact since it only stores domain knowledge and
can keep it during Stage 2. In contrast, conduct-
ing Stage 1 and 2 training on the Pfeiffer adapter
causes catastrophic forgetting.

6.2 Structured and Unstructured Knowledge

In Section 5, the MixDA is only trained on unstruc-
tured knowledge. As a comparison, we also train
the domain adapter on ConceptNet, a structured
knowledge dataset, and then attach both the un-
structured and structured to our model and train the
MoA layer and the task-adapter during Stage 2.

Table 5 shows the result of combining structured
and unstructured knowledge in Stage 1. FEVER
and CSQA, two knowledge-intensive tasks, have
the greatest improvement: 10.3% for FEVER and
1.2% for CSQA. This is because ConceptNet stores
commonsense knowledge that can help both tasks.
Meanwhile, MRPC and STS-B also obtain im-
provement, showing that ConceptNet can benefit
general language tasks as well. In conclusion, the
experiment demonstrates the ability of MixDA to
utilize structured knowledge, the extensibility of
our model, and the possible benefits of structured
knowledge.

6.3 Effectiveness of Task-Adapters

In most experiments of this paper, we adopt Pfeif-
fer as the task-adapter unless otherwise specified.
In this section, we test the performance of MixDA
combined with other kinds of task-adapters, includ-
ing Houlsby, Prefix-Tuning, LoRA, and Pfeiffer.
Table 6 gives the result of different task-adapters.
Pfeiffer surpasses others by at least 6.3%. Even
though Houlsby is on par with Pfeiffer, Pfeiffer
only requires half the number of newly introduced
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Datasets ChemProt IMDB MRPC STS-B CSQA Avg.

Houlsby 47.1˘12.2 48.1˘4.5 80.0˘1.5 86.6˘3.2 35.8˘8.9 59.5
Prefix-Tuning 17.1˘7.3 39.1˘7.2 81.6˘0.4 88.6˘0.5 33.3˘0.0 51.9
LoRA 19.5˘11.1 36.1˘4.1 81.2˘0.0 86.7˘1.4 20.3˘10.9 48.8
Pfeiffer 60.6˘4.9 58.1˘5.1 81.6˘0.5 89.8˘0.4 38.8˘4.0 65.8

Table 6: The results of MixDA combined with different kinds of task-adapters. By default, we use Pfeiffer in
previous experiments.

parameters compared to Houlsby, making it the
optimal choice of task-adapters in our experiment.

7 Conclusion

In this paper, we proposed MixDA, a mixture of
adapters for domain adaptation. We first decou-
ple the knowledge modules (i.e., FFNs) into the
old-domain and domain-specific FFNs. Then we
propose a two-stage adapter tuning strategy: first
tuning the domain adapter on each domain and then
tuning the task adapter on each task. Moreover, our
model could be scaled to multiple domains easily
with the introduction of the mixture-of-adapters
gate. Empirically, MixDA achieved significant im-
provement over in-domain tasks, out-of-domain
tasks, and knowledge-intensive tasks. Further anal-
yses demonstrate the reliability, scalability, and
efficiency of our method.

Limitations

Although MixDA achieves promising results on
domain adaptation compared with baseline models,
there are certain limitations. MixDA is a two-stage
approach, which is not fully end-to-end. Our ap-
proach requires training a domain adapter and task
adapter, respectively. In the future, we will explore
the unifying domain and task adapters by merging
them into one.
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A Experimental Setup

Our domain adapter has a reduction factor of 16,
consisting of two linear layers 4096 ˆ 256 and
256ˆ1024 (1.31M parameters). With each domain
adapter also comes a MoA gate which has an FFN
with 4096 ˆ 2 (number of MixDAs) parameters.
Since domain adapters are placed in Layers 7 and
11, they have 2.6M parameters in total. Therefore,
the domain adapters (excluding task-adapters) only
add 0.7% additional parameters to RoBERTa-large.

We preprocess the unstructured data in Stage 1
similar to the masked language model directive in
RoBERTa. From the text, we choose 15% of to-
kens uniformly to perform possible alterations. In
those tokens, 85% are replaced with <mask>, 10%
are left unchanged, and 5% are replaced with a ran-
dom token. The preprocessing is implemented with
DataCollatorForLanguageModeling in Hug-
gingface Transformers. In Stage 2, we use few-shot
setting with K “ 16. For each class of the dataset,
we randomly select 16 examples before run.

In Stages 1 and 2, we use a linear weight
scheduler. All the models are optimized by
AdamW (Loshchilov and Hutter, 2017) with weight
decay 0.05. The best hyperparameters for Stage
2 are found with grid search, with batch size
t2, 4, 8, 16u and learning rate t5e´5, 1e´4, 5e´
4u. The details can be found in Tables 7 and 8.

B Computational Budget

Stage 1 training takes relatively longer time, while
Stage 2 is fast due to the few-shot setting. The train-
ing time of Stage 1 is proportional to the number of
tokens. For reference, with 4 Nvidia RTX 2080Ti,
Stage 1 training for Biomed (33.6M tokens) takes
~45min per epoch, and training for Review (7.4M
tokens) takes ~5min per epoch. Stage 2 training
is generally fast: The 20-epoch training process
usually takes less than 5min with 4 Nvidia RTX
2080Ti.

C Details of Datasets

We conduct experiments on three types of datasets:
in-domain (ID) tasks that require general-domain
knowledge; out-of-domain (OOD) tasks that re-
quire domain-specific knowledge; knowledge-
intensive (KI) tasks that require commonsense
knowledge.

For in-domain tasks, we evaluate our model
on the GLUE Benchmark (Wang et al., 2018).

It includes MNLI (Williams et al., 2017),
CoLA (Warstadt et al., 2019), MRPC (Dolan
and Brockett, 2005), SST-2 (Socher et al., 2013),
RTE (Dagan et al., 2005; Haim et al., 2006; Gi-
ampiccolo et al., 2007; Bentivogli et al., 2009),
STS-B (Cer et al., 2017), WNLI (Levesque
et al., 2012), QNLI (Rajpurkar et al., 2016), and
QQP (Iyer et al., 2017). They are all single-
sentence or sentence pair classification tasks except
STS-B, which is a regression task.

We also evaluate our model on several out-of-
domain tasks, including ChemProt (Kringelum
et al., 2016), RCT (Dernoncourt and Lee, 2017),
IMDB (Maas et al., 2011), and Amazon (He and
McAuley, 2016). ChemProt is a manually anno-
tated chemical-protein interaction dataset extracted
from 5,031 abstractions. RCT is a dataset based
on PubMed for sentence classification. IMDB pro-
vides 25,000 movie reviews for sentiment analysis.
Amazon is a dataset containing product reviews
from Amazon, annotated with user ratings.

For knowledge-intensive tasks, we evaluate our
model on FEVER (Thorne et al., 2018) and
CommonsenseQA (CSQA) (Talmor et al., 2019).
FEVER consists of 185,445 claims that correspond
to Wikipedia articles and are classified as sup-
ported, refuted, and not enough information. Com-
monsenseQA consists of 12,247 questions with
5 choices, each of which requires commonsense
knowledge to predict the correct answers.

For Stage 1, we train domain-adapters with un-
structured knowledge related to the dataset follow-
ing Section 3.1. The unstructured knowledge used
is listed in Table 1. We also experiment with struc-
tured knowledge in Section 6.2. For Stage 2, we
adopt the true few-shot setting following (Perez
et al., 2021) to demonstrate the effectiveness of
MixDA. For each class of each dataset, we ran-
domly sample K “ 16 examples from the original
training set as the new training set, and another
different K “ 16 examples as the validation set.
The original validation set will be used as the test
set. The Pfeiffer adapter is used in Stage 2 unless
stated otherwise.
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Config Value
Optimizer AdamW

Learning rate 1e-4
Weight decay 0.05

Optimizer momentum β1, β2“0.9, 0.999
Batch size {2, 5}

Learning rate schedule linear decay
training epochs 10

Table 7: Stage 1 training: experimental setup.

Config Value
Optimizer AdamW

Learning rate {5e-5, 1e-4, 5e-4}
Weight decay 0.05

Optimizer momentum β1, β2“0.9, 0.999
Batch size {2, 4, 8, 16}

Learning rate schedule linear decay
warmup epochs 2
training epochs 20

Table 8: Stage 2 training: experimental setup.
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