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Abstract

Graph-to-text (G2T) generation and text-to-
graph (T2G) triple extraction are two essen-
tial tasks for knowledge graphs. Existing un-
supervised approaches become suitable can-
didates for jointly learning the two tasks due
to their avoidance of using graph-text parallel
data. However, they adopt multiple complex
modules and still require entity information or
relation type for training. To this end, we pro-
pose INFINITY, a simple yet effective unsu-
pervised method with a unified pretrained lan-
guage model that does not introduce external
annotation tools or additional parallel informa-
tion. It achieves fully unsupervised graph-text
mutual conversion for the first time. Specifi-
cally, INFINITY treats both G2T and T2G as a
bidirectional sequence generation task by fine-
tuning only one pretrained seq2seq model. A
novel back-translation-based framework is then
designed to generate synthetic parallel data au-
tomatically. Besides, we investigate the im-
pact of graph linearization and introduce the
structure-aware fine-tuning strategy to alleviate
possible performance deterioration via retain-
ing structural information in graph sequences.
As a fully unsupervised framework, INFINITY
is empirically verified to outperform state-of-
the-art baselines for G2T and T2G tasks. Addi-
tionally, we also devise a new training setting
called cross learning for low-resource unsuper-
vised information extraction.

1 Introduction

Graph-to-text (G2T) generation and text-to-graph
(T2G) triple extraction are two mutually inverse
tasks that are crucial to the domain of knowledge
graphs (KGs). G2T verbalizes the structural in-
formation in KG with descriptive texts, which has
attracted much attention to expand the application
scope of KG, such as KG-based dialogue and Q&A
system (Ji et al., 2022). As a primary task of infor-
mation extraction, T2G aims to extract triples from
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Figure 1: A pair of knowledge subgraph and its corre-
sponding text.

text, the typical subtasks (He et al., 2020; Chen
et al., 2022) of which include named entity recog-
nition (NER) and relation extraction (RE). Figure 1
illustrates a training pair sample containing part of
a knowledge graph and its corresponding text.

G2T and T2G have been intensively studied re-
spectively, mainly treated as two kinds of indepen-
dent problems in a supervised way. Due to the suc-
cess of pretrained language models (PLMs) (Raf-
fel et al., 2020; Lewis et al., 2020), mainstream
supervised methods have achieved considerable
performance with fine-tuning or prompt learning
paradigm (Ribeiro et al., 2021; Clive et al., 2021;
Ye et al., 2021; Ke et al., 2021). However, these
supervised methods require annotated data. In-
spired by unsupervised machine translation ap-
proaches (Lample et al., 2018), recent work at-
tempts to explore low-resource alternatives that
avoid the requirement of graph-text pairs with un-
supervised joint learning (Schmitt et al., 2020; Guo
et al., 2020b). As illustrated in Figure 2, unsu-
pervised methods consist of G2T modules and
T2G modules with different parameters, which are
trained jointly in an iterative manner through the
two steps of back-translation: the generation step
and training step. The outputs of the generation
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Figure 2: Framework of existing unsupervised models.
The left part is the cycle of training T2G, and the right
part is the cycle of training G2T.

step for the current modules serve as the supervised
training signals for the other modules in the next
iteration. Such an interactive and coupling process
imperceptibly produces a lot of synthetic parallel
data that is helpful to low-resource training. In this
paper, we are thus motivated to focus on unsuper-
vised learning of both G2T and T2G tasks in a joint
framework.

As shown in Figure 2, unsupervised models
share two major issues in order to be jointly trained.
First, recent state-of-the-art models usually sim-
plify the T2G task into relation classification with
given entities (Jin et al., 2020). As a result, the text
corpus has to seek external information extraction
tools for the acquisition of entity annotations. Sec-
ond, existing research branches on either G2T or
T2G separately implement the two tasks using dif-
ferent neural modules, i.e., G2T modules and T2G
modules, which contain numerous parameters that
make it challenging to train and share information
with each other (Schmitt et al., 2020).

To tackle the above issues, we design a novel
back-translation-based framework called INFIN-
ITY that integrates G2T and T2G tasks under the
unsupervised setting. Note that we name our frame-
work as INFINITY since the overall architecture
of the interaction between G2T and T2G resem-
bles the shape of ∞ (Figure 3). We first investi-
gate the power of seq2seq-based PLMs for G2T
and T2G and propose to regard graph-text mu-
tual conversion as two sequence generation tasks,
where we manage to ensure the simultaneous gen-
eration of continuous synthetic pairs of graph-text
sequences in a unified PLM-based module with
the back-translation technique. In this way, INFIN-
ITY requires no additional neural networks beyond
the PLM. Considering that linearizing graphs into
sequences may cause possible performance deteri-
oration, we equip INFINITY with structure-aware

strategy. Specifically, we adopt the reward aug-
mented maximum likelihood (Norouzi et al., 2016)
for training losses to retain the order and structural
information in the original dataset during the fine-
tuning process. In contrast to prior unsupervised
work (Schmitt et al., 2020; Guo et al., 2020b), IN-
FINITY is entirely bootstrapped without the assis-
tance from manual or automatic annotation tools.

We perform extensive experiments on two
datasets: WebNLG (Gardent et al., 2017) and Gen-
Wiki (Jin et al., 2020), both of which belong to
the very few benchmarks that can evaluate G2T
and T2G jointly. The results show the superiority
of INFINITY over existing methods. In addition,
we also propose a newly designed training setting
called cross learning, which makes it possible to
train on large-scale datasets without parallel data.
Thanks to its simplicity and efficiency, INFINITY
can be quickly deployed on various scenarios for
application. This work presents the following con-
tributions:

• We are the first to take G2T and T2G as
two unsupervised sequence generation tasks
and propose INFINITY, a novel unsupervised
framework for graph-text mutual conversion.

• INFINITY uses only one pretrained seq2seq
model to generate synthetic parallel data it-
eratively and employs structure-aware fine-
tuning strategy such as the reward augmented
maximum likelihood to obtain structured
graph sequences.

• INFINITY requires no parallel information or
external annotation tools compared with other
unsupervised models. With the help of cross
learning, INFINITY is suitable for scenarios
with large-scale datasets.

• We conduct extensive experiments to evaluate
INFINITY on two benchmarks. The results
demonstrate its superiority.

2 Related Work

2.1 Supervised Graph-text Models

As part of the data-to-text task, the key of G2T lies
in capturing structural information and generating
fluent texts. Some researchers (Koncel-Kedziorski
et al., 2019; Li et al., 2021) design sophisticated
architecture based on graph neural networks with
heuristic rules to encode KGs. In addition, most
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methods linearize the graph to sequence as in-
put to models. However, graph linearization may
lead to the loss of structural information. Past re-
searches (Moryossef et al., 2019; Guo et al., 2020a;
Frisoni et al., 2022) introduce different neural plan-
ner to determine the order of input triples before
linearization. Recently, Ribeiro et al. (2021) inves-
tigate different PLMs for G2T generation. Clive
et al. (2021) propose trainable control prefixes as
prompts for PLM with finer-grained control during
the process of text generation.

Regarding T2G, it aims to extract entities and re-
lations (triples) from texts, which is a basic task in
the domain of natural language processing and usu-
ally handled as a classification (tagging) problem
to label roles for different tokens (Wei et al., 2020;
Yan et al., 2021). Apart from these approaches,
there emerge some triplet-generation models. For
instance, CopyRE (Zeng et al., 2018) uses the idea
of copy mechanism (Gu et al., 2016) for triple ex-
traction. CPC (Ye et al., 2021) designs various
positive and negative samples for direct graph se-
quence generation under a supervised setting.

2.2 Unsupervised Graph-text Models

As previously stated, due to the lack of parallel
graph-text corpora, unsupervised models usually
combine G2T and T2G into joint learning frame-
works (Figure 2), which are motivated by unsu-
pervised machine translation (Lample et al., 2018).
There are only a few unsupervised graph-text mod-
els at present. Graph-Text Back Translator (GT-
BT) (Schmitt et al., 2020) is the first approach to
unsupervised text generation from KGs and can
be used for semantic parsing simultaneously. Cy-
cleGT (Guo et al., 2020b) is another unsupervised
training method that uses non-parallel graph and
text data and iteratively back translates between
the two forms. Although GT-BT and CycleGT
employ back-translation for unsupervised settings,
they simplify the T2G task to relation classifica-
tion with given entities (Jin et al., 2020), which
requires the text corpus to include entity annota-
tions or equip with external information extraction
tools. Therefore, these methods leak the informa-
tion of parallel corpus in the training process to
some extent.

3 Method

This section presents the proposed method INFIN-
ITY. We first define the tasks and notations. Then

we describe the framework and training details in
the following parts.

3.1 Formulation and Notations

Given two non-parallel datasets: a text corpus T =
{ti}Ni=1, and a graph dataset G = {gj}Mj=1, where
N and M are the numbers of text sequences and
graphs, respectively. Each text sequence in T can
be denoted as t = (w1, · · · , wL) with L tokens,
where wi ∈ V is the i-th token in t, and V is the
vocabulary. Each graph in G consists of a set of
triples, denoted as g = {(eh, r, et)|eh, et ∈ E , r ∈
R}, where E and R represent the entity set and
relation type set, respectively. Each entity e ∈ E
is composed of several tokens formulated as e =
(we

1, · · · , we
Le
), we

i ∈ V . Each relation type r ∈
R is also made up of tokens formulated as r =
(wr

1, · · · , wr
Lr
), wr

i ∈ V . Similar to multilingual
neural machine translation, we assume T and G
share the same distribution of latent content z such
as linguistic or semantic characteristics:

p(g) =

∫

z
p(g|z)p(z)dz, (1)

p(t) =

∫

z
p(t|z)p(z)dz, (2)

which is the key of unsupervised learning. In our
unsupervised framework, both G2T and T2G are
regarded as sequence generation tasks. G2T aims
to generate a natural language text sequence from a
knowledge subgraph, while T2G generates a triple
sequence that represents the linearized graph where
entities and relations exist in the given text. Since
the graph itself is a set of triples, for a graph g ∈ G,
we adopt linearization strategy by concatenating
all triples with special tokens [H], [R], [T ], and [E]
to specify the head entity, relation type, tail entity,
and end of sequence respectively. The linearized
graph is illustrated as follows:

[H] e1h [R] r1 [T ] e1t

[H] e2h [R] r2 [T ] e2t

· · ·
[H] e

|g|
h [R] r|g| [T ] e|g|t [E],

(3)

where eih, r
i, and eit refer to the elements of the i-th

triple in g. We can simply linearize the graph using
the order of triples in the original dataset, and we
will discuss how to keep structural information for
graph linearization without designing sophisticated
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Figure 3: The overall architecture of INFINITY. The
cycle of blue arrows illustrates the direction of G2T
task while the cycle of magenta arrows illustrates the
direction of T2G task.

methods that will lead to additional neural compo-
nents. We only focus on the proposed framework
rather than the inside neural components, although
the linearization of the graph input is suboptimal.

3.2 Joint Training Framework of G2T & T2G
Different from unsupervised back-translation meth-
ods (Lample et al., 2018; Guo et al., 2020b), IN-
FINITY only employs one neural network model,
i.e., a single PLM. Therefore, the parameters of the
framework are greatly reduced, while the PLM can
observe both the original graphs and texts at the
same time, which is easier for information sharing
and model training. We denote the only PLM as
Mθ, and the overall architecture of INFINITY is
shown in Figure 3, which is shaped like∞.

In Figure 3, the seq2seq-based PLM Mθ is in the
centre of∞. In the training process, the framework
iteratively back-translates between graph dataset
and text corpus. Here, the vocabulary embeddings
are the same for G2T and T2G tasks, and the two
tasks are both executed in Mθ. For simplicity and
with a slight abuse of notation, we use the same
symbol Mθ(·) to represent the sequence generating
function of the PLM, whether its output is discrete
or continuous. The training process of INFINITY
consists of two parts, the Graph→ Text→ Graph
(GTG) cycle and the Text→ Graph→ Text (TGT)
cycle. In each batch of the training process, Mθ

is trained for the GTG cycle and the TGT cycle
simultaneously. The training details are as follows.

Graph→ Text→ Graph. This cycle (the cy-
cle of blue arrows) consists of two steps. In the
first step, the goal is to generate a synthetic text
sequence t̃. We first linearize the original graph
into a triple sequence with special tokens. The lin-
earized graph g is then fed to the encoder of Mθ,
and the output Mθ(g) produced by the decoder of

Mθ is the required intermediate result t̃. In the
second step, Mθ further receives t̃ as an input text
sequence and generates a back-translated graph. It
is worth noting that t̃ is not a sequence of discrete
tokens, but an embedding matrix of tokens, where
each row of the matrix represents an embedding of
a token. The PLM Mθ receives the synthetic text
embedding and generates a back-translated graph
g̃, which is used to align the original g through
maximum likelihood estimation. Ideally, the back-
translated graph should mimic the original graph g.
Finally, parameters are updated with the guidance
of estimation result.

Text→ Graph→ Text. Similarly, the other di-
rection (the cycle of magenta arrows) also requires
two steps. In the first step, a text sequence t is fed
to PLM Mθ, and we denote the output synthetic
graph sequence Mθ(t) as g̃. In the second step, g̃ is
fed to Mθ. Here, g̃ is also in the embedding form.
Mθ then generates a back-translated text t̃ based
on the synthetic graph embedding, and parameters
are trained on the basis of t̃ and the original t.

In summary, G2T and T2G can be optimized
simultaneously in the proposed INFINITY with
synthetic parallel pairs (t,Mθ(t)) and (g,Mθ(g))
i.e., (t, g̃) and (g, t̃). In both tasks, the model
is expected to back-translate the synthetic result
Mθ(t) and Mθ(g) into sequences that are roughly
the same as the input t and g. The objective is as
follows:

L = Eg∈G [− logP (g|Mθ(g))]+

Et∈T [− logP (t|Mθ(t))]
(4)

3.3 Structure-aware Fine-tuning
As a framework to solve the problem of bidirec-
tional sequence generation, we need to consider
how to retain more structural information in graphs
as much as possible without introducing additional
parameters. As already mentioned, recent ap-
proaches design sophisticated modules to order
the input triples before graph linearization. How-
ever, these methods depend on supervision signals
and make models more complex, which is not con-
ducive to model generalization, let alone deploy-
ment to unsupervised settings.

From our perspective, graph linearization strat-
egy hinders seq2seq-based PLM from capturing
graph structure with maximum likelihood estima-
tion (MLE) since MLE suffers from the exposure
bias problem (Bengio et al., 2015). To this end, we
can adopt reward augmented maximum likelihood
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(RML) (Norouzi et al., 2016) which combines the
primary form of MLE and the maximum reward
expectation in reinforcement learning (RL). In this
way, our training process is able to make rewards
one of the training targets under the framework of
MLE, which considers the structure of graphs and
the order of texts. According to RML, the expo-
nentiated payoff distribution connects MLE and
RL objectives, and it can be easily incorporated
into MLE-based training. In our framework, we
define a distribution in the augmented space for
graph dataset G as follows:

q(g̃|g; τ) = exp(r(g̃, g)/τ)∑
g̃∈G̃ exp(r(g̃, g)/τ)

, (5)

where g̃ ∈ G̃ is the output hypothesis (possible gen-
erated sequence) of g, r(g̃, g) denotes the reward
function such as BLEU or F1 score, τ is the tem-
perature to control the degree of regularization, and
τ > 0. Now, we modify the MLE-based objective
function to:

LGRML = Eg∈G [−
∑

g̃∈G̃
q(g̃|g; τ) log p(g̃|Mθ(g))].

(6)

In LGRML, the predictive probability of the out-
puts in the original loss can be smoothed using
their corresponding rewards with the distribution
q(g̃|g; τ). For symmetry, RML can also be ex-
tended to our text corpus T similarly, which is
shown as follows:

q(t̃|t; τ) = exp(r(t̃, t)/τ)∑
t̃∈T̃ exp(r(t̃, t)/τ)

, (7)

LTRML = Et∈T [−
∑

t̃∈T̃
q(t̃|t; τ) log p(t̃|Mθ(t))],

(8)

where t̃ ∈ T̃ is the output hypothesis of t. However,
experiments show that the strategy will not signif-
icantly improve the performance when applied to
text sequences.

The system of RML is simple and computation-
ally efficient. One only needs to sample possible
outputs G̃ and T̃ from their corresponding expo-
nentiated payoff distribution before training. Note

Algorithm 1 Training Unsupervised INFINITY

1: Initiate parameters of PLM M
(1)
θ ;

2: Obtain the distribution of q(g̃|g; τ) from G ac-
cording to Equation 5;

3: Obtain the distribution of q(t̃|t; τ) from T ac-
cording to Equation 7;

4: for i = 1 to N do
5: G̃(i) ←M

(i)
θ (M

(i)
θ (G));

6: T̃ (i) ←M
(i)
θ (M

(i)
θ (T ));

7: Compute LGRML using G̃(i) and G according
to Equation 6;

8: Compute LTRML using T̃ (i) and T accord-
ing to Equation 8;

9: L ← LGRML + LTRML;
10: Fine-tune M

(i)
θ with L and obtain M

(i+1)
θ ;

11: end for
12: return M

(N+1)
θ ;

that the structure-aware strategy is flexible in our
framework (See Appendix for more details). In
addition, existing unsupervised models cannot em-
ploy RML for graph extraction, which is defined as
a relational classification problem rather than a se-
quence generation problem. In INFINITY, G2T and
T2G tasks are jointly trained thanks to the shared
parameters of Mθ. Compared with unsupervised
machine translation, our method does not train a
language model with the denoising objective on the
two tasks due to the RML strategy. As a result, we
optimize the loss function:

L = LGRML + LTRML. (9)

The detailed training process of unsupervised
INFINITY is provided in Algorithm 1.

4 Experiments

This section conducts a series of experiments to
evaluate the performance of INFINITY. We first in-
troduce the datasets and baselines, then we provide
the comparison results. Further, we implement ex-
tensive analytical experiments. At last, we show
how cross learning works.

4.1 Datasets
Since our task is unsupervised, datasets with ex-
ternal information except for graphs and texts are
not in our consideration. As a result, we select
WebNLG (2017) (Gardent et al., 2017) and Gen-
Wiki (Jin et al., 2020) as our benchmarks, which
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can evaluate G2T and T2G models at the same
time. WebNLG is widely used in text generation
and relation extraction, where each graph contains
at most 7 triples. GenWiki is a new resource for
unsupervised G2T generation, and we select two
large domains (i.e., Sports and Games) of GenWiki.
Tabel 1 presents the detailed statistics of these two
datasets.

Dataset Train Valid Test Relation Types
WebNLG 13,036 1,642 4,928 373
GenWiki 48,020 1,000 10,000 250

Table 1: Statistics of benchmarks.

4.2 Baselines

4.2.1 Supervised Baselines

The intended application of INFINITY is in unsu-
pervised scenarios. Thus, only relevant methods
are considered. For G2T, we compare our model
with a wide selection of PLM-free and PLM-based
methods. PLM-free models include StrongNeu-
ral, BestPlan (Moryossef et al., 2019), Graph-
Writer (Koncel-Kedziorski et al., 2019), and Plan-
ner (Zhao et al., 2020), where BestPlan and Plan-
ner design different planners to order triples be-
fore linearization. PLM-based models include T5-
base and T5-large (Ribeiro et al., 2021). As to
T2G, we choose OnePass (Wang et al., 2019) and a
state-of-the-art triple extraction model CGT (Ye
et al., 2021) as our baselines. Moreover, we
also implement a supervised version of INFIN-
ITY with aligned graph-text pairs, which serves
as a reference for the upper bound of our unsu-
pervised model. The supervised loss is: Lsup =
E(g,t)∈G×T [− logP (g|t)− logP (t|g)].

4.2.2 Unsupervised Baselines

Due to the limited research on unsupervised joint
training, we selected almost all unsupervised mod-
els as baselines. Rule-Based (Schmitt et al., 2020)
employs a heuristic algorithm to extract facts and
concatenate text of each triplet. Graph-Text Back
Translator (GT-BT) (Schmitt et al., 2020) adopts
a series of denoising methods and applies a back-
translation model with a POS tagger as external
tool. CycleGT (Guo et al., 2020b) is derived from
GT-BT, it jointly trains G2T and T2G tasks via
cycle training, where the T2G is simplified to the
relation classification task with given entities.

4.3 Training Settings and Evaluation Details

In our implementation, we use T5-base (Raffel
et al., 2020) as the PLM for INFINITY since T5
is based on transformer and can handle multiple
tasks well. We prepend graph prefix Graph: to the
linearized graph sequence for G2T task and text
prefix Text: for T2G task. In order to speed up the
convergence of training, when generating synthetic
intermediate outputs of texts, we discard embed-
dings of illegal tokens including [H], [R], [T ], and
[E] for the G2T task, which will not be fed to the
encoder of the PLM in the following step. During
the inference stage, we leverage the beam search to
generate texts and linearized graphs. Additionally,
for the T2G direction, we adopt the same heuristic
rules recommended in prior work (Ye et al., 2021)
to generate reasonable linearized graphs, where the
special token [R] (relation) should be followed by
[H] (head entity). The training and inference pro-
cesses are carried out on NVIDIA GeForce RTX
3090.

We employ Adam as the optimizer. The beam
size is set to 4 for both tasks. The learning rate
is set to 1e-4. For G2T, we adopt several widely
used automatic metrics, i.e., BLEU (Papineni et al.,
2002), Meteor (Banerjee and Lavie, 2005), and
CIDEr (Vedantam et al., 2015). BLEU and Me-
teor consider precision, recall, or F-score between
generated and ground truth texts while CIDEr cal-
culates the TF-IDF weights for each n-gram. For
T2G, we use the micro F1 score to evaluate the
quality of the generated triples. F1 results of enti-
ties and triples are both provided.

4.4 WebNLG Results

4.4.1 G2T Results
Table 2 presents the results of G2T task on the
WebNLG dataset. For fairness, we report the re-
sults of INFINITY without applying structure-
aware strategy RML to texts. It can be seen that
our proposed method outperforms all other unsu-
pervised baselines. The BLEU score of INFINITY
is 2 points higher than CycleGT, we believe the
independent G2T and T2G modules in CycleGT
result in degraded performance. The results of
INFINITY is even better than the level of some su-
pervised models such as GraphWriter and Planner
since they (the latter two) are PLM-free. Moreover,
the performance of the supervised INFINITY is on
par with T5-base and T5-large, and the supervised
version can even deal with the T2G problem, which
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can be attributed to the power of PLM and the joint
optimization for the shared latent space.

BLEU METEOR CIDEr
Supervised Models (G2T)
StrongNeural 46.5 0.39 2.87
BestPlan 47.4 0.39 2.69
GraphWriter 45.8 0.36 3.14
Planner 52.9 0.45 3.72
T5-base 59.1 0.44 4.02
T5-large 59.3 0.44 4.03
Supervised INFINITY 58.8 0.44 3.99
Unsupervised Models (Given Entities / External Tools)
Rule-Based 18.3 0.34 -
GT-BT 37.7 0.36 -
CycleGT 55.5 0.44 3.81
Unsupervised Models
INFINITY 58.0 0.44 3.89

Table 2: G2T performances of different models on
WebNLG dataset. CIDEr results and corresponding
codes are not provided in Rule-Based and GT-BT.

4.4.2 T2G Results

For the T2G task, it should be mentioned that the
three compared unsupervised models RuleBased,
GT-BT, and CycleGT, are given entities as a rela-
tion classification task, so they have a 100% F1
score of entities naturally and cannot employ RML
loss for graph sequences. As can be seen from Ta-
ble 3, our model’s F1 (triple) score is 61.7, which
is superior to all other unsupervised models un-
der the circumstance that all entities are unknown.
Rule-Based model cannot extract any triples. The
supervised INFINITY shows better results than the
unsupervised one in terms of entity recognition,
whereas its performance is inferior to other super-
vised methods since our model only uses the T5-
base PLM and does not equip other sophisticated
modules.

F1 (entity) F1 (triple)
Supervised Models (T2G)
OnePass N/A 66.2
CGT N/A 83.4
Supervised INFINITY 95.0 59.3
Unsupervised Models (Given Entities / External Tools)
Rule-Based 100.0 0.0
GT-BT 100.0 39.1
CycleGT 100.0 58.4
Unsupervised Models
INFINITY 93.9 61.7

Table 3: T2G performances of different models on
WebNLG dataset. N/A means the model is not applica-
ble to extract entities.

4.5 GenWiki Results

Unlike the WebNLG dataset, GenWiki is specially
collected for unsupervised G2T task, where graph
elements do not necessarily exist in the text. More-
over, the entities extracted from the text are also
not necessarily contained in the ground truth graph,
which makes it challenging to generate informa-
tive outputs. Hence, some supervised baselines are
not applicable to this dataset. Since the codes of
Rule-Based and GT-BT (Schmitt et al., 2020) are
not provided, we use our implemented Rule-Based
model as the baseline. In Table 4, our proposed
method shows better results than GraphWriter and
Rule-Based model, but the BLEU value of INFIN-
ITY is lower than CycleGT. The reason is that Cy-
cleGT has known all tokens of entities and relation
types for T2G task, which can be used as external
information to achieve better performance during
the training process. As a result, INFINITY can
only generate the tokens of entities and relations
that appear in the original texts. In other words,
our model may substitute the ground truth tokens
with other words but remain the similar meanings.
For example, the original relation birthYear may
be predicted as birthDay in INFINITY.

G2T T2G
BLEU CIDEr F1 (triple)

Supervised Models
GraphWriter 29.7 2.68 N/A
T5-base 45.7 3.74 N/A
T5-large 47.1 3.74 N/A
Supervised INFINITY 43.6 3.44 33.8
Unsupervised Models (Given Entities / External Tools)
Rule-Based (our implementation) 13.9 1.26 0.0
CycleGT 38.5 3.50 34.2
Unsupervised Models
INFINITY 34.3 2.50 23.4

Table 4: G2T and T2G performances of different models
on GenWiki dataset.

G2T T2G
BLEU CIDEr F1 (triple)

Supervised INFINITY 58.8 3.99 59.3
w/o RML 54.3 3.58 51.5
w. RML for text & graph 57.3 3.89 59.7
w. RML for text 56.2 3.67 53.8
w. RML for graph (ours) 58.0 3.89 61.7

Table 5: Ablation analysis on WebNLG dataset. The
version with RML for graph is used as our reported
results.
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WebNLG GenWiki

G2T T2G G2T T2G
BLEU CIDEr F1 (entity) F1 (triple) BLEU CIDEr F1 (entity) F1 (triple)

WebNLG.G × GenWiki.T 34.8 2.04 89.1 45.2 21.6 1.41 59.2 1.2
WebNLG.T × GenWiki.G 45.6 2.82 91.9 19.5 16.1 1.13 65.6 9.1

WebNLG 58.0 3.89 93.9 61.7 N/A N/A N/A N/A
GenWiki N/A N/A N/A N/A 34.3 2.50 97.0 23.4

Table 6: Analysis of cross learning on WebNLG and GenWiki datasets. dataset.G means the graph data in dataset
and dataset.T denotes the text corpus in dataset. The last two rows are the results of training with the graphs and
texts on a single dataset, where they are only evaluated on their corresponding benchmark.

4.6 Detailed Analysis
4.6.1 Ablation Study
We use the WebNLG dataset for ablation analy-
sis. As shown in Table 5, the supervised INFINITY
shows the best results on the G2T task. The per-
formance of INFINITY without reward augmented
losses (w/o RML) is worse than any other versions,
especially for T2G task, but it can still compete
with other unsupervised models such as cycleGT.
Applying structure-aware strategy to both text and
graph makes the model capture more order and
structural information in the datasets, and it obtains
significant improvement. We also evaluate variants
that only adopt one side reward augmented loss. IN-
FINITY with RML for graph demonstrates the best
performance except for the supervised one. This
is because the PLM itself performs well on texts,
and the improvement of RML for text is limited.
Therefore, we use the version with RML for graph
as our final reported model.

4.6.2 Analysis of Input Scale
We investigate how the performance of INFIN-
ITY scales with the amount of input data since
our method models graph-text conversion as two
sequence generation tasks. For G2T, we divide
the input graphs into groups based on the number
of triples and calculate the mean BLEU value of
each group of text sequences obtained by INFIN-
ITY. Similarly, as to T2G, we group the input data
according to the length of the text sequences and
count the F1 value of the output graphs. Figure 4
shows the results of different input sizes on the
WebNLG dataset. It can be observed that the BLEU
values decrease with the increase of the number of
triples (≤ 5). When the number of triples exceeds
5, the BLEU values abnormally increase because
there are fewer samples of long triples (about 3%).
Besides, the F1 value is insensitive to the input
size of texts. One of the possible explanations is

that T and G share the same distribution of latent
content, and INFINITY only makes minor modi-
fications to the text sequence for transformation.
Further, INFINITY can be applied to datasets with
larger and more complex graphs. The performance
depends on how much latent content graph and
text sequences share. Also, memory requirements
quadruple when doubling the input length due to
the adopted PLM limitation (Raffel et al., 2020).
In practice, we suggest using community detection
algorithms to divide a large graph into multiple
subgraphs for training.
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Figure 4: Results of different input sizes on WebNLG
dataset.

4.7 Cross Learning
As mentioned in Section 3.1, we assume T and
G share the same latent content. In the same
dataset, T and G have the same domain knowl-
edge, whereas different datasets can only share the
language. In the latter case, to analyze the scalabil-
ity of INFINITY, we propose a new training setting
called cross learning, where we only use the graph
(or text) data of WebNLG and text (or graph) cor-
pus of GenWiki for training. Table 6 shows the re-
sults, where dataset.G means the graph in dataset
while dataset.T denotes the text in dataset. We
can see INFINITY works well under the setting
of cross learning, which cannot be accomplished
by other unsupervised models such as CycleGT
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since they require entities and relation types for
both tasks. However, the T2G performance of Gen-
Wiki is worse than WebNLG because the tokens
of relations and texts rarely overlap in GenWiki.
In summary, INFINITY provides a low-resource
approach to deploy PLM on large-scale unanno-
tated datasets for application. For example, in the
absence of a corresponding graph corpus, we can
use public knowledge graphs datasets to train IN-
FINITY model so as to extract graph triples from
any given English literature.

5 Conclusion and Future Work

In this manuscript, we propose INFINITY, a sim-
ple unsupervised approach to graph-text mutual
conversion. The key idea of INFINITY is to uti-
lize one seq2seq-based PLM to convert graphs and
texts from each other with the framework of back-
translation. Unlike existing unsupervised methods,
our model requires no additional external informa-
tion or tools beyond the non-parallel graph and
text corpus, so it is easy to be quickly deployed
to industrial scenarios. Experiments show that IN-
FINITY achieves promising results compared to
state-of-the-art baselines. For future work, we plan
to explore the capability of prompt learning by ap-
pealing to precise controls over different attention
layers in PLMs.

Limitations

One limitation of the proposed method, INFINITY,
is that it is currently limited to fully unsupervised
and not incorporating any parallel data which may
lead to performance deterioration in uncommon
scenarios. Furthermore, it only works well with
languages having limited morphology such as En-
glish and may not perform as well on languages
with complex morphology. Finally, the method
may have low scalability to long text as it requires
large GPU resources. These limitations inspire fur-
ther investigation to improve the performance and
applicability of the method.
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A RML Sampling

As mentioned earlier, one only needs to sample
possible outputs G̃ and T̃ from their corresponding
exponentiated payoff distribution before training.
According to Norouzi et al. (2016), it is difficult
to sample with BLEU or F1 score since the distri-
bution is intractable to compute. Thus, we utilize
the importance sampling method with the distri-
bution of hamming distance between the original
sequence and its hypothesis. For the graph dataset,
L sequences of linearized graphs associated with g
are sampled from a tractable proposal distribution
q(g̃|g; τ), i.e., hamming distance sampling. Then,
we obtain the importance weight ωl of each sam-
pled sequence g̃l:

ωl ≈
exp(r(g̃l, g)/τ)/q(g̃l|g; τ)

∑L
k=1 exp(r(g̃

k, g)/τ)/q(g̃k|g; τ)
, (10)

which replaces the proposal distribution by
reweighing the samples in loss LGRML. More de-
tails about importance sampling can be found in
Norouzi et al. (2016).

B Common and Heuristic
Structure-aware Strategies

The structure-aware strategy is flexible in INFIN-
ITY, we can adopt other structure-aware strategies.

Generally, PLMs are pretrained based on a large
number of text corpora, and they are not fed with
linearized graphs. Thus, the following denoising
loss with perturbed linearized graph structure is a
suitable way to warm up PLMs:

LGlm = Eg∈G [− log p(g|corrupt(g); θ)], (11)

where corrupt(·) is a function that generates cor-
rupted graph sequence. Possible operations on the
graph structure include but are not limited to re-
placement, discarding, duplication, and swapping.
By this means, PLM is capable of remembering the
structure of graphs.

Besides, BFS and DFS traversal-based graph
linearization are another two common methods
adopted by many supervised generation models (Li
et al., 2021; Cai and Lam, 2019), especially in the
field of semantic role labeling and AMR semantic
parsing. In our unsupervised setting, we can exe-
cute BFS or DFS from the node with the maximum

degree value to obtain a reasonable graph sequence,
where nodes with similar semantics are close.

In the experiments, we find that RML can
achieve the best performance, thus we adopt RML
as the only strategy in INFINITY.

C Case Study and Error Analysis

To analyze the generation performance and draw-
backs of INFINITY, we select two representative
instances shown in Table 7, where the ground truth
and generated sequences are provided. As to the
first case, the generated text is consistent with the
ground truth, with only a few slight differences,
and the generated triples are exactly the same as
the real ones. The second instance contains two
sentences and five triples, which has several typical
errors. The order of the generated text is incon-
sistent with the original text, and there are some
semantic errors. The generated triples are all rea-
sonable, but the first fact with the relation related
Mean Of Transportation is missing. The boundary
of the last generated triple is wrong, where [R] does
not appear in the proper position, and [T ] is miss-
ing. It is still challenging to capture fine-grained
entity or relation boundaries without supervised
information such as relation type.
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Ground Truth Sequence Generated Sequence Main Error

Text 1

Arlington in Texas is located
at 184.0 metres

above sea level and
has a total area of
258.2 square kilometres.

Arlington , Texas is
184.0
above sea level and
has a total area of
258.2 square kilometres.

Rephrasing

Graph 1

[H] Arlington Texas
[R] elevation Above The Sea Level
[T ] 184.0

[H] Arlington Texas
[R] elevation Above The Sea Level
[T ] 184.0 Exact Match

[H] Arlington Texas
[R] area Total
[T ] 258.2 square kilometres [E]

[H] Arlington Texas
[R] area Total
[T ] 258.2 square kilometres [E]

Text 2

The Aston Martin V8,
manufactured by Aston Martin,

is related to the Aston Martin DBS
and was succeeded
by the Aston Martin Vantage.
Its engine volume is 5.3 litres.
and it is assembled at Newport Pagnell.

The Aston Martin V8,
with a 5.3 litre engine,
is a related transport vehicle
to the Aston Martin DBS.
It is the successor to the
Newport Pagnell Aston Martin Vantage.

Senetence Missing

Graph 2

[H] Aston Martin V8
[R] related Mean Of Transportation
[T ] Aston Martin DBS

[H] Aston Martin V8
[R] manufacturer
[T ] Aston Martin

Triple Missing

Wrong Boundary

Rephrasing

[H] Aston Martin DBS
[R] successor
[T ] Aston Martin Vantage

[H] Aston Martin DBS
[R] succeeded By
[T ] Aston Martin Vantage

[H] Aston Martin V8
[R] engine
[T ] 5.3 litres

[H] AstonMartin V8
[R] engine Volume
[T ] 5.3 litres

[H] Aston Martin V8
[R] assembly

[T ] Newport Pagnell

[H] Aston Martin assembly location
[R] Newport Pagnell
[E]

[H] Aston Martin V8
[R] manufacturer
[T ] Aston Martin [E]

Table 7: Case study and error analysis on two selected representative instances. The blue background represents
nuances that do not change semantic meanings, while the orange background represents information loss. For
graphs, we arrange the triples in the order they are in the ground truth or generated sequences.
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