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Abstract

Despite recent progress towards scaling up mul-
timodal vision-language models, these mod-
els are still known to struggle on compo-
sitional generalization benchmarks such as
Winoground. We find that a critical component
lacking from current vision-language models is
relation-level alignment: the ability to match di-
rectional semantic relations in text (e.g., ‘mug
in grass’) with spatial relationships in the im-
age (e.g., the position of the mug relative to
the grass). To tackle this problem, we show
that relation alignment can be enforced by en-
couraging the language attention from ‘mug’
to ‘grass’ (capturing the semantic relation ‘in’)
to match the visual attention from the mug to
the grass (capturing the corresponding physi-
cal relation). Tokens and their corresponding
objects are softly identified using a weighted
mean of cross-modal attention. We prove that
this notion of soft cross-modal equivalence is
equivalent to enforcing congruence between vi-
sion and language attention matrices under a
‘change of basis’ provided by the cross-modal
attention matrix. Intuitively, our approach
projects visual attention into the language at-
tention space to calculate its divergence from
the actual language attention, and vice versa.
We apply our Cross-modal Attention Congru-
ence Regularization (CACR) loss to fine-tune
UNITER and improve its Winoground Group
score by 5.75 points.

1 Introduction

Compositionality is the ability to combine mean-
ings of constituents according to structured rules.
Recent work shows that Vision-Language Models
(VLMs) fail to construct compositional represen-
tations and generally ignore syntactic & structural
information [Thrush et al., 2022, Milewski et al.,
2022, Liang et al., 2022]. Winoground [Thrush
et al., 2022] is a vision-language compositionality
task that tests a VLM’s ability to match syntactic
permutations of text with their visual interpreta-
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Figure 1: Global Alignment (GA) only aligns the entire
image with the corresponding caption. Entity Align-
ment (EA) extracts entities from the image and caption
for finer-grained alignment. Relation Alignment (RA)
cross-modally aligns the intra-modal relations between
entities in both the image and the text. We show RA is
vital to improve compositional performance.

tions, for example correctly matching “grass in
mug” and “mug in grass” to their corresponding
images. Winoground finds that all recent state-
of-the-art VLMs perform below chance levels on
this compositionality task. Contemporaneously,
Milewski et al. [2022] probe for structural knowl-
edge in VLMs, finding that they encode signifi-
cantly less linguistic syntax than Language Models
(LMs) and virtually no visual structure. Recently,
Yuksekgonul et al. [2022] built a large dataset con-
firming that VLMs treat images as a ‘bag of objects’
and don’t adequately represent visuo-linguistic re-
lations.

Since models must determine whether the com-
positional structure of an image matches that of
the caption, it’s important for the model to learn
to cross-modally align intra-modal relations. That
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is, if the relation from ‘mug’ to ‘grass’ is ‘in-ness’,
the model should recognize when the equivalent
physical relation holds between a mug and grass
in the image, and representationally align these
relations such that an image-text matching head
may more easily determine whether the relations
are cross-modally equivalent. In simpler terms, the
compositional structure of input for each modality
should be represented such that they can be cross-
modally matched even for difficult examples like
Winoground.

Unfortunately, there has been less highly influen-
tial work on relation alignment between vision &
language, and Thrush et al. [2022] did not bench-
mark any such models. In this work, we begin
exploration of these relation alignment approaches
by tentatively grouping them into 3 categories:

1. Structural Data: training a model on data that
explicitly captures relational structure

2. Structural Model: infusing an inductive bias
into the architecture of the model that enables
more compositional representations

3. Structural Training: modifying the objective
function or imposing a parameter constraint
to encourage relation alignment

Since Structural Data approaches require com-
plex annotations and Structural Model approaches
are often incompatible with large transformers, we
identify Structural Training as a promising avenue
for providing compositional inductive biases to
VLMs due to their architecture-agnostic compati-
bility and computational scalability.

In this work, we propose a Structural Training
approach for relation alignment that uses the cross-
modal attention matrix as a change of basis1 to
the opposite modality, which we then compare to
the original modality to calculate a divergence loss,
effectively measuring cross-modal congruence be-
tween intra-modal attentions.

We show how our approach, Cross-modal At-
tention Congruence Regularization (CACR), gener-
alizes previous Structural Training work on cross-
modal attention regularization (IAIS [Ren et al.,
2021]) by taking into account all possible en-
tity alignments and computationally simplifying
relation alignment. The CACR regularization
term can easily be dropped into most transformer-
based Vision-Language model objectives with no

1not defined in a strict linear algebraic sense

added data and minimal computational overhead,
to encourage relation alignment during training.
Finally, we show that CACRbase improves on
IAISbase—where IAISlarge holds the current state-
of-the-art on Winoground.

2 Related Work

Below, we categorize several relation alignment
approaches following the framework in Sec. 1.

1. Structural Data [Wu et al., 2019, Zhang and
Peng, 2019, Yu et al., 2021, Cui et al., 2021,
Wan et al., 2021, Khan et al., 2022]

2. Structural Model [Andreas et al., 2016, Guo
et al., 2019, Hong et al., 2021, Zhang, 2022,
Wang et al., 2022b, Kim et al., 2022, Wang
et al., 2022a]

3. Structural Training [Ren et al., 2021, Yang
et al., 2021a,b, Xue et al., 2021]

While some of these works introduce ideas from
multiple of these categories, we group them by their
core contribution. For example, ROSITA proposes
a graphical data pre-training approach, and a self-
supervised objective to accompany it; we consider
it a Structural Data approach since the training
objective ultimately is just a necessity for the data
being provided.

Unfortunately, many of these works do not pro-
vide publicly available code or pre-trained check-
points, so we were unable to complete an exhaus-
tive analysis of the compositional performance of
these relation alignment approaches. Due to the
added complexity of Structural Model approaches,
we leave exploration of their compositional abili-
ties to future work.

Regardless, we chose one exemplar for both
Structural Data (ROSITA) and Structural Train-
ing (IAIS) that made their pre-trained image-text
matching checkpoints available; we generated their
scores on Winoground, which have not previously
been calculated. In Tab. 1, we present these two re-
lation alignment models’ Winoground scores along-
side a few entity alignment and global alignment
models.

Notice that global alignment approaches tend
to perform the lowest on Winoground, even when
scaled considerably. Entity alignment approaches
perform intermediately and OSCAR+ specifically
held the state-of-the-art prior to our benchmark-
ing of these relation alignment models. Of the
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Model Text Image Group
MTurk Human 89.50 88.50 85.50
IAIS (RA-ST) 42.50 19.75 16.00
OSCAR+ (EA) 37.75 17.75 14.50
ROSITA (RA-SD) 35.25 15.25 12.25
UNITER (EA) 38.00 14.00 10.50
CLIP (GA) 30.75 10.50 8.00
LXMERT (GA) 19.25 7.00 4.00

Table 1: Comparison of Winoground scores for models
[Ren et al., 2021, Zhang et al., 2021, Cui et al., 2021,
Chen et al., 2020, Radford et al., 2021, Tan and Bansal,
2019] using Global Alignment (GA), Entity Alignment
(EA), Relation Alignment with Structural Data (RA-
SD), and Relation Alignment with Structural Training
(RA-ST). We find that IAIS, a recent relation alignment
approach that uses attention regularization for structural
training achieves universal performance improvements.

two relation alignment approaches we benchmark,
IAIS beats out OSCAR+ and achieves a new state-
of-the-art on Winoground. But ROSITA, despite
providing structural data to encourage cross-modal
relation alignment, underperforms OSCAR+. We
attribute this partly to the improved visual features
OSCAR+ has access to as a result of VinVL, but
further comparison of IAIS and ROSITA is ex-
plored in our recent work.

Based on these past results and analysis, we
choose to further explore structural training ap-
proaches to relation alignment. In other words,
our research question becomes: How can we in-
fuse the vision-language model’s training objective
with an implicit structural prior that encourages
cross-modal alignment of relations?

3 Cross-modal Attention Congruence
Regularization

To attempt a solution to this question, we begin
by noting that attention activations encode some
degree of relational information. Attention values
in transformers may be seen as an informational
gating mechanism that implicitly encode how rep-
resentations are composed [Abnar and Zuidema,
2020]. For example, past work in language has
shown how syntax trees may be extracted [Mareček
and Rosa, 2019] from attention across layers and
used to guide attention [Bai et al., 2021, Li et al.,
2020] for improved compositionality. In this sec-
tion, we extend this intuition to the multimodal
domain by proposing to use the cross-modal atten-
tions, which as a change-of-basis matrix encode a

transformation from one modality’s compositional
structure to the opposite modality’s, to encourage
cross-modal relation alignment.

3.1 Relation Alignment Using Attention
In specific, we focus on the self-attention matrix S
computed in a transformer by

S = QK⊤ = (XWQ)(XWK)⊤ (1)

Then, some row i in S corresponds to a distribu-
tion over columns j0, ..., jn where Si,j tells us how
much of the previous layer’s entity representation
j we want to infuse into the current layer’s entity
representation i, intuitively their compositional re-
lation. Since X is a series of visual and linguistic
tokens, we can segment S into four submatrices for
intra- and cross-modal relations [Bugliarello et al.,
2021]. Denote the intra-modal attention submatri-
ces in the last multimodal encoder layer as SV V

(vision to vision) and SLL (language to language);
the cross-modal attention matrices as SV L (vision
to language) and SLV (language to vision).

S =

(
SLL SLV

SV L SV V

)
(2)

If an image and caption have the same underly-
ing compositional structure, the entities that cross-
modally correspond to each other should bear sim-
ilar intra-modal compositional structure. That is,
a word w should attend to other words (in SLL) in
a similar way that its visual object counterpart o
attends to other objects (in SV V ). Furthermore, we
can use the cross-modal matrices (SLV and SV L)
to identify entities that cross-modally correspond
as they will generally attend to each other [Aflalo
et al., 2022]. Unfortunately, since representations
are heavily contextualized by the final layer, clear
bijective correspondences between words and ob-
jects may not always be identified using an argmax
over the cross-modal attention matrix as Ren et al.
[2021] attempts. Deeper analysis of when their
model, IAIS, fails to identify cross-modal bijective
correspondences is provided in Sec. 5.

3.2 Attention Congruence
We opt to use the cross-modal matrices (SLV and
SV L) as a whole to ‘change basis’ to the oppo-
site modality, with which we can then calculate
‘congruence’ with the original modality. However,
we use ‘change of basis’ and ‘congruence’ loosely
since the cross-modal matrices are not guaranteed
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Figure 2: Top: language attention (SLL) is aligned with the visual attention projected into the language basis
(SLV SV V S

⊤
LV ) to calculate LCACR−L; specific attention values (yellow, red) capturing intra-modal relations are

cross-modally aligned as a result. Bottom: as above, but in the vision basis.

to be square and thus do not satisfy strict linear
algebraic definitions. We formulate SV V in the
language basis as SLV SV V S

⊤
LV , which we then

encourage to be similar to SLL.
Under the hood, this says that for each ai→j ∈

SLL, we can use row vectors SLV,i and S⊤
LV,j to

calculate a weighted sum a∗i→j over SV V . If we
were to do this for all i, j, we would construct a
matrix of the same shape as SLL where each entry
is a∗i→j , i.e. an approximation of the visual corre-
spondent of the relation ai→j taking into account
all the possible cross-modal alignments of i and j.
Since this computation intuitively makes a lot of
sense and may more easily be compared to previ-
ous approaches, we choose to illustrate it in Fig.
3. However, since this computation is relatively
expensive, we instead use the SLV SV V S

⊤
LV for-

mulation which produces the same matrix of a∗i→j

values but with considerably fewer operations. This
also enables us to view the operation as a ‘change-
of-basis’ to the opposite modality and the CACR
loss as encouraging a sense of cross-modal ‘con-
gruence’.

Specifically, we align the original SLL with the
language-basis SV V matrix using LCACR-L:

LCACR-L = m-KL(σ(SLV SV V S
⊤
LV ), σ(SLL)).

(3)

We apply a softmax to normalize both matrices
since SLV SV V S

⊤
LV will generally be larger in scale

due to summation. Additionally, m-KL(·) [Ren
et al., 2021] is a symmetric matrix-based Kullback-
Leibler Divergence (m-KL) which measures the
distance between two matrices S and S′:

m-KL(S, S′) =
N∑

i

KL(Si||S′
i) + KL(S′

i||Si),

(4)
where (·)i stands for the ith row-vector in the ma-
trix.

Similarly, we have LCACR-V:

LCACR-V = m-KL(σ(SV LSLLS
⊤
V L), σ(SV V )),

(5)
Combining LCACR-V and LCACR-L, we present

our LCACR objective, an attention activation regu-
larizer for cross-modal relation alignment:

LCACR = LCACR-V + LCACR-L. (6)

When the vision inputs and the language inputs
have the same sequence length and SV L, SLV are
invertible, then SV V and SV LSLLS

⊤
V L (as well as

SLL and SLV SV V S
⊤
LV ) can become strictly con-

gruent. In this case, SV LSLLS
⊤
V L can be inter-

preted as the language view of SV V . Aligning
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SV LSLLS
⊤
V L and SV V leads to cross-modal re-

lation alignment. It is similar for SLV SV V S
⊤
LV

and SLL. In the general case where the vision in-
puts and the language inputs may have different
sequence lengths, the two forms are not linear alge-
braically congruent but the relevant intuition still
holds.

3.3 Hard and Soft Cross-modal Equivalence

In this section, we show that CACR can be inter-
preted as leveraging cross-modal soft equivalences,
where IAIS [Ren et al., 2021] uses hard bijective
equivalences. In their approach, each element in
the intra-modal attention matrix is aligned with a
single counterpart in the opposite modality. This
is built upon a strict assumption that there exists a
one-to-one mapping (provided by an argmax over
the cross-modal attention) from SLL to SV V and
vice versa, which is unsatisfied in practical cases.
CACR may be seen as a soft cross-modal equiva-
lence method which instead uses the whole SLV (or
SV L) to implicitly build an ‘equivalence weighting’
which is then used to compute a weighted mean
over SV V (or SLL). We illustrate and compare hard
cross-modal equivalence and our soft cross-modal
equivalence in Figure 3, taking the language-side
alignment as an example.

We note that IAIS could be seen as a special
case of soft cross-modal equivalence by forcing the
cross-modal attention map to be a one-hot matrix,
i.e., taking the argmax of the attention matrix as the
index of the cross-modal counterpart. We show in
Section 5 that IAIS can have inferior performance
when a clear bijective cross-modal correspondence
isn’t available.

In Alg. 1, we show the pseudo-code of the soft
cross-modal equivalence method for calculating
the vision-side loss. SCACR−V can be computed
similarly. Computing the hard and soft cross-modal
equivalence is computationally complex and diffi-
cult to be parallelized due to indexing operations.
For practical applications, we sought to simplify
this soft cross-modal equivalence algorithm to a
mathematical equivalent that would improve com-
putational tractability. From here, we arrive at
CACR, which is a closed-form formulation of soft
cross-modal equivalence which utilizes only dif-
ferentiable matrix multiplications. Therefore, our
CACR is more computationally efficient and eas-
ier to be parallelized than soft cross-modal equiv-
alence.

Algorithm 1 Soft Cross-modal Equivalence (V)

Require: SLL ∈ N ×N,SV L ∈ N ×M,SV V ∈
M ×M

1: L ← 0

2: for i, j ∈ SV V do
3: W ← SV L[i] · S⊤

V L[j] ▷ soft weighting
4: a∗i→j ←W ◦ SLL ▷ element-wise

weighted mean
5: L = L+ m-KL(a∗i→j , SV V [i, j])

6: end for
7: return L

3.4 Proof of Equivalence Between CACR and
Soft Cross-modal Equivalence

Computing the hard (IAIS) and soft cross-modal
equivalence is computationally complex and diffi-
cult to parallelize due to indexing operations. How-
ever, CACR loss is mathematically equivalent to
soft cross-modal equivalence but can be computed
efficiently. We take CACRV for illustration of this
equivalence, but CACRL can be proved in the same
way.

Beginning with the visual-basis form of SLL in
CACR, the attention at index [i, j] in SV LSLLS

⊤
V L

is

(SV LSLLS
⊤
V L)[i, j]

=
∑NL

p

∑NL
k avi→lkalp→lkavj→lp

=
∑NL

p

∑NL
k SV L[i, k]SV L[j, p]︸ ︷︷ ︸

soft weighting

SLL[p, k]

(7)
where avi→lj stands for the attention from the

i-th visual token to the j-th linguistic token, NL

is the total number of language tokens and NV is
the total number of the visual tokens. Comparing
Eq.7 and Alg.1, we observe that the summation we
arrive at above is equivalent to the content of the
for-loop (line 3-5). Thus, although of seemingly
different linear algebraic form, CACR generalizes
IAIS by way of its equivalence to the Soft Cross-
modal Equivalence formulation presented above.

4 Results

How does CACR compare to other vision-language
models in its compositional ability?

We fine-tuned CACR on Flickr30k [Young et al.,
2014] for 5000 epochs using PyTorch [Paszke et al.,
2019] with a train-validation-test split of 90-5-5.
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Figure 3: Comparison of the hard cross-modal equivalence used in IAIS (left) and the soft cross-modal equivalence
we propose in CACR (right), with an example from Winoground to illustrate how the target visual equivalent
(yellow star) of a source linguistic relation (orange star) is calculated. Hard cross-modal equivalence attempts to
build a one-to-one mapping between language and vision by applying argmax (red crosses) to the SLV row vectors.
Our soft cross-modal equivalence instead uses the whole SLV row vectors to calculate a weighted (red) mean over
SV V . The scalar that is produced corresponds to the attention from ‘mug’ to ‘grass’ but in a visual basis. We note
that IAIS can be seen as a special case of soft cross-modal equivalence by forcing the attention matrix (red) to
be a one-hot matrix where the max value is set to 1 and all others to 0. CACR linear algebraically simplifies soft
cross-modal equivalence for computational efficiency.

The training batch size is 4 and 31 negative samples
are provided for every individual positive sample
in a standard image-text matching training setup.
We use a learning rate of 5 × 10−5, the AdamW
optimizer [Loshchilov and Hutter, 2017], and intro-
duce LCACR with an exponential warmup schedule.
Training was completed on a node with 4 NVIDIA
GTX 1080 Ti’s, each with 11 GB of memory.

Model Text Image Group
MTurk Human 89.50 88.50 85.50
CACRbase 39.25 17.75 14.25
UNITERlarge 43.50 14.75 13.75
IAISbase 37.50 16.75 13.00
UNITERbase 32.75 11.75 8.50

Table 2: CACR outperforms its pre-trained baseline
(UNITER) and an alternative attention regularization
approach (IAIS) across all Winoground scores.

In Tab. 2, we present our approach’s scores
alongside a few other models. Since we use CACR
to fine-tune UNITER, we include scores for the two
baseline UNITER sizes. We also include scores for
IAISbase which is also built on UNITER.

The fact that CACRbase outperforms IAISbase
suggests that, with adequate computational re-
sources, CACRlarge could similarly outperform
IAISlarge, potentially achieving a new state-of-the-
art on Winoground. Furthermore, its performance
compared to UNITERlarge is impressive consider-

ing that CACRbase is approximately half its size
in parameters. Despite our resource constraints,
we were able to train a partly frozen (first 12 lay-
ers) version of CACRlarge, which achieves IAISlarge
levels of performance on Winoground (text: 37.5,
image: 18.75, group: 15.75) with just 20% of the
training time.

Model Image
R@1

Image
R@10

Text
R@1

Text
R@10

IAISbase 73.54 96.32 86.10 99.10
UNITERbase 72.52 96.08 85.90 98.80
CACRbase 70.88 95.68 83.50 98.80

Table 3: CACR performance on Flickr30k has marginal
reductions from UNITER, suggesting performance
could be improved even further with a hyperparame-
ter search.

Finally, we report Flickr30k retrieval scores in
Tab. 3 to verify that we are not somehow overfit-
ting to Winoground. Though CACR takes some
minor losses to its retrieval scores, this may be at-
tributed to imperfect hyperparameters, suggesting
that CACR’s performance on Winoground could
be even higher with adequate hyperparameter tun-
ing. It’s also important to remember here that
we’re only training on Flickr30k, so this isn’t a
case of our model overfitting to Winoground and
‘forgetting’ its true image-text matching ability.
Rather, it shows that the hyperparameters that we
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adapted from IAIS need to be modified to more
perfectly train CACR on Flickr30k, which would
then carry over to compositional improvements on
Winoground.

5 Analysis

Why does CACR’s soft cross-modal equivalence
approach outperform hard cross-modal equiva-
lence?

5.1 Qualitative

Hard cross-modal equivalence, implemented by
IAIS, assumes that cross-modal submatrices can
be used to find a singular equivalent of an entity
in the opposite modality. Specifically, if i∗ =
argmax(SLV [i]) then SLL[i] should correspond to
SV V [i

∗]. In simple terms, IAIS says the following:
if word A attends most to object A and word B at-
tends most to object B, then word A should attend
to word B in a similar way that object A attends
to object B. Underlying IAIS is the hard assump-
tion that argmaxing over the cross-modal attention
submatrix is an effective means of identifying the
opposite modality equivalent of an entity. However,
we show in this section that this is often not the
case.

Given the argmaxes for rows in the SLV subma-
trix, we can identify the bounding box that each
token maximally attends to, which IAIS assumes
is its visual equivalent. In Fig. 4a, we visualize an
example where ‘clouds’ maximally attends (green)
to the ground, which would prevent IAIS from
identifying the correct cross-modal equivalence.
‘Turbines’ (Fig. 4b), on the other hand, maximally
attends to a bounding box that better matches our
intuition. It is qualitatively clear from the several
examples displayed that the argmax assumption of-
ten fails to identify the correct cross-modal equiv-
alence. Since words may attend to several visual
tokens for different reasons, we shouldn’t assume
that the cross-modal argmax provides us with a
clear bijective correspondence.

Instead, the cross-modal matrices should be seen
as providing useful high-level information about
what visual entities are relevant to a word, and
vice versa (as intuitively demonstrated by [Ilinykh
and Dobnik, 2022]). We can certainly gain useful
information about cross-modal correspondences
using it, but it isn’t as simple as using an argmax,
due to words having multiple referents and entity
representations being intermixed. Instead, our soft

(a) clouds (b) turbines

(c) “hammering something
together"

(d) “together hammering
something"

Figure 4: Top: UNITER SLV attention for caption “a
few clouds and many wind turbines", with the bounding
box maximally attended to by the token in green; other
highly attended boxes in red. Bottom: UNITER SLV

attention with bounding boxes labeled with the tokens
that maximally attend to them. Note that argmaxes often
fail to precisely identify cross-modal equivalence.

cross-modal equivalence approach takes all the pos-
sible cross-modal alignments into account with a
weighted sum.

To illustrate how the soft approach accounts
for critical cross-modal alignment information,
we present a few Winoground examples with
UNITER’s cross-modal attention activations in Fig.
4 and 5. We use UNITER since this is the base-
line model from which attentional information is
bootstrapped to calculate cross-modal alignments.
For example, in Fig. 5c, using the representation
for the bounding box covering the mug’s handle
may not adequately capture the visual referent of
‘mug’ and therefore disrupt our ability to calculate
the visual-basis relation between ‘mug’ and ‘grass’
if restricted by an argmax.

5.2 Quantitative
In the absence of annotations, we attempted a
quantitative measurement of whether overlap in
argmaxes (several words attending to one bound-
ing box or vice versa) as quantified by the Shannon
Entropy of argmax indices inversely correlates with
soft Winoground score. Intuitively, if an example
has more like a one-to-one mapping between text
and image, the entropy of its cross-modal argmaxes
should be higher as each token will attend to a dif-
ferent box, which would suggest that the model is
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(a) dog (b) person

(c) mug (d) grass

Figure 5: UNITER SV L attention for captions “a dog
on a rock next to a person" and “there is a mug in
some grass". Shown are boxes that attend highly to the
displayed token, with the maximally attending bounding
box in green; others in red. Observe that although the
argmax often does pick up on a relevant bounding box,
it is prone to missing critical visual information, e.g.
focusing on only the backpack in (b).

better aligning entities. However, we found no sig-
nificant correlation with Winoground score, which
we attribute to the fact that high entropy on its own
doesn’t mean correct entity alignment.

Rather, high entropy in argmax indices could
still be produced by a bad representation if ‘mug’
attends to the grass & ‘grass’ attends to the mug;
conversely, low entropy could be produced by a
good representation for an example like ‘fire truck’
where two tokens refer to a single object. Quantita-
tive exploration of cross-modal attention is difficult
without annotations and we leave this task to future
work to explore in a multimodal compositionality
context.

As a general takeaway, while the cross-modal
argmax assumption of IAIS does hold in some
cases and may be more meaningful during the
course of IAIS training, it is clearly quite a strict
assumption that could suffer if an entity attends to
several cross-modal entities or there are no corre-
sponding cross-modal entities. Furthermore, since
IAIS is only active in the final self-attention layer,
all the token representations are intermixed and
therefore don’t necessarily have a one-to-one corre-
spondence with our intuitive notions of what they
should be—the word ‘turbine’ may not solely rep-
resent the traditional meaning of that word but per-

haps the entire scene that includes the turbines,
clouds, and ground.

We hypothesize that by removing the hard
argmax assumption, our approach better accounts
for varying cross-modal entity equivalences and
thus enables stronger relation alignment. By also
calculating alignment between all pairs of source
and target modality entities, CACR should consid-
erably improve sample efficiency, which is impor-
tant considering that the final layer S matrix of the
converged IAIS model is largely flat. Therefore
it’s important to backpropagate as much alignment
knowledge over the course of training as possible,
which CACR’s soft equivalence weighting implic-
itly enables.

6 Conclusion

In this work, we identified that a key factor hold-
ing back models from vision-language represen-
tational compositionality is cross-modal relation
alignment. We categorized recent compositional
inductive bias approaches into 3 categories: Struc-
tural Model, Structural Data, and Structural Train-
ing, showing that a previous Structural Training
model (IAIS) achieves state-of-the-art performance
on Winoground. We then identified a potential
key weakness in IAIS, its hard argmax assumption,
and developed a soft cross-modal equivalence ap-
proach to address it. Having linear algebraically
simplified this approach, we arrived at CACR, an
auxiliary loss that encourages cross-modal congru-
ence of intra-modal attention. CACR improves on
IAIS’ performance on Winoground, and even out-
performs a UNITER model nearly twice as large.

As computational scaling becomes more
widespread, it’s necessary to develop composi-
tional inductive biases that do not require com-
plex annotated data or exotic model architectures.
Our work illustrates how taking advantage of the
transformer’s own attentional structure can improve
the quality of fine-grained vision-language repre-
sentations, opening the avenue for large scale ap-
proaches to visually-grounded compositionality.

7 Limitations, Risks & Ethics

Though CACR shows significant gains in compo-
sitional performance, results are limited in their
exploration of only one pre-trained model and com-
positionality dataset. A significant risk of mod-
els is their tendency to be biased by distributions
in their training data; vision-language models are
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not free from this flaw, but we see our work as
teaching VLMs to learn better structured repre-
sentations rather than memorizing spurious corre-
lations in data. We remain far from solving the
vision-language compositionality problem, so bi-
ases must continue to be actively mitigated.
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