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Abstract

Event detection (ED) seeks to discover and
classify event instances in plain texts. Pre-
vious methods for ED typically adopt super-
vised learning, requiring fully labeled and
high-quality training data. However, in a real-
world application, we may not obtain clean
training data but only partially labeled one,
which could substantially impede the learning
process. In this work, we conduct a semi-
nal study for learning with partial annotations
for ED. We propose a new trigger localization
formulation using contrastive learning to dis-
tinguish ground-truth triggers from contexts,
showing a decent robustness for addressing
partial annotation noise. Impressively, in an
extreme scenario where more than 90% of
events are unlabeled, our approach achieves
an F1 score of over 60%. In addition, we re-
annotate and make available two fully anno-
tated subsets of ACE 2005 to serve as an unbi-
ased benchmark for event detection. We hope
our approach and data will inspire future stud-
ies on this vital yet understudied problem.

1 Introduction

Deep learning models have shown impressive
performance in event detection (ED) since large
amounts of event data have become available (Chen
et al., 2015; Nguyen and Grishman, 2015). How-
ever, such models require fully labelled and high-
quality data — in practice, we cannot ensure that
every event is identified, and as a result, we often
face the partial annotation issue, as depicted in
Figure 1. We show a high rate of partial annotation
in real-world event datasets. For example, in ACE
2005, which is widely used as a benchmark for ED
evaluation (Christopher Walker and Maeda, 2006),
nearly 20% of events are not labelled (see Table
2). Using a partially labelled dataset as a fully la-
belled one for training runs the risk of mis-training
on false negatives, and using a partially labelled
dataset for evaluation biases comparison. How-
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Figure 1: The partial annotation issue in ED. The Gold
row indicates ground-truth labels; the Partial row in-
dicates the partial annotation case we address in this
study, where the devastated event is not labeled.

ever, this issue is still understudied in the existing
literature (Liu, 2018; Liu et al., 2020b).

In this work, we present a seminal study of learn-
ing with partial annotations for ED, with contri-
butions in methodology, data, and practical ap-
plications. In our method, to reduce the risk of
mis-training on false negatives, we propose a con-
trastive learning framework (Chopra et al., 2005;
Chen et al., 2020) to distinguish ground-truth trig-
gers from contexts, which is shown to be more
tolerant of partial annotation noise than the tra-
ditional hard classification paradigm (Ji and Gr-
ishman, 2008; Chen et al., 2015). In addition, to
succeed in the partial annotation scenario, we aug-
ment the model with a self-correction regime to
recognize false negatives during the training stage.

Figure 2 visualizes the core of our method,
which is a de facto trigger localization formulation
that uses sentence-wise normalization (prompted
by event types) to find event triggers. Compared
to hard classification methods that add up indi-
vidual losses (as shown at the top of Figure 2),
our approach instead forms a contrastive learning
paradigm by raising the scores of ground-truth trig-
gers while lowering the scores of context words.
As a result, even with a significant number of false
negatives in training, it can still maintain a good
separation between triggers and contexts (§ 6.1). In
addition, we suggest that adding a margin softmax
(Wang et al., 2018) with a Gaussian-based distance
regularization can further improve learning.
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In addition to the noise-tolerance mechanism de-
scribed above, we propose a self-correction regime
with the motive that when a model recognizes a
false negative with high confidence, it should cor-
rect its labels for the subsequent training stage.
Nevertheless, modeling the confidence of deep
learning models is challenging since their predic-
tions are poorly calibrated (i.e., a model often out-
puts a high prediction probability even if the predic-
tion is incorrect (Guo et al., 2017)). To address this
issue, we propose an uncertainty-guided retrain-
ing mechanism based on MC-Dropout (Gal and
Ghahramani, 2016), which can output prediction
confidence to guide the self-correction process. We
explain the relationship between this paradigm and
an expectation-maximization (EM) framework.

In addition to the methodology contribution, we
re-annotate and release the ACE 2005 development
and test sets as a data contribution. On the revised
benchmark (and an extra MAVEN (Wang et al.,
2020) benchmark), we demonstrate the impressive
performance of our models — in particular, even in
an extreme case with 90% of events unlabeled, our
approach achieves more than 60% in F1, yielding a
40% definite improvement over previous methods.
In addition to simulation tests, we also conduct a
real-world annotation test on WikiEvents (Li et al.,
2021a), where the results suggest the practical ap-
plicability of our approach.

Contributions. Our contributions are three-fold:
(i) To the best of our knowledge, this is the first
work addressing the potential partial annotation
issue in ED, which may spark further research in-
terest. (ii) We highlight a new learning paradigm
for ED based on a trigger localization formulation
and show that it works effectively with a wide range
of partial annotation settings. (iii) We re-annotated
the ACE 2005 development and test datasets and
released them to the community to serve as an un-
biased benchmark. (IV) In addition to simulation
experiments, we conduct real-world annotation ex-
periments to validate the effectiveness of our ap-
proach for practical use.

2 Related Work

ED and the Partial Annotation Issue. Event
detection (ED) is a crucial subtask of event ex-
traction that aims to identify event instances in
texts (Grishman, 1997; Ahn, 2006). The existing
ED methods can be divided as feature-based (Ahn,
2006; Li et al., 2013; Liao and Grishman, 2010;
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Figure 2: A comparison of the hard classification
paradigm (A) and our trigger localization paradigm (B)
for ED. [M] is a “no-event-existing” indicator.

Hong et al., 2011) and deep learning-based (Chen
et al., 2015; Nguyen and Grishman, 2015; Nguyen
et al., 2016; Liu et al., 2018a; Feng et al., 2016;
Chen et al., 2018; Yang et al., 2019; Liu et al.,
2020a; Du and Cardie, 2020; Lu et al., 2021; Liu
et al., 2019a), and there has been a growing interest
in applying these methods to specific scenarios (Liu
et al., 2019b, 2022b,a). Nevertheless, most of such
methods adopt supervised learning and assume the
availability of clean datasets. To date, only a few
studies have considered the partial annotation issue
in ED: Liu et al. (2020b) identify several unlabeled
cases in the ACE test set for error analysis; Liu
(2018), in the PhD proposal, suggest that the Chi-
nese portion of ACE 2005 is partially labeled. Un-
fortunately, neither work stands in a methodology
perspective for addressing the issue. Our research,
on the other hand, introduces a solution for learning
with partial annotations. Our trigger localization
formulation also relates to using prompts for event
information extraction (Wang et al., 2022a; Hsu
et al., 2022; Liu et al., 2022c; Wang et al., 2022b),
but different from them focusing on improving the
overall performance, our work stands in a point
addressing the partial annotation issue.

Learning with Partial Annotations. Learning
with partial annotations, also known as positive and
unlabeled learning (Li et al., 2009), is an important
problem in machine learning community (Elkan
and Noto, 2008; Liu et al., 2002, 2003, 2005). In
the domain of natural language processing (NLP),
researchers have examined a number of tasks in-
cluding named entity recognition (NER) (Jie et al.,
2019; Mayhew et al., 2019; Peng et al., 2019), Chi-
nese word segmentation (Yang and Vozila, 2014),
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Figure 3: The overview of our approach. Left: the model training process based on margin softmax. Right: the
uncertainty-guided retraining mechanism. D designates the original training dataset.

and others (Tsuboi et al., 2008). The efforts for
NER relate the most to our work, where a seminal
work (Jie et al., 2019) treats the labels of negative
instances as latent variables and infers them using
partial Conditional Random Fields (Bellare and
McCallum, 2007). Later works have devised down-
weighing mechanisms (Mayhew et al., 2019), con-
fidence estimation methods (Liu et al., 2021), and
negative sampling (Li et al., 2021b) for learning.
In this study, we offer a new trigger localization
formulation for the task of ED and demonstrate
promising results in a wide range of partial annota-
tion settings.

3 Proposed Method

LetX = [w1, · · · , wN ] be a sentence withN words
and Y = [y1, · · · , yN ] be the ground-truth event
label sequence, where yi ∈ T ∪ {O} is the event
label of wi (Here T is a set of all event types and
O is a special type for non-trigger words). Then
the partial annotation issue can be formulated as:
due to the neglect of human annotators, some yi
6= O are not identified, and this results in a partial
annotation sequence Ỹ = [ỹ1, · · · , ỹN ]. Clearly, di-
rectly training a model on (X , Ỹ ) risks outputting
a noisy detector. Here we propose a new learn-
ing framework to address this issue (as shown in
Figure 3), which consists of a noise-tolerant learn-
ing mechanism with margin softmax (§ 3.2) and
uncertainty-guided retraining mechanism (§ 3.3).

3.1 Input Representation

Given a sentence X , for each event type t ∈ T , we
learn their joint representations for further process-
ing. Particularly, we concatenate t and X as the

input1 of a BERT encoder (Devlin et al., 2019):

[CLS] t [SEP]

The sentence X︷ ︸︸ ︷
w1 w2 · · · wN

and consider the output of BERT to be the joint
representations, denoted as H(t,X) ∈ RM×d, with
M being the length of the input sequence2 and d
being the dimension of BERT.

3.2 Noise-Tolerant Learning via Margin
Softmax

Based on H(t,X), we next locate event triggers
of type t in the sentence. This can be achieved
using sentence-level softmax, and here we intro-
duce a margin softmax (Wang et al., 2018) to bet-
ter address partial annotations. Specifically, we
first map H(t,X) to a score vector st ∈ RM using
st = H(t,X) w, where w ∈ Rd is a shared vector
parameter, and then we distinguish between the
following two cases for learning:

Case 1. A positive instance (i.e., a labeled trig-
ger) of type t is found in the label sequence Ỹ
(If many triggers are found, we address each one
individually). Assume j is the labeled trigger’s
index. Here we employ a positive margin λ+ and
maximize the following objective:

p+(X, Ỹ , j) =
exp(st(j) − λ+)

exp(st(j) − λ+) +
∑M

m 6=j exp(st(m))
(1)

where st(j) denotes the jth word’s score in the score
vector st. This objective encourages a margin of at
least λ+ (Wang et al., 2018) in scores of triggers

1[CLS] and [SEP] are special tokens used in BERT.
2A word in BERT may broke down into many subwords

(Sennrich et al., 2016), and here we only consider the first
subword to make H(t,X) have the same length as the input.
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and context words, which therefore makes ground-
truth triggers more separable. Note in this case,
a sentence may contain “hidden” false negatives.
Motivated by the fact that triggers are generally
sparsely distributed (Lin et al., 2018), we employ
a Gaussian regularization to reduce the penalty.
Particularly, we obtain a new score vector ŝt with:

ŝt(m) = st(m) ×N (|m− j|) (2)

where N (·) indicates the standard univariate Gaus-
sian density function, and |m − j| is the distance
between the mth word wm and the labeled trig-
ger. This new score vector ŝt put small weights
on words far away from the labeled trigger and is
shown to marginally improve learning (§ 6.2).

Case 2. There is no trigger of type t found in
Ỹ . In this case, we use the [SEP] token as a
“no-event-existing” indicator and optimize to give
it the highest score. It should be noted, however,
that such a case may contain false negatives. To
address them, we introduce a negative margin λ−3

to reduce the penalty:

p−(X, Ỹ ) =
exp(st∆ + λ−)

exp(st∆ + λ−) +
∑M

m 6=∆ exp(st(m))
(3)

where ∆ indicates the index of [SEP]. In this way,
the negative margin λ− instead loosens the gap
between the indicator [SEP] and other words. As
a result, the model is more forgiving of situations
when certain words score higher than the “no event
exists” indicator [SEP].

Training and Testing Protocols. The overall
loss function for learning is:

L = −
∑

(X,Ỹ )∈D

∑

t∈T
[ δt ×

∑

j:yj=t

log p+(X, Ỹ , j) +

(1− δt)× log p−(X, Ỹ ) ]

(4)

where (X, Ỹ ) ∈ D ranges over each instance in
the training set D; t enumerates each event type;
δt is a Dirac delta function:

δt =

{
1 If a trigger of type t is found (Case 1)
0 Otherwise (Case 2)

(5)

In the inference stage, given a test sentence X , we
compute a normalized probability vector pt:

pt = softmax(st) (6)

3Note that λ− has a positive value. We name it “negative
margin” just to distinguish from the positive margin λ+.

Algorithm 1: Uncertainty-guided retraining regime

Input :The training dataset D = {Xi, Ỹi}ni=1;
Output :The optimal model parameter Θ;

1 while not convergence do
2 Sample a training example (X , Ỹ ) from D;
3 if It is a burn-in or a normal training stage then
4 Update Θ on (X , Ỹ ) using Equation (4)
5 else
6 Build an uncertainty-regularized label

sequence Ỹ ′ with MC-Dropout (§ 3.3);
7 Update Θ on (X , Ỹ ′) using Equation (4)
8 end if
9 end while

and then compose a set for event triggers of type
t as: {wi | pt(i) > τ ; i 6=∆}, where τ is a thresh-
old defined as 1 / N , with N being the length of
the sentence (namely, when the predictive probabil-
ity of a token is above a uniform distribution, we
consider it as a trigger).

3.3 Uncertainty-Guided Retraining Regime
In addition to the noise-tolerant learning paradigm,
we also design an uncertainty-guided retraining
mechanism, in which we correct the potential labels
for optimization (Algorithm 1).

Assume (X , Ỹ ) is a training example. In the
uncertainty interfering stage, we assume that X is
an unlabeled sentence and re-predict the event label
sequence using the current model. We use Monte
Carlo Dropout (MC-Dropout) (Gal and Ghahra-
mani, 2016) to assess the model’s uncertainty on
the prediction. Particularly, for each event type t,
we predict the event triggers K times with dropout
layers activated. Assume the resulting prediction
set is {qi}Ki=1, where qi is the ith prediction and
N(qi) is its frequency4. We then create a cate-
gorical distribution using N(qi)/K as parameters
and sample out a prediction from the categorical
distribution as the predict result (This benefits pre-
dictions that the model is more confident in). We
finally convert the prediction as a label sequence
Y ′ and train a model on (X , Ỹ ′). We alternate
between this uncertainty interfering stage and a
standard training stage after several burn-in steps.

Connection to EM Algorithm. Intuitively, our
approach can be viewed as an expectation maxi-
mization (EM) algorithm (Dempster et al., 1977)
using MC-Dropout to approximate the posterior.

4For instance, for the sentence shown in Figure 3, if we con-
sider the Attack type and set K = 5, we may get a prediction
set: {[SEP], devastated, [SEP], devastated, devastated}. In
this case, N([SEP]) = 2 and N (devastated) = 3.
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Denote the original log-likelihood function as
logL(Θ; D), where Θ and D indicate the model
parameter and partially labeled data respectively.
Let Θ(t) be the parameter at the tth iteration. We
can view our method as introducing a hidden vari-
able Z to represent the labels of false negatives and
then alternating between two steps: (i) An expecta-
tion (E) step, which uses the category distribution
generated by MC-Dropout as an approximate of
the intractable posterior p(Z|D,Θ(t)). (ii) A maxi-
mization (M) step, which maximizes the expecta-
tion Ep(Z|D,Θ(t))[logL(Θ; D,Z)] for optimization.

4 Experimental Setups

Datasets. We conduct our experiments on ACE
2005 and MAVEN5 (Wang et al., 2020), with data
statistics shown in Table 1. In light of the partial
annotation issue in ACE, we re-annotate its devel-
opment and test sets, using a method combining
automatic potential case identification and human
validation (The details are shown in Appendix A).
To facilitate a fine-grained analysis, we also split
up all potential cases into two categories: (i) a chal-
lenge set, which consists of unlabeled words where
more than half of the ED models predict that they
act as triggers, and (ii) a control set, which consists
of unlabeled words where fewer than half of the
ED models predict that they act as triggers. Table 2
gives the final results, indicating the partial annota-
tion issue is crucial — for instance, on the test set
the unlabeled ratio is 19.3%.

Implementations. In our approach, we use
BERT-large architecture for ACE 2005 (Lin
et al., 2020; Nguyen et al., 2021), and
BERT-base for MAVEN (Wang et al., 2020). As
for hyper-parameters, the batch size is set to 10 for
ACE 2005 and 20 for MAVEN respectively, chosen
from [2, 5, 10, 20, 30]. The learning rate is set
at 1e-5 for both datasets, chosen from [5e-5, 1e-
5, 5e-6, 1e-6]. In the margin softmax regime, the
positive margin λ+ is set to 10, and the negative
margin λ− is set to 1; these values are chosen from
[0.1, 0.5, 1, 5, 10, 50, 100]. In the uncertainty-
guided retraining mechanism, the number of pre-
diction times K is empirically set to 20 for a trade-
off between speed and efficiency. We release the
data and the code at https://github.com/
jianliu-ml/partialED.

5It should be noted that MAVEN provides a candidate
trigger set for prediction, so the evaluation problem caused by
partial annotation on this dataset is not a concern.

Data Split # Doc. # Sent. # Word # Trigger

A
C

E Training set 529 17,172 267,959 4,420
Dev. set 30 923 18,246 505 (558)
Test set 40 832 19,061 424 (506)

M
V

Training set 2,913 32,431 832,186 77,993
Dev. set 710 8,042 204,556 18,904
Test set 857 9,400 238,902 21,835

Table 1: Data statistics of ACE and MAVEN (NV).
Numbers in parentheses are re-annotation results.

Split # Potential # Validated UL Rate

Dev. Set
Challenge 78 34 (43.6%) 6.7%
Control 34 19 (55.9%) 3.8%
Total 112 53 (47.3%) 10.5%

Test Set
Challenge 86 51 (59.3%) 12.0%
Control 50 31 (62.0%) 7.3%
Total 136 82 (60.2%) 19.3%

Table 2: Details of the revised ACE subsets. “UL Rate”
indicates the ratio of unlabeled cases to labeled ones.

Evaluation Settings. We investigate three evalu-
ation settings: (i) A full training setting, in which
we use the original training set for learning. Yet,
because the original training set inevitably contains
unlabeled events, this setting is still a partial learn-
ing setting. (ii) A data removal setting, in which we
exclude a portion of events from the training setting
to study whether the performance drop is caused
by a degraded number of positive examples. (iii)
A data masking setting, in which we remove the
labeling information of some events (by replacing
their labels to O) to simulate a more serious partial
annotation scene. We use precision (P), recall (R),
and F1 as evaluation metrics following previous
studies (Ji and Grishman, 2008; Li et al., 2013),
and to against randomness, we report experimental
results based on a 5-run average.

Baselines. We compare our approach to super-
vised and partial learning methods. For ACE
2005, we consider the following supervised learn-
ing methods: Hybrid (Feng et al., 2016), which
combines Recurrent Neural Networks and Convo-
lutional Neural Networks; SeqBERT (Yang et al.,
2019), which introduces BERT representations;
BERTQA (Du and Cardie, 2020; Liu et al., 2020a),
which frames ED as a question answering problem;
OneIE (Lin et al., 2020), which uses Graph Neural
Networks to learn document-level clues; FourIE
(Nguyen et al., 2021), which uses an interaction
network to combine four information extraction
tasks jointly. For MAVEN, we consider DMBERT
(Wang et al., 2019) and BERT-CRF (Wang et al.,
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Test Set (O) Test Set (R)

Method P R F1 P R F1

Hybrid† (2016) 71.4 71.3 71.4 74.4 72.2 73.3
SeqBERT† (2019) 72.5 72.1 72.3 74.1 73.5 73.8
BERTQA (2020) 71.1 73.7 72.4 74.5 74.5 74.5
OneIE (2020) 74.9 74.5 74.7 75.9 74.7 75.3
FourIE† (2021) 75.7 74.1 74.9 76.0 74.6 75.3

HiddenCRF (2019) 68.4 74.5 71.3 75.7 75.5 75.6
NegSPL (2021b) 70.1 74.0 72.0 75.5 75.5 75.5
Self-Pu (2020) 71.1 71.0 71.1 75.7 74.8 75.2

PromptLoc (ours) 73.6 74.2 73.9 76.4 76.8 76.6∗

Table 3: Results on ACE 2005, where O and R de-
note the original and revised sets; † signifies our re-
implementations and ∗ is a significance test at p = 0.05.

Dev. Set Test Set

Method P R F1 P R F1

Hybrid (2016) 62.9 67.2 65.0 63.7 67.0 65.3
OneIE (2021) 64.0 69.0 66.4 64.5 69.3 66.8
BERTQA (2020) 63.8 69.0 66.3 64.9 69.1 66.9
DMBERT (2019) 64.6 70.1 67.2 62.7 72.3 67.1
BERT-CRF (2020) 65.7 68.8 67.2 65.0 70.9 67.8

HiddenCRF (2019) 66.3 68.5 67.4 64.4 72.3 68.1
NegSPL (2021b) 65.6 68.7 67.1 64.9 71.9 68.2
Self-Pu (2020) 66.3 68.0 67.0 64.3 72.3 68.0

PromptLoc (ours) 67.8 69.2 68.5∗ 65.4 72.8 68.9∗

Table 4: Results on MAVEN. ∗ denotes a significance
test with a randomly paired test at p = 0.05.

2020) as baselines. We consider the following par-
tial learning methods: (1) HiddenCRF (Jie et al.,
2019), which treats missing labels as latent vari-
ables and infers them using a CRF model (We fol-
low the original paper and use SeqBERT for param-
eter initialization); (2) NegSPL (Li et al., 2021b),
which applies negative sampling for learning and
shows good results on NER (we use the same strat-
egy to tune the sampling hyper-parameter). (3)
Self-Pu (Chen et al., 2020), which is a self-training
boosted method for general positive and unlabeled
learning. Our approach is denoted by PromptLoc.

5 Experimental Results

Results in the Full Training Setting. Tables 3
and 4 show results in the full training setting. Ac-
cordingly, our method achieves the best F1 on
the clean ACE test set and the MAVEN develop-
ment/test set, suggesting its efficacy. Comparing
the results on the original ACE test set is interest-
ing: our method has lower precision than other
methods, but when applied to the revised set, the
precision is greatly boosted — this implies that our
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Figure 4: Results on ACE 2005 (left) and MAVEN
(right) in the data removal setting.
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Figure 5: Results on ACE 2005 (left) and MAVEN
(right) in the data masking setting.

model does predict triggers not annotated in the
original test set. Lastly, partial learning approaches
generally outperform supervised methods, show-
ing that the partial annotation issue is a practical
concern to be addressed in the ED task.

Results in the Data Removal Setting. Finally,
we consider the data removal setting to study the
impact of a lack of positive examples, and we show
results in Figure 4. According to the results, while
our model consistently outperforms others, the gap
is small, implying that a reduced number of positive
instances is not a major factor impeding learning,
especially when there are relatively abundant train-
ing examples (e.g., p > 60%) or the pre-trained
language models are applied (It does have a signifi-
cant impact on non-BERT models e.g., Hybrid).

Results in the Data Masking Setting. We then
consider the data masking setting and we show
results6 in Figure 5. Here p denotes the ratio of re-
maining examples (i.e., we mask the labels of 1 - p
events). According to the results, our approach out-
performs prior methods by significant margins. For
example, on the ACE 2005, when 70% of triggers
are masked (p = 30%), our approach obtains 70% in
F1, outperforming previous methods by 30% in F1;

6We use the development set for MAVEN because the
official site has a submission limit of only 5 per day.
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Method Setting P R F1

Clean 73.1 72.9 73.0
Trigger Local. Argmax 70.5 70.5 70.5

Adaptive τ 68.7 72.8 70.7

Clean 66.7 76.0 71.0
Hard Class. Argmax 60.3 42.5 49.8

Adaptive τ 58.6 43.8 50.1

Table 5: Results of comparing trigger localization and
hard classification in extreme partial annotation scene.

when 90% are masked (p = 10%), our approach still
achieves 60% in F1, yet previous methods achieves
only 20% in F1. Another interesting finding is that
our approach yields better results than in the data
removal setting (+2.4% and +1.7% in F1 on ACE
2005 and MAVEN). This directly demonstrates our
approach’s ability to learn from unlabeled events.

6 Qualitative Analysis

6.1 Insights of the Formulation

We conduct a sanity check experiment to under-
stand why our trigger localization paradigm works.
First, we randomly select an event type and collect
N sentences (200 in our experiments) with events
of this type. Then, we create two training exam-
ples from each sentence: one with original labels
and one with all labels masked — this results in
a highly mislabeled dataset. Finally, we train two
models — one for trigger localization and the other
for hard classification — and evaluate them on a
leave-out test set. Table 5 gives the results, where
we note that even in this extreme partial annotation
scene, our trigger localization paradigm performs
well, yielding 70.5% in F1 compared to 73.0% in
F1 using clean dataset for training. The hard classi-
fication based approach, on the other hand, behaves
poorly, yielding a drop of 30% in F1.

In Figure 6, we visualize the learned probabil-
ities of two models on ground-truth triggers and
contexts. According to the results, our method
can maintain a separation between ground-truth
triggers and context words in this extreme partial
annotation scene. However, the hard classification-
based model is very sensitive to partial annotation
noise and can not obtain a clear boundary between
the ground-truth triggers and context words. For
the above reason, incorporating an adaptive τ has
little effect on the performance (Table 5).
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Figure 6: The learned probability distribution.

ACE 2005 MAVEN

Method 10% 50% 100% 10% 50% 100%

PromptLoc (SM) 58.0 73.6 76.0 50.1 65.3 67.5
+ λ+ 58.7 74.1 76.0 51.2 65.7 67.7
+ λ− 59.4 74.3 76.5 51.7 66.0 68.3
+ Gau. Reg. 59.1 73.9 76.2 52.0 65.4 68.0

PromptLoc (Full) 61.3 74.5 76.6 52.3 66.1 68.5
w/o UNT 57.2 ↓ 72.5 ↓ 75.5 ↓ 50.1 ↓ 63.4 ↓ 67.2 ↓

DirectPred 52.5 70.1 74.6 45.9 61.4 66.9
BoostLearn 44.2 68.1 75.0 41.1 58.7 66.2

OneIE (2020) 10.4 63.4 75.3 10.4 61.2 66.4
+ UNT 13.7 ↑ 65.0 ↑ 75.8 ↑ 12.7 ↑ 63.4 ↑ 66.8 ↑

NegSPL (2021b) 18.6 66.4 75.5 15.6 65.2 67.1
+ UNT 19.4 ↑ 67.2 ↑ 75.9 ↑ 18.4 ↑ 67.1 ↑ 67.9 ↑

Table 6: Results of ablation study on different modules.

6.2 Ablations on Margin Softmax and
Uncertainty Retraining

Table 6 (Top) shows an ablation study on the mar-
gin softmax regime, based on the data masking
settings, where we study the impact of positive
margin λ+, negative margin λ−, and Gaussian reg-
ularization respectively. According to the results,
we find that the negative margin λ− is the most
effective, yet the effects of different components
are complimentary. An ablation on the multiple
triggers are shown in Appendix C.

In Table 6 (Bottom), we conduct an ablation
study on our uncertainty-guided retraining mecha-
nism and compare it to: (i) w/o uncertainty, which
excludes the uncertainty interfering stage for learn-
ing, (ii) DirectPred, which retains the stage but
uses predicted labels directly for model retrain-
ing, and (iii) BoostLearn, which considers half of
the dataset to be clean and the other half to be
unlabeled and conducts a bootstrapping process
(Grézl and Karafiát, 2013). The results have ver-
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Category Example Event Type

Negligence [51.1%]
1) ... less than 5,000 U.N troops could have stop the killings if Mr. Annan had ... Die
2) ... before the genocide, Major ... The ... informant that genocide was being ... Attack
3) The Justice party changed the constitution after taking power in the elections. Elect

Light verbs [20.7%]
4) Anne-Marie got the couple ’s 19-room home in New York state ... TransferOwnership
5) After he became SG [Secretary General], Annan commissioned a report ... StartPosition
6) ... GNP took two of the National Assembly seats; a splinter party got the third ... StartPosition

Rare words [25.2%]

7) The troop opened its tank guns , opened its own mortars , decimated that unit ... Attack
8) ... Board would see it as leverage to seize power and pummel the office staff. Attack
9) Press speculation had ... while either divesting or inviting third parties to take ... TransferOwnership
10) But the general needed U.N. authorization to conduct such a raid and save lives. Attack

Co-reference [3.0%] 11) ... in the 1994 genocide in Rwanda ... for not sending enough troops to stop it. Attack

Table 7: Typical unlabeled cases in the development and test set of ACE 2005, grouped as four categories.

ified the effectiveness of our method — without
the uncertainty mechanism (w/o uncertainty), the
performance drops 2.4% in F1 on average for ACE
and 2.1% for MAVEN. The major advantage of our
method lies in that it can select reliable predictions
for training — as evidence, we have checked the
predictions with high probability (> 0.9) in the cat-
egorical distribution and found that 91.4% of them
are correct. Finally, the results suggest that our
uncertainty-guided mechanism can also promote
OneIE and NegSPL, particularly in scenes with
large unlabeled rates (e.g., p = 10% and p = 50%).

6.3 Analysis of Unlabeled Cases

We explore common patterns of unlabeled events in
Table 7. Indeed, 51.1% of them lack a discernible
pattern, which could just be due to the annotator’s
negligence. For example, in case 2, the genocide
event is labeled only in the first sentence but not
in the subsequent one. The other patterns we find
include light verbs (20.7%), such as got in case 4,
rare words (25.2%), such as pummel in case 8, and
co-reference based triggers (3%), such as it in case
11. These examples are hard for human annotators.
We have also investigated the suspicious cases en-
countered in our re-annotation procedure. Aside
from 11% merely mis-predicted by a model, we
find two prevalent patterns: (i) compound nouns
(54%), such as “election” in “create an election
code”, which does not refer to events, and (ii) defi-
nition violation (35%), such as “lobby” in “Bush
plan to lobby allies ...” — though many event de-
tectors predict “lobby” as a Meet event, but in the
ACE event ontology, a Meet event is defined as “a
meeting event is physically located somewhere”.
The comparison of cases of the control and chal-
lenge set is shown in Appendix A.2.

Original Set A1 (67%) A2 (52%)

20

40

60
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co
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 (%
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Figure 7: A real-world annotation test using the
WikiEvents dataset as a case.

6.4 A Real-World Annotation Test

Finally, we conduct a real-world annotation test
to investigate the practical applicability of our ap-
proach. Particularly, we use WikiEvents (Li et al.,
2021a) as the test bed and employ two annotators to
annotate events in 100 randomly selected training
documents. For tractability, we only consider 10
most frequent event types and limit the annotation
time to 4 hours. After deleting incorrect labels, we
obtain A1 and A2, two sets with annotation rates of
67% and 52%, respectively. We then train models
on A1, A2, and the original 100 labeled documents
respectively and test them on the test set. The per-
formances of different models are shown in Figure
8. According to the results, when trained on A1 and
A2, previous models exhibit a significant drop in
F1 (more than 25%). By comparison, our method
achieves a good performance and performs compa-
rably to methods that use the original training set
for learning. This indicates its efficacy in dealing
with the partial annotation issue.

7 Conclusion

In this study, we investigate the partial annotation
problem in ED, a critical yet less-explored prob-
lem. We motivate a new learning model for ED
and investigate its effectiveness in a variety of par-
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tial annotation settings. We also provide two re-
annotated subsets of ACE 2005 to the community
as a data contribution in order to establish a fair
evaluation. In the future, we plan to investigate the
theoretical aspects of our approach and increase its
scope by applying it to other information extraction
tasks suffering the partial annotation issue, such as
named entity recognition and relation extraction.

8 Limitations

There are two limitations of this study that could
be addressed in future research. First, this study fo-
cuses solely on the ED task. In the future, we seek
to extend it to the overall event extraction (EE) task,
which also includes the event argument extraction
task, where a complete annotation is more chal-
lenging than in ED. Second, our study models the
partially labeled training data instead of annotators.
Indeed, the annotators produce the data, so building
a model for annotators may be an essential way to
address the partial learning problem. For example,
an annotator may be more careless than others and
generate more noisy data. Consequently, a robust
model for the task should give a lower belief in the
data of this annotator to improve learning. Lastly,
our research raises no ethical issues because it fo-
cuses solely on the technical aspects of a normal
information extraction problem.
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2 convolutional layers; 200 hidden units 69.1

BERT

Bertbase; cased tokenizer 71.8
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Bertlarge; uncased tokenizer 71.0

Table 8: Model details for potential unlabeled case
identification, with their performances in the (original)
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A ACE 2005 Dataset Revision

Given that the ACE 2005 dataset is partially an-
notated and that comparing models on a partially
annotated test set results in biased results, we re-
vised the ACE 2005 development and test sets to
create a fair benchmark. Specifically, we create an
automatic method that incorporates (i) a potential
false negative identification stage to identify all pos-
sible unlabeled cases and (ii) a human validation
stage to manually validate each case.

A.1 Potential False Negative Identification

To identify potential unlabeled cases, we first train
a set of 20 different ED models with diverse archi-
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Split # Potential # Validated UL Rate

Dev. Set
Challenge 78 34 (43.6%) 6.7%
Control 34 19 (55.9%) 3.8%
Total 112 53 (47.3%) 10.5%

Test Set
Challenge 86 51 (59.3%) 12.0%
Control 50 31 (62.0%) 7.3%
Total 136 82 (60.2%) 19.3%

Table 9: Details of the revised ACE 2005 subsets. “UL
Rate” is the ratio of unlabeled cases to labeled ones.

tectures7 ranging from Feed-Forward Network Net-
works (Liu et al., 2017), Convolutional Network
Networks (Chen et al., 2015), Recurrent Neural
Networks (Nguyen et al., 2016), Graph Convolu-
tional neural networks (Liu et al., 2018b) to pre-
trained language models (Yang et al., 2019), and
then check their predictions on the development
and test sets. The model details are shown in Table
8. Our intuition is that a wide range of ED models
with various architectures can integrate a variety
of inductive biases, and we regard any predicted
trigger whose original label is O to be a potentially
unlabeled example. Consequently, we uncover 112
and 136 potentially unlabeled cases on the ACE
2005 development and test sets respectively. To
undertake a finer-grained analysis, we divide all
the potential cases further into two groups: (i) a
challenge set, in which more than half of the ED
models predict an event label for a word whose ini-
tial label is O, and (ii) a control set in which fewer
than half of the models do.

A.2 Human Validation

In the human validation stage, we manually check
each potential case following the ACE Event An-
notation Guidelines8. Specifically, we employ two
annotators9 to analyze each case independently, re-
sulting in an inter-annotator agreement κ=0.81, and
a third annotator to resolve the conflict. Table 9
summarizes the final human validation results —
on the ACE 2005 development set, 53 unlabeled
cases are finally confirmed (with a verification rate

7For each architecture, we create one model using the
hyper-parameters specified in the original paper, as well as
three variations with additional hidden layers.

8https://www.ldc.upenn.edu/
sites/www.ldc.upenn.edu/files/
english-events-guidelines-v5.4.3.pdf

9The annotators were recruited from a pool of students
who had completed a high-level NLP class at the author’s
institution. Each annotator is compensated with around $70 for
validating the total of 248 cases, resulting in an approximate
payment of $0.28 per case. In § 6.3, a similar recruitment
process and composition are adopted for annotations.

ACE 2005 MAVEN

Method 10% 20% 30% 10% 20% 30%

Hybrid† (2016) 7.4 22.3 37.1 6.4 17.7 31.7
OneIE (2020) 10.4 32.3 46.0 10.4 22.7 37.8
HiddenCRF (2019) 18.6 40.3 52.3 14.7 32.7 43.0
NegSPL (2021b) 20.6 42.3 54.3 15.6 35.7 46.0

No Prompting 60.7 68.2 72.5 51.8 59.9 62.0
Prompting w Type 61.3 68.9 72.7 52.3 60.3 62.3
Prompting w Desc. 62.0 68.7 71.9 52.1 60.5 62.5

Table 10: Results of different prompting strategies.

of 47.3%), producing a 10.5% percent ratio of unla-
beled examples to labeled ones; on the ACE 2005
test set, 86 unlabeled cases are identified (with a
verification rate of 60.2%), producing a 19.3 per-
cent ratio of unlabeled examples to labeled ones.
The high unlabeled ratio shows that the partial an-
notation problem is critical for the ACE 2005 cor-
pus. Interestingly, we also note the challenge set
has a lower validation rate than the control set. One
reason for this is that the challenge set contains
many spurious cases, such as compound nouns
that are not event triggers, lowering the validation
rate, whereas the control set contains many diffi-
cult cases, such as light verbs and unusual words
that are ground-truth triggers missed by annotators,
boosting the validation rate. We discuss the specific
examples in Section 6.3.

B Ablation on Prompting Strategy

We compare different prompting strategies, includ-
ing “No Prompting”, which does not uses prompt-
ing strategy, but build separate model for each event
type. “Prompting w Type”, which is our approach
using event type as prompt. “Prompting w Descrip-
tion”, which uses the event type description as the
prompt. According to the results in Table 10, the
prompting mechanism is not an important factor
for improvement — the method without prompting
(No Prompting) also yields good results. However,
unlike the prompting method, which allows for nat-
ural parameter sharing, it necessitates the building
of individual models for each event type, which
may be costly in a real-world setting. Furthermore,
we note that there is no noticeable difference when
type or description are used as prompts.

C Performance with Multiple Triggers

We next investigate how well our approach per-
forms in cases where the sentence contain multiple
triggers. In the original ACE dataset, 25.1% (790
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Figure 8: Ablations on multiple triggers on ACE.

out of 3136) of all sentences containing events have
more than one event trigger. However, because our
method treats different event types separately, it
may only be impacted by sentences that contain
two triggers of the same event type — such cases
account for only 7% (245 out of 3136). Figure
8 shows the results of our approach for sentences
with a single trigger and sentences with multiple
triggers. The gap between the two is very small, in-
dicating that our approach is effective for sentences
with multiple triggers.
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