
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 5529–5545

July 9-14, 2023 ©2023 Association for Computational Linguistics

Non-Sequential Graph Script Induction via Multimedia Grounding

Yu Zhou1, Sha Li2, Manling Li2, Xudong Lin3, Shih-Fu Chang3, Mohit Bansal4, Heng Ji2
1 University of California, Los Angeles 2 University of Illinois Urbana-Champaign

3 Columbia University 4 University of North Carolina at Chapel Hill
yu.zhou@ucla.edu, {shal2, manling2, hengji}@illinois.edu

mbansal@cs.unc.edu, {xudong.lin, shih.fu.chang}@columbia.edu

Abstract

Online resources such as wikiHow compile a
wide range of scripts for performing everyday
tasks, which can assist models in learning to
reason about procedures. 1 However, the scripts
are always presented in a linear manner, which
does not reflect the flexibility displayed by peo-
ple executing tasks in real life. For example, in
the CrossTask Dataset, 64.5% of consecutive
step pairs are also observed in the reverse order,
suggesting their ordering is not fixed. In addi-
tion, each step has an average of 2.56 frequent2

next steps, demonstrating "branching". In this
paper, we propose a new challenging task of
non-sequential graph script induction, aiming
to capture optional and interchangeable steps
in procedural planning. To automate the induc-
tion of such graph scripts for given tasks, we
propose to take advantage of loosely aligned
videos of people performing the tasks. In par-
ticular, we design a multimodal framework to
ground procedural videos to wikiHow textual
steps and thus transform each video into an
observed step path on the latent ground truth
graph script. This key transformation enables
us to train a script knowledge model capable of
both generating explicit graph scripts for learnt
tasks and predicting future steps given a partial
step sequence. Our best model outperforms the
strongest pure text/vision baselines by 17.52%
absolute gains on F1@3 for next step prediction
and 13.8% absolute gains on Acc@1 for partial
sequence completion. Human evaluation shows
our model outperforming the wikiHow linear
baseline by 48.76% absolute gains in capturing
sequential and non-sequential step relations.

1 Introduction

A script consists of typical actions that are per-
formed to complete a given task. Online re-

1Our data and code are publicly available for re-
search purposes at https://github.com/bryanzhou008/
Multimodal-Graph-Script-Learning/

2Occurred in more than 10 videos.

Non-sequential Graph Script

0.48

Add some salt

0.72

0.43

Put in cooked eggs

0.75

Add chopped green onions

Mix well and serve

0.65

Cook cold rice in the wok for
3min

0.52

Pre-cook some eggs

0.43

Cut some green onions

0.37

Add some chilli peppers

0.27
0.25

0.79

Heat the wok with oil until hot

Mix well and serve

Put in 2 red hot chilli
peppers

Put in cold rice and cook
3min

Heat the wok for 3 minutes

Put in the cooked eggs

Add green onions

Add a touch of salt

Chop up some green onions

Pre-cook 3 whole eggs

Figure 1: Example of wikiHow linear script of the pro-
cedural task make egg fried rice compared to an ideal
example of our non-sequential graph script consisting
of optional and interchangeable steps.

sources such as wikiHow3 provide a wide vari-
ety of community-edited scripts for everyday tasks
(Fig.1). Such a large library of linear scripts can
serve as a starting point for learning goal-step
knowledge (Zhang et al., 2020; Yang et al., 2021b).
However, as the saying goes, “all roads lead to
Rome”. There is usually more than one way to
achieve any given goal. Practically speaking, users
should be presented with multiple alternative step
sequences so that they can pick the most suitable
route according to their unique situations and pref-
erences. Robots and virtual assistants also stand
to gain the crucial abilities of global planning opti-
mization and on-the-spot improvisation from alter-
native step paths.

In particular, we observe that two types of steps

3www.wikiHow.com

5529

https://github.com/bryanzhou008/Multimodal-Graph-Script-Learning/
https://github.com/bryanzhou008/Multimodal-Graph-Script-Learning/
www.wikiHow.com

are overlooked by linear scripts: optional steps and
interchangeable steps. Optional steps such as Add
some chili peppers can be skipped based on the
users’ preference or item availability. Interchange-
able steps such as Pre-cook some eggs and Cut
some green onions can be performed in either
order without affecting the overall task completion.
After accounting for these two step types, the origi-
nal linear script is converted into a ‘non-sequential
graph script’, as shown in Fig.1 (right).

Previous efforts like Proscript (Sakaguchi et al.,
2021) obtained non-linear graph scripts via crowd-
sourcing, which is not scalable. In this work, we
automate the process of transforming a linear text
script into a non-linear graph script by grounding
into visual observations (videos) of people exe-
cuting the task. If we observe that people of-
ten skip a certain step, then it is natural to de-
note that step as optional. Similarly, if people
tend to swap the ordering of a group of steps,
these steps are likely interchangeable. Since wiki-
How does not contain such emperical observations,
we align wikiHow scripts with procedural video
datasets such as Crosstask (Zhukov et al., 2019)
and Howto100M (Miech et al., 2019) (see Fig.2).

To map a video to a sequence of wikiHow steps,
we perform alignment on both task-level and step-
level. On the task level, we use a title matching
algorithm based on Sentence-BERT similarity to
select videos and wikiHow documents for the task.
Then, we propose an effective pre-possessing strat-
egy (simplification + deduplication) to create the
wikiHow step libarary. At the step level, we con-
sider two situations based on whether the video
has been segmented into steps. When manual seg-
mentation is provided, we directly map video an-
notations to the wikiHow step library. Otherwise,
we first segment the video into clips based on ASR
sentence groups (Fig.2), and then map them to wiki-
How steps using a fault tolerant grounding strategy
(§3.1) that is robust to inaccurate ASR sentence
boundaries. When grounding is complete, we ob-
tain the set of observed step sequences for each
task.

Next, to obtain the desired graph script from the
observed step sequences, we use auto-regressive
seq2seq models (Sutskever et al., 2014) to learn the
distribution of valid paths (step sequences) along
the graph (§3.2). As opposed to directly training a
graph generation model, our path generation learn-
ing format is better aligned with existing procedural

video data and also takes advantage of pretrained
seq2seq models to improve generalization across
tasks. Since the cross-entropy loss used for training
auto-regressive models focuses on penalizing lo-
cal “one-step” errors (the errors in predicting each
single step), we further introduce a Path-level Con-
straint Loss to reduce global inconsistencies of the
entire path. To generate hard negative contrastive-
paths that fail to complete the task, we manipulate
the video-grounded positive paths through global
reordering, shuffling, and re-sampling (§3.2).

After training, our model is able to produce com-
plete paths given input step libraries from various
domains, including but not limited to: cooking, car
maintenance, and handcrafting, etc. To automati-
cally generate explicit graph scripts, we implement
step-level constraint beam-decoding to sample mul-
tiple generated step sequences and record a step-
adjacency matrix for constructing the final graph
script.

For downstream evaluation, we adapt the exist-
ing CrossTask dataset (Zhukov et al., 2019) to set
up two new evaluation sub-tasks: Next Step Predic-
tion and Partial Sequence Completion. Compared
against top-performing test/video only baselines,
our best model achieves 17.52% absolute gains in
overall F1@3 for next step prediction and 13.8%
absolute gains on Accuracy@1 for partial sequence
completion. Moreover, we use MTurk to perform
Human Evaluation on the correctness and expres-
siveness of our auto-generated graph scripts. Re-
sults show our model can correctly capture optional,
interchangeable and sequential step relationships
with up to 82.69% overall accuracy.

Key contributions of this paper include:

• We introduce an automatic method for con-
verting sequential text scripts into non-
sequential graph scripts by aligning / ground-
ing textual scripts to video datasets.

• We propose a path generation model capa-
ble of learning from video-grounded step se-
quences with Path-Level Constraint Loss.

• Experiments show our non-sequential path
generation model to be more effective than
existing text/vision baselines in next step pre-
diction and partial sequence completion.

• Human evaluation of generated graph scripts
demonstrates our non-sequential graph scripts
to be more accurate and expressive in captur-
ing step-relationships.

5530

Task Name: Make BLT Sandwich

Grounded
Sequence

" cook the
bacon in a pan"

"put mayo on
bread"

"put the cooked
bacon on it"

"put some tomato
slices on top"

"put some lettuce
on top too"

"cover it with another
piece of bread"

"put some
avocado on top"

Make a BLT Sandwich2

1. Brush some butter on bread.
2. Add a few avocado slices.
3. Add a spritz of lemon juice.
......
6. Sprinkle some Swiss cheese
7. Add your final piece of bread.

Make a Breakfast Sandwich

1. Add your spreads (such as
mayo) to a large square slice of
bread.
2. Slice some tomatoes.
3. Add some lettuce on top.
......

Make a BLT Sandwich1

1. Cook the bacon.
2. Put cooked bacon on bread.
......
5. Add some lettuce.
6. Place the second piece of
bread on top of your sandwich.

······

Labelled
Video

Step
Annotations

Grounded
Sequence

"smoking ribs
follow channel"

 "taking break
hotdog series"

"inspired
episode"

Removed cook the
bacon

slice some
tomatoes

add mayo to a
slice of bread

add some
lettuce

add the
bacon

add the final
piece of bread

Unlabelled
Video

ASR
Narrations

"got pack thick
cut hickory

smoked bacon'"

 "get this going"

"got my bacon
fried"

"cajun seasoning
low sodium

version"

 "seasoned
bread little flip

exact"
......

"got local grown
green tomatoes
slice discard"

 "end go quarter

inch thick"

"local bought"

······
 "assembling blt
bacon lettuce

tomato correct"

"using romaine
hearts lay light"

"thick cut bacon
bacon grill"

 "bacon grill grill
flavor enhance"

"plenty bacon little

problem"

"one more
ingredient"

 "ingredient cap

bad boy blt"

"ingredient cap
bread"

Keyword Matching

S-BERT Similarity

cook the
bacon

add mayo to a
slice of bread add the bacon add some

tomato slices
add a few

avocado slices
add some

lettuce
add the final

piece of bread

Regex Parsing

Text Simplification

Remove Duplicate

WikiHow Step Library
· add a few avocado slices · slice some tomatoes
· brush some butter on bread · cook the bacon
· add mayo to a slice of bread · add some lemon juice
· add some tomato slices · add the bacon
· add the final piece of bread · add some lettuce
· add some cheese ······

Example Grounded Sequence from a Labelled Video

Example Grounded Sequence from a Unlabelled Video

Figure 2: Example of grounding procedural videos of the Making BLT Sandwich task to wikiHow steps. We
create a wikiHow step library through task-level matching and step pre-processing, and then ground video step
annotations/asr-narrations to textual steps from the wikiHow step library.

2 Task Formulation

In this paper, we propose a new challenge of graph
script induction for procedural tasks: Given a pro-
cedural task T represented by a task name, our
goal is to induce a graph script for the task us-
ing the steps in the linear script. In particular, the
graph script should capture the following relations
between steps: (1) sequential ⟨si → sj⟩ where
two steps should be completed sequentially; (2)
interchangeable ⟨si ↔ sj⟩ where two steps can be
completed in either order or at the same time; (3)
optional ⟨si → sk, si → sj → sk⟩ where a step
can be optionally added between other steps.

To achieve this goal, we assume that we have
access to a large repository of textual scripts (wiki-
How) and a set of videos that record people carry-
ing out the tasks.4 The videos might have step-level
annotations or accompanying narration which we
can convert into text using ASR tools.

3 Methodology

To learn a graph script induction model, we first
ground the video dataset to textual steps on both
task-level and step-level (Fig. 2). After grounding,
each video can be seen as a valid step sequence
sampled from the ground truth graph script. Then,
we use such grounded step sequences to train our
graph script model and enhance model learning

4Or a large repository of videos from which we can find
matching videos using retrieval.

by introducing a Path-Level Constraint Loss over
carefully designed contrastive step sequences.

3.1 Video to Script Grounding

For each video, we first perform task-level align-
ment to find the top-m most relevant wikiHow doc-
uments and then step-level alignment to ground the
video to specific wikiHow steps. We consider the
following two cases based on whether the video
dataset includes step-level annotation:

Labelled Video Datasets: Labelled video
datasets like Crosstask (Zhukov et al., 2019)
contain procedural videos grouped by human-
annotated task names. In addition, the videos
are labelled with temporal step segmentation and
relatively accurate step annotations in the form of
short imperative English sentences. The example
video in Fig.2 for task: "Make BLT Sandwich" is
annotated with steps: "cook the bacon in a pan",
"put mayo on bread", etc.

At the task level, we first use keyword match-
ing to quickly find all relevant wikiHow docu-
ments whose title contains ≥ 85% of keywords
in the task name. For example in Fig. 2, the
task name: "Make BLT Sandwich" is matched to
wikiHow documents: "Make a BLT Sandwich1",
"Make a Breakfast Sandwich", etc. After we re-
trieve a list of relevant wikiHow documents, they
are further ranked by cosine similarity between
Sentence-BERT embeddings of document title and

5531

the task name. Finally, the steps of the top m wik-
iHow documents are selected to form the initial
wikiHow step candidate pool.

In step-level grounding, we first record Sentence-
BERT Similarity scores between each video step
annotation and all processed steps in the wikiHow
step library. Then, we do greedy matching between
video step annotations and wikiHow steps with
priority given to higher scoring pairs. Here we
keep video steps with best score ≥ k1

5, while lower
scoring video steps are considered ungroundable.
When all videos have been grounded, unused steps
from the wikiHow step library are removed.

Unlabelled Video Datasets: Although we
achieve high grounding quality for annotated video
datasets, step-level annotation is quite costly and
often not available for a wide range of tasks that
we are interested in. A more practical scenario
is when we have a large repository of videos
like Howto100M from which we can retrieve
videos corresponding to the target task. Task-level
alignment for Howto100M is different from that
of annotated video datasets due to questionable
video grouping. In Howto100M, videos for each
task are selected purely based on Youtube search
ranking. This ranking often prioritizes popular
videos that have low correlation to the task at
hand. To ensure high video-task correlation, we
re-select Howto100M videos for each task based
on BERT-Similarity between video title and the
task name (only videos with similarity score ≥ k2
are selected).

Step-level alignment also becomes much more
challenging as we must rely on video ASR tran-
scriptions without human step-level annotations.
ASR narrations usually comprise of short partial
sentence pieces without strict temporal step bound-
ary labels (Fig.2). In addition, since Howto100M
videos are collected from Youtube, some ASR nar-
rations contain task-irrelevant information such as
subscription requests (Fig.2). To address these chal-
lenges, we use a more fault tolerant grounding strat-
egy shown in Fig.2: First, we remove all sentence
pieces containing Youtube stop words including
“subscribe”, “channel”, “sponsor”, etc. Then, we
expand each ASR sentence piece by concatenat-
ing it with surrounding pieces until the length of
the resulting piece exceeds 10 words6. Finally, we

5Hyperparameters in the grounding section are empirically
selected based on qualitative evaluation over a small subset.

6This parameter is borrowed from (Lin et al., 2022) which

ground each resulting ASR step to wikiHow steps
with a higher match threshold k3.

Processing the wikiHow Step Library: High
quality step-level alignment demands the wikiHow
Step Library used for grounding to contain clean,
non-overlapping steps that are homogeneous in for-
mat and granularity to the video step annotations.
Since the vanilla wikiHow dataset (Koupaee and
Wang, 2018) does not meet these criteria, we per-
form a series of pre-processing before step-level
alignment:

1. First, we put the steps in the initial wiki-
How step library through a series of regex-
based parsing to standardise stylistic ele-
ments like capitalization, punctuation and
bracket/parentheses usage.

2. Then, we use a seq2seq text simplification
model (Maddela et al., 2021) to reduce granu-
larity in wikiHow steps which are often more
fine-grained than video step annotations.

3. Finally, we deduplicate the wikiHow Step Li-
brary by enforcing a minimum weighted Lev-
enshtein distance of 0.1 between any two steps
and removing overly similar duplicate steps.

3.2 Model Training

Graph Script Learning Inspired by (Bojchevski
et al., 2018), we transform the graph script learning
problem into a path learning problem by treating
steps as nodes and temporal relationships between
the steps as directed edges (edges point to future
step). For each procedural task T , the wikiHow
step library of task-relevant steps WT generated in
§3.1 represents the set of nodes used to construct
the latent ground-truth graph script. In §3.1, we
grounded each procedural video to a wikiHow step
sequence. These step sequences can be regarded
as observed step node paths that lead to successful
completion of T . In this formulation, learning the
latent graph script for a task can be regarded as
learning the weights of valid paths through WT .

For our basic architecture, we train a BART-base
model (Lewis et al., 2019) to generate complete
step sequences given a wikiHow step library. As
illustrated in Fig.3, for each task T , we first shuffle
the corresponding wikiHow step library to remove
any pre-existing step ordering. Then, we concate-
nate the shuffled step library with a special sepa-

uses the same length threshold

5532

Input Step Library:
add some lettuce <-> add the final piece of bread <->
cook the bacon <-> add some lemon juice <-> cook the
bacon <-> add some lemon juice <-> cook the bacon
<-> add mayo to a slice of bread <-> add some cheese
<-> brush some butter on bread <->

Concatenate w/ SEP token

Target Output Sequences:
cook the bacon <-> slice some tomatoes <-> add mayo to a slice of bread <-> add some lettuce <-> add the
bacon <-> add the final piece of bread <->

WikiHow Step Library
· add a few avocado slices · slice some tomatoes
· brush some butter on bread · cook the bacon
· add mayo to a slice of bread · add some lemon juice
· add some tomato slices · add the bacon
· add the final piece of bread · add some lettuce
· add some cheese ······

Contrastive Output Sequences:
 Re-sample: slice some tomatoes <-> add some lettuce <-> add the bacon <-> add some lemon juice <-> add
 some cheese <-> cook the bacon <->
 Shuffle: add mayo to a slice of bread <-> add some lettuce <-> add your bacon <-> add the final piece of
 bread <-> cook the bacon <-> add a few avocado slices <-> add some tomato slices <->
 Cut-&-Swap: add some lettuce <-> add the bacon <-> add the final piece of bread <-> cook the bacon <-> slice
 some tomatoes <-> add mayo to a slice of bread <->

Shuffle

Concatenate w/ SEP token

Example Grounded Sequence from a Video

cook the bacon slice some
tomatoes

add mayo to a
slice of bread add some lettuce add the bacon add the final

piece of bread

Figure 3: Example input/output sequence in model training. We create the input sequence by shuffling and
concatenating the wikiHow step library. We use the concatenated grounded sequence as the target output (positive
example) and its permuted/resampled versions as the contrastive output (negative example).

rator token7 appended to the end of every step to
indicate step boundary. The resulting sequence is
used as the input sequence for all training data re-
garding T . For each target output, we first collect
all grounded step sequences of videos completing
T . Similar to input sequences, steps in the output
are also appended with the same separator token
and concatenated. Finally, each processed video-
grounded step sequence is used individually as a
target output sequence for our model.

Path-Level Constraint Besides being able to
generate valid step sequences that lead to success-
ful task completion, we also enable our model
to differentiate valid step sequences from invalid
ones that fail to complete the task. We accomplish
this by introducing a Path-Level Constraint in the
form of a contrastive loss. For each positive step
sequence, we generate n negative contrastive se-
quences using the following 3 methods (Fig.3):

1. Re-sample: randomly re-sample a step se-
quence of the same length from the wikiHow
step library. Both step selection and step or-
dering are wrong.

2. Shuffle: shuffle the sequence until no longer
valid. Step selection is preserved, but lo-
cal/global step ordering are wrong.

3. Cut & Swap: cut the sequence at a random
position and swap the latter part to the front.
Step selection and local step ordering are pre-
served, but global step ordering is wrong.

To maximize the model’s learning potential, we fol-
low the paradigm of curriculum learning (Bengio

7We define the separator token as <->.

et al., 2009) when introducing contrastive exam-
ples: we start with contrastive sequences generated
via Re-sample because they are most dissimilar
from valid sequences. As training progresses, we
shift toward Shuffled and Cut & Swap by gradually
increasing the probability of sampling from those
contrastive sequence groups.

Inspired by (Saha et al., 2022) , we use the last
layer of the decoder in BART as the representa-
tion of each token in the sequence and obtain the
sequence representation by averaging over the con-
stituent token representations. Let the hidden rep-
resentations of our generated sequence s(g), true
grounded sequence s(p) and negative contrastive
sequence s(n) be denoted by z(g), z(p) and z(n),

respectively. Let Z =
{
z(p)

}⋃{
z
(n)
i

}M

i=1
, with

M as the number of negative contrastive sequences.
Hence, we define our Path-level Contrastive Loss:
8:

LPC = − log
exp[sim(z(g),z(p))/τ]∑

z(i)∈Z exp[sim(z(g),z(i))/τ]
,

(1)
where the temperature τ is a hyperparameter and

sim denotes cosine similarity. Finally, our overall
loss combines the Path-level Contrastive Loss with
the Cross-Entropy Loss of seq2seq models:

LCE =
∑

i

− logP
(
s
(p)
i | s(p)<i ,WT

)
, (2)

Ltotal = LCE + αLPC, (3)
8Based on the InfoNCE Contrastive Loss(van den Oord

et al., 2018)

5533

Model Generated Sequences for Task: Make Lemonade

(4). add sugar to
the lemon juice

(6). stir the
lemonade with a

large spoon

(7). pour lemonade
into glass

(2). squeeze the
lemon to get most of

the juice out

(1). cut the lemons
into halves

(5). add ice cubes
into the mixture

(6). stir the
lemonade with a

large spoon

(7). pour lemonade
into glass

(2). squeeze the
lemon to get most of

the juice out

(4). add sugar to
the lemon juice

(1). cut the lemons
into halves

(5). add ice cubes
into the mixture

(6). stir the
lemonade with a

large spoon

(7). pour lemonade
into glass

(2). squeeze the
lemon to get most of

the juice out

(3). transfer the
lemon juice into a

large pincher

(1). cut the lemons
into halves

······
1 2 3 4 5 6 7

1 0.8 0 0 0 0 0

2 0 0.7 0.15 0 0 0.05

3 0 0 0.2 0.45 0.2 0

4 0 0 0.05 0.25 0.25 0

5 0 0 0 0.2 0.4 0

6 0 0 0.05 0 0 0.7

7 0 0 0 0 0.05 0 Output Graph Script: Make Lemonade

(4). add sugar to
the lemon juice

(5). add ice cubes
into the mixture

0.25
0.2

(6). stir the
lemonade with a

large spoon

0.25

0.4

(7). pour lemonade
into glass

0.7

0.15

(2). squeeze the
lemon to get most of

the juice out

0.450.2

0.2

(3). transfer the
lemon juice into a

large pincher

0.7

0.8

(1). cut the lemons
into halves

Generated Sequential Step Paths

1 32 5 6

1 2 4 6

1 42 5 6

7

7

7

······

Step-Adjacency Matrix

Figure 4: Example of Graph Script Generation. To decode a graph from our generator, we first ask the model to
generate alternative step sequences via beam-decoding and record them in an step-adjacency matrix, which is then
be used to reconstruct the non-sequential graph script (with low-frequency edges removed).

where α is a hyperparameter and WT denotes
the task-specific wikiHow step library.

3.3 Graph Script Generation

In §3.2, we transformed the graph script learn-
ing problem into a path learning problem by treat-
ing procedural step relationships as edges between
nodes and abstracting the latent ground truth graph
as the collection of paths through node-set WT that
lead to successful task completion. After our model
has learnt the latent ground truth graph scripts for a
set of tasks, we use it to reconstruct explicit graph
scripts through the following procedure:

For each task T , we use WT as model input and
have the model generate output step sequences con-
sisting only of steps within WT . We enforce this
by implementing Step-constrained Beam Search,
an extension of Constrained Beam Search (De Cao
et al., 2021), where the model is only allowed to
generate valid next words that lead to entities stem-
ming from a fixed prefix trie P . Here, we con-
struct PT containing all steps in WT and ask the
model to repeatedly decode from PT to generate
step sequences. After each step is fully generated,
the model is given the choice to end generation
by producing the end-of-sentence (eos) token or
continue decoding the next step by producing a
token from the root of PT . After generating the
predicted step sequences, we break them down and
record the edges in an graph adjacency matrix be-
tween all generated step nodes. The low-frequency

edges representing unlikely paths are removed to
improve graph script confidence. Finally, we re-
construct the output graph script from the graph
adjacency matrix. An example of this process on
the task "Make Lemonade" is detailed in Fig.4.

4 Experiments

To evaluate our non-sequential graph script induc-
tion model, we propose 3 new downstream tasks:

1. Graph Script Generation: for each task T , the
system is asked to produce a 2-dimensional
probabilistic graph script similar to Fig.1 that
captures the step relationships introduced in
section 1). The model is scored based on hu-
man evaluation of its generated graph scripts.

2. Next Step Prediction: given a partial step se-
quence Sp = (s1 → ... → st−1), the model is
asked to predict the top-k most likely choices
for the next step st from WT . For each partial
step sequence, there can be a variable number
of correct next steps.

3. Partial Sequence Completion: given a partial
step sequence Sp = (s1 → ... → st−1),
the model is asked to produce a sequence
S = (s1 → ... → sn) using steps from WT
that completes the task T . This task is partic-
ularly challenging because the model is asked
to predict a variable-length step sequence that
best completes the task at hand.

5534

Model HT100M
Next Step Prediction Partial Sequence Completion

Acc@1 Acc@3 Rec@3 F1@3 Acc@1 Edit Normalized
↑ ↑ ↑ ↑ ↑ Dist. ↓ Edit Dist. ↓

TimeSformer+DS ✗ 59.91 60.82 52.98 43.83 - - -

Random ✗ 31.34 50.32 28.84 38.04 1.20 2.398 .6935
wikiHow Linear ✗ 44.05 59.51 54.02 42.14 11.74 1.872 .6061
ReBART ✗ 49.07 58.00 61.39 44.38 18.28 1.802 .4411
Direct NSP (Grounding) ✗ 68.89 63.02 79.01 53.85 - - -
Direct PSC (Grounding) ✗ - - - - 29.17 1.214 .4118
Ours (Grounding) ✗ 75.59 67.50 83.17 58.29 20.12 1.639 .4296
Ours (Grounding) ✓ 70.97 74.68 74.14 61.52 29.34 1.193 .4093
Ours (Grounding + PLC) ✗ 75.49 71.89 72.51 58.48 26.70 1.228 .4267
Ours (Grounding + PLC) ✓ 76.09 73.72 78.22 61.90 32.08 1.123 .3849

Table 1: Automatic Evaluation Results on Next Step Prediction and Partial Sequence Completion. Here
“HT100M” denotes whether the model is pre-trained on the Howto100M dataset with temporal order information.
“Normalized Edit Dist.” represents the average Levenstein distance normalized by sequence length. “Grounding”
denotes whether the model used our grounded video sequences for training. “PLC” represents Path-Level Constraint.

4.1 Baselines

Baseline: TimeSformer+DS. TimeSformer (Berta-
sius et al., 2021) trained with unsupervised distant
supervision (Lin et al., 2022) provides the state-
of-the-art step-level video representation for pure-
video-based step forecasting. We fine-tuned the
model on CrossTask videos before testing.
Baseline: wikiHow Linear. This model is trained
on all wikiHow linear step sequences selected dur-
ing title-matching (§3.1). To ensure fairness in
comparison, the training sequences undergo the
same step processing as that of the non-sequential
model. For each training sequence, the model takes
the complete wikiHow step library as input and
one linear sequence from the selected wikiHow
documents as target output.
Baseline: ReBART. ReBART (Chowdhury et al.,
2021) is the state-of-the-art sentence re-ordering
method that uses a text-to-marker generation for-
mat. Numbered markers are inserted before each
step in the training data, and the target output step
sequence is translated into corresponding marker
sequences.
Ablation Study: Direct Next Step Prediction
& Direct Partial Sequence Completion. These
two task-specific models are included as variants
of our model (§3.2) where the input training se-
quence is a partial start sequence and the target
output sequence is just the next step (for next step
prediction) or the remaining sequence (for partial
sequence completion). The training data for these
two models are also constructed from our grounded
video step sequences (§3.1).

4.2 Automatic Evaluation

Evaluation Dataset Inspired by (Chen et al.,
2022), we build our evaluation dataset on top of the
existing CrossTask Dataset (Zhukov et al., 2019)
and reuse their manual temporal step annotations.
Using procedures in §3.1, we ground annotated
CrossTask videos (Fig.2) to sentence-simplified
wikiHow Steps. Afterwards, we randomly select
40% of grounded step sequences to form the train-
ing set. Remaining sequences form the test set.

For each grounded step sequence S = (s1 →
... → sn) in the test set, we split after all steps
(st|t ∈ [1, n−1]) to produce partial start sequences
Sp = (s1 → ... → st). For next step prediction,
the correct output corresponding to Sp is the next
step st+1; while for partial sequence completion,
the correct output corresponding to Sp is the re-
maining sequence (st+1 → ... → sn). In the case
where multiple grounded step sequences share the
same partial start sequence Sp but have different
next step / remaining steps, the input sequence Sp

would have multiple correct answers for next step
prediction / partial sequence completion.

Next Step Prediction As shown in Table 1, our
models trained using video-to-text grounded step
sequences outperform other baselines trained with
wikiHow linear step sequences by 15% ∼ 20% ab-
solute gains in all next step prediction metrics. This
shows the advantage of our video-grounded step
sequences over wikiHow linear sequences in im-
proving the model’s ability to predict next steps.
Comparing our models trained on complete step
sequences against models trained directly on next

5535

Relation Type Linear Ours
#/task Acc #/task Acc

Sequential 10.56 35.79 12.50 88.02
Optional 1.40 19.23 2.44 65.91
Interchangeable 0.44 37.50 1.44 88.46

Overall 12.40 33.93 16.38 82.69

Table 2: Human Evaluation results by step-relation type.

Task Category Linear Ours
#/task Acc #/task Acc

Cooking 12.1 35.16 16.2 81.07
Household 12.5 28.33 16.0 75.00
Car Maintenance 15.0 36.67 17.5 88.89

Table 3: Human Evaluation results by task category.
#/task denotes average number of relations per task.

step prediction without whole script knowledge, we
see a large performance gap. This shows the impor-
tance of learning whole-script knowledge for next
step prediction. When predicting top-3 most likely
next steps, models pretrained on Howto100M sig-
nificantly outperform models w/o pretraining. This
can be attributed to the pretrained models having
better knowledge of sequence "branching" from
observing more diverse task executions.

Partial Sequence Completion Our best perform-
ing models trained using video-to-text grounded
step sequences typically achieves over 13% abso-
lute gains on Accuracy@1 and over 14% relative
gains on normalized edit distance against other
baselines trained using wikiHow linear step se-
quences, showing grounded videos step sequences
can boost models’ ability in partial sequence com-
pletion. When comparing models trained with the
Path-Level Constraint (Sec.3.2) to otherwise identi-
cal models trained without such constraint, we see
significant gains across all metrics. This demon-
strates the effectiveness of our Path-Level Con-
straint in teaching the model to produce valid step
sequences while avoiding their invalid counterparts.
We also observe a performance gain for models pre-
trained on Howto100M vs the same models w/o
such pretraining. This result combined with similar
results in next step prediction shows that pretrain-
ing on a large unlabelled procedural video dataset
can improve the model’s ability to learn scripts for
other tasks.

4.3 Human Evaluation

Using the graph construction method in §3.3, we
generate two graph scripts for each procedural task
in CrossTask using the wikiHow Linear baseline
(§4.1) and our non-sequential graph script induc-
tion model. To evaluate the correctness and expres-
siveness of generated graph scripts, we design T/F
questions regarding sequential, optional, and inter-
changeable relations. For optional and interchange-
able step relationships indicated by the graph script,
we ask annotators whether the relationship is ap-
propriate. For other steps in the connected graph
script, we ask annotators whether their previous
and subsequent steps are sequentially appropriate.

Table 2 and table 3 show our model achieves
46.68% ∼ 52.23% absolute gains in Accuracy
across all relation types and task categories. In
addition, our model is able to accurately capture
74% more optional steps and 227% more inter-
changeable step pairs in generated graph scripts.

5 Related Work

Text-based Script Induction Temporal relations
have always been the core of script (schema) re-
lated tasks, which can either be learned from data or
human annotation. When human-written scripts are
available, previous works have typically assumed
that the human-provided ordering of steps is the
only correct order (Jung et al., 2010; Ostermann
et al., 2017; Nguyen et al., 2017; Lyu et al., 2021;
Sakaguchi et al., 2021). Another line of work has
attempted to learn event ordering from data alone,
either by assuming that the events follow narrative
order (Chambers and Jurafsky, 2008, 2009; Jans
et al., 2012; Rudinger et al., 2015; Ahrendt and
Demberg, 2016; Wang et al., 2017) or by using an
event-event temporal relation classifier to predict
the true ordering of events (Li et al., 2020, 2021).
Our work is distinct from both paradigms as we
use human-written scripts as a basis and learn the
event ordering from observed sequences in videos.

Video-based Script Induction Existing efforts
that utilize visual information in script induction
can be mainly classified into implicit script knowl-
edge models and explicit sequential script induc-
tion models. Some previous efforts have focused
on training models with implicit script knowl-
edge that can make step-level predictions based
on textual (Yang et al., 2021c), visual (Sener and
Yao, 2018; Lin et al., 2022; Zhou et al., 2023),

5536

or multimedia (Zellers et al., 2021; Wu et al.,
2022; Wang et al., 2022) input. Other models
aim to produce explicit sequential graph scripts
that only capture procedural relations between
steps (Salvador et al., 2018; Yang et al., 2021a).
Another line of works use multimedia informa-
tion to generate explicit graph scripts that model
only pre-conditional/dependency relationships be-
tween events (Logeswaran et al., 2023) and sub-
events (Jang et al., 2023). Ours is the first work to
generate explicit non-sequential graph scripts that
capture rich procedural, optional, and interchange-
able relations through multimedia learning.

6 Conclusions and Future Work

We propose the new task of Non-sequential Graph
Script Induction to capture optional and inter-
changeable steps in procedural tasks. Instead of re-
lying on the script annotation, we automatically in-
duce graph scripts by grounding procedural videos
to a wikiHow textual step library. We transform the
graph generation problem to a path generation prob-
lem that can better aligned with video observations,
and train a seq2seq model using our grounded step
sequences while imposing path-level constraints
via a contrastive loss. Experiments demonstrate our
model’s superiority on downstream tasks including
next step prediction and partial sequence comple-
tion. Human evaluation confirms our model’s abil-
ity to generate graph scripts that correctly capture
optional and interchangeable steps. Future work
will focus on incorporating more video supervision
signals such as enriching steps from videos and
adding the repeatable steps.

7 Limitations

7.1 Representation of Repeatable Steps

Our current approach is not able to capture repeat-
able steps due to data source constraints from our
video datasets. The video datasets we use in this
work, namely Howto100M and CrossTask, are both
constructed from Youtube videos. At the end of
many Youtube instructional videos, there is a brief
recap of the whole task, where many steps are dis-
played for a second time. Since CrossTask was
originally proposed for step segmentation, the step
annotations capture all video references to task-
related steps, including the brief mentions at the
end of the videos that are not actually part of task
execution. Similarly, Howto100M videos ASR

pieces near the end of the video would also capture
the vioceover going through such step references.

Therefore, to ensure the grounded video step
sequence only contains steps included in the exe-
cution of the task, we simply removed all repeated
steps in the grounded step sequence and only kept
the first occurrence. However in this process, we
also removed valid repeats of the same step. For
example, if the step Add some salt was executed
twice at different stages of the task. We leave this
area of improvement for future works.

7.2 Enrichment of Steps from Video

In our current model, all the steps in the wikiHow
step library are processed steps from related wiki-
How documents. However, it has been shown that
textual sources can be prone to reporting bias, oc-
casionally ignore task-relevant information that is
present only in the vision modality (Chen et al.,
2021).

Continuous frames from video data can capture
details that text descriptions do not explicitly men-
tion. If the model is able to make use of such
vision-exclusive details and learn patterns from
them, its overall ability can be improved. The
challenge in utilizing such underlying visual infor-
mation is to differentiate task-relevant video steps
from their task-irrelevant counterparts. This area
has not been covered by our current graph script
induction pipeline, we hope to provide comprehen-
sive solutions in future work.

8 Ethics and Broader Impact

8.1 Datasets

In this work, we used publicly available text data
from the wikiHow Dataset (https://github.
com/mahnazkoupaee/wikiHow-Dataset) Cre-
ative Commons License (CC-BY-NC-SA),
which is under the Attribution-Noncommercial-
Share Alike 3.0 Creative Commons License
which allows us to use the dataset for non-
commercial purposes. For video data, we
used the publicly available CrossTask Dataset
(https://github.com/DmZhukov/CrossTask)
under the BSD 3-Clause "New" or "Revised" Li-
cense and the Howto100M Dataset (https://www.
di.ens.fr/willow/research/howto100m/)
under the Apache License 2.0. Both licenses
allows us to use the datasets for non-commercial
purposes.

5537

https://github.com/mahnazkoupaee/wikiHow-Dataset
https://github.com/mahnazkoupaee/wikiHow-Dataset
https://github.com/DmZhukov/CrossTask
https://www.di.ens.fr/willow/research/howto100m/
https://www.di.ens.fr/willow/research/howto100m/

The datasets we use consist of non-offensive
instructional and procedural videos / text scripts
about everyday tasks. Our usage of the datasets
only concerns the task related information and does
not violate privacy.

8.2 Human Evaluation
As detailed in §4.3, we conduct human evaluation
for our generated graph scripts in this paper via
Amazon Mechanical Turk(https://www.mturk.
com/). All annotators involved in the human evalu-
ation are voluntary participants and receive a fair
wage. All annotators were instructed of the task
nature and consent to complete the annotation via
a online consent form. We have applied for IRB
exemption and the request was approved.

8.3 Model Usage
Our graph script induction framework is not in-
tended to be used for any activity related to any
human subjects. Instead, it should only be used for
generating graph scripts regarding everyday tasks
that benefit people’s learning and understanding. It
may also be used for predicting/instructing future
step/steps to facilitate completion of relevant tasks.
Note that our graph script induction framework is
intended for wikiHow visual tasks and might not
be applicable for other scenarios.

Acknowledgement

Many thanks to Prof. Mark Yatskar, Prof. Chris
Callison-Burch, Prof. Long Chen, and Prof. Juanzi
Li for helpful discussions and insightful feedback.
We would also like to thank the anonymous review-
ers for their constructive suggestions. This research
is based upon work supported by U.S. DARPA
KAIROS Program No. FA8750-19-2-1004. The
views and conclusions contained herein are those
of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of DARPA, or the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation
therein.

References
Simon Ahrendt and Vera Demberg. 2016. Improving

event prediction by representing script participants.
In North American Chapter of the Association for
Computational Linguistics.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, ICML ’09, page 41–48,
New York, NY, USA. Association for Computing
Machinery.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani.
2021. Is space-time attention all you need for video
understanding? In Proceedings of the International
Conference on Machine Learning (ICML).

Aleksandar Bojchevski, Oleksandr Shchur, Daniel
Zügner, and Stephan Günnemann. 2018. Netgan:
Generating graphs via random walks. In Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018, pages 609–618.

Nathanael Chambers and Dan Jurafsky. 2008. Unsuper-
vised learning of narrative event chains. In Proceed-
ings of ACL-08: HLT, pages 789–797, Columbus,
Ohio. Association for Computational Linguistics.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Annual Meeting of the Association for
Computational Linguistics.

Brian Chen, Xudong Lin, Christopher Thomas, Manling
Li, Shoya Yoshida, Lovish Chum, Heng Ji, and Shih-
Fu Chang. 2021. Joint multimedia event extraction
from video and article. In Conference on Empirical
Methods in Natural Language Processing.

Long Chen, Yulei Niu, Brian Chen, Xudong Lin,
Guangxing Han, Christopher Thomas, Hammad
Ayyubi, Heng Ji, and Shih-Fu Chang. 2022. Weakly-
supervised temporal article grounding. In Empirical
Methods in Natural Language Processing (EMNLP),
2022.

Somnath Basu Roy Chowdhury, Faeze Brahman, and
Snigdha Chaturvedi. 2021. Reformulating sentence
ordering as conditional text generation. CoRR,
abs/2104.07064.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net.

Y. Jang, Sungryull Sohn, Lajanugen Logeswaran,
Tiange Luo, Moontae Lee, and Ho Hin Lee. 2023.
Multimodal subtask graph generation from instruc-
tional videos. ArXiv, abs/2302.08672.

Bram Jans, Steven Bethard, Ivan Vulic, and Marie-
Francine Moens. 2012. Skip n-grams and ranking
functions for predicting script events. In Conference
of the European Chapter of the Association for Com-
putational Linguistics.

5538

https://www.mturk.com/
https://www.mturk.com/
https://doi.org/10.1145/1553374.1553380
https://aclanthology.org/P08-1090
https://aclanthology.org/P08-1090
http://arxiv.org/abs/2104.07064
http://arxiv.org/abs/2104.07064
https://openreview.net/forum?id=5k8F6UU39V

Yuchul Jung, Jihee Ryu, Kyung min Kim, and Sung-
Hyon Myaeng. 2010. Automatic construction of a
large-scale situation ontology by mining how-to in-
structions from the web. J. Web Semant., 8:110–124.

Mahnaz Koupaee and William Yang Wang. 2018. Wik-
ihow: A large scale text summarization dataset.
CoRR, abs/1810.09305.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. In Annual Meeting of the Association for
Computational Linguistics.

Manling Li, Sha Li, Zhenhailong Wang, Lifu Huang,
Kyunghyun Cho, Heng Ji, Jiawei Han, and Clare R.
Voss. 2021. The future is not one-dimensional: Com-
plex event schema induction by graph modeling for
event prediction. In Conference on Empirical Meth-
ods in Natural Language Processing.

Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng
Ji, Jonathan May, Nathanael Chambers, and Clare R.
Voss. 2020. Connecting the dots: Event graph
schema induction with path language modeling. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Xudong Lin, Fabio Petroni, Gedas Bertasius, Mar-
cus Rohrbach, Shih-Fu Chang, and Lorenzo Tor-
resani. 2022. Learning to recognize procedural
activities with distant supervision. arXiv preprint
arXiv:2201.10990.

Lajanugen Logeswaran, Sungryull Sohn, Y. Jang, Moon-
tae Lee, and Ho Hin Lee. 2023. Unsupervised task
graph generation from instructional video transcripts.
ArXiv, abs/2302.09173.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Qing Lyu, Li Zhang, and Chris Callison-Burch.
2021. Goal-oriented script construction. ArXiv,
abs/2107.13189.

Mounica Maddela, Fernando Alva-Manchego, and Wei
Xu. 2021. Controllable text simplification with ex-
plicit paraphrasing. In Proceedings of the North
American Association for Computational Linguistics
(NAACL).

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
2019. Howto100m: Learning a text-video embed-
ding by watching hundred million narrated video
clips. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 2630–2640.

Dai Quoc Nguyen, Dat Quoc Nguyen, Cuong Xuan Chu,
Stefan Thater, and Manfred Pinkal. 2017. Sequence
to sequence learning for event prediction. In IJCNLP.

Simon Ostermann, Michael Roth, Stefan Thater, and
Manfred Pinkal. 2017. Aligning script events with
narrative texts. ArXiv, abs/1710.05709.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction
as language modeling. In Conference on Empirical
Methods in Natural Language Processing.

Swarnadeep Saha, Prateek Yadav, and Mohit Bansal.
2022. Explanation graph generation via pre-trained
language models: An empirical study with con-
trastive learning. In ACL.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proScript: Partially ordered scripts generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2138–2149, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Amaia Salvador, Michal Drozdzal, Xavier Giró i Nieto,
and Adriana Romero. 2018. Inverse cooking: Recipe
generation from food images. 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 10445–10454.

Fadime Sener and Angela Yao. 2018. Zero-shot antici-
pation for instructional activities. 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
pages 862–871.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748.

Qingyun Wang, Manling Li, Hou Pong Chan, Lifu
Huang, J. Hockenmaier, Girish V. Chowdhary, and
Heng Ji. 2022. Multimedia generative script learning
for task planning. ArXiv, abs/2208.12306.

Zhongqing Wang, Yue Zhang, and Ching-Yun Chang.
2017. Integrating order information and event rela-
tion for script event prediction. In Conference on
Empirical Methods in Natural Language Processing.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Te-Lin Wu, Alex Spangher, Pegah Alipoormolabashi,
Marjorie Freedman, Ralph Weischedel, and Nanyun
Peng. 2022. Understanding multimodal procedural
knowledge by sequencing multimodal instructional
manuals. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4525–4542.

5539

http://arxiv.org/abs/1810.09305
http://arxiv.org/abs/1810.09305
https://doi.org/10.18653/v1/2021.findings-emnlp.184
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748

Yue Yang, Joongwon Kim, Artemis Panagopoulou,
Mark Yatskar, and Chris Callison-Burch. 2021a. In-
duce, edit, retrieve: Language grounded multimodal
schema for instructional video retrieval. ArXiv,
abs/2111.09276.

Yue Yang, Artemis Panagopoulou, Qing Lyu, Li Zhang,
Mark Yatskar, and Chris Callison-Burch. 2021b. Vi-
sual goal-step inference using wikiHow. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 2167–2179,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Yue Yang, Artemis Panagopoulou, QING LYU,
Li Zhang, Mark Yatskar, and Chris Callison-Burch.
2021c. Visual goal-step inference using wikihow. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu,
Jae Sung Park, Jize Cao, Ali Farhadi, and Yejin Choi.
2021. Merlot: Multimodal neural script knowledge
models. In Neural Information Processing Systems.

Li Zhang, Qing Lyu, and Chris Callison-Burch. 2020.
Reasoning about goals, steps, and temporal ordering
with WikiHow. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4630–4639, Online. As-
sociation for Computational Linguistics.

Honglu Zhou, Roberto Mart’in-Mart’in, Mubbasir Ka-
padia, Silvio Savarese, and Juan Carlos Niebles. 2023.
Procedure-aware pretraining for instructional video
understanding. ArXiv, abs/2303.18230.

Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gok-
berk Cinbis, David F. Fouhey, Ivan Laptev, and Josef
Sivic. 2019. Cross-task weakly supervised learning
from instructional videos. 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 3532–3540.

5540

https://doi.org/10.18653/v1/2021.emnlp-main.165
https://doi.org/10.18653/v1/2021.emnlp-main.165
https://doi.org/10.18653/v1/2020.emnlp-main.374
https://doi.org/10.18653/v1/2020.emnlp-main.374

A Appendix

A.1 Grounding Details

The following hyper-parameters used in the ground-
ing section are determined empirically. In video
to text grounding, for each video, we find the top-
10 most relevant wikiHow documents. For key-
word matching at the task level, we first select wik-
iHow documents whose title contains ≥ 85% of
keywords in the task name. This is to avoid calcu-
lating Sentence-BERT similarity between the task
name and all wikiHow document titles. If this does
not yield ≥ 10 documents, we relax the thresh-
old to 75%. For title matching and step matching,
the Sentence-BERT similarity thresholds are deter-
mined empirically by qualitative evaluation over a
small subset of 150 examples. For labelled videos,
the step-level grounding similarity threshold k1 is
0.35. For unlabelled videos, the task-level ground-
ing similarity threshold k2 is 0.75 and the step-level
grounding similarity threshold k3 is 0.40.

A.2 Training Details

For our models and baselines, we mainly use the
BART-base model (140M Parameters) from the
Huggingface Framework (Wolf et al., 2019)9. We
normalize all input and target output sentences
into lower case and remove special non-English
characters. For training, we use the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with a learn-
ing rate of 2× 10−5 and 1000 warm-up steps. We
use max input and output sequence length of 1024
for training and testing.

For the InfoNCE contrastive loss, we set the tem-
perature τ = 0.1. To implement curriculum learn-
ing. We reset the probability of sampling from dif-
ferent contrastive sequence groups every 5 epochs.
At first we only use ’re-sampled’ contrastive se-
quence, then in every 5 epochs we transfer 20%
probability to sampling from the ’shuffled’ con-
trastive sequences. After 25 epochs, we starting the
same shift from ’shuffled’ contrastive sequences to
’cut & swapped’ contrastive sequences.

We use NVIDIA V-100 GPUs with 16GB RAM
and full precision. Due to GPU RAM limita-
tion, we use gradient accumulation with equiva-
lent batch size of 32. Training our basic model on
the CrossTask training set takes approximately 5
hours while training our contrastive model with

9https://huggingface.co/docs/transformers/
index

Path-Level Constraint will take 20 hours. Pre-
training our model on Howto100M grounded se-
quence takes approximately 3 days.

A.3 Inference Details

During graph generation, for Step-constrained
Beam Search, we use a beam number of 40 to sam-
ple steps sequences for producing the graph script.
Afterwards, we filter out low-frequency edges in
the adjacency graph with edge weight ≤ 0.175 (or
in this case occurrence ≤ 7). The remaining edges
are used to construct the final graph script.

A.4 Human Evaluation Details

In our human evaluation of model-generated graph
scripts, three types of questions are asked regard-
ing corresponding types of step relationships as
displayed in the generated graph script:

1. Optional: Do you think step (a) is optional
when completing this task?

2. Interchangeable: Do you think the steps (b)
and (c) are interchangeable (can be executed
in either order) when completing this task?

3. Sequential: Do you think the previous and/or
subsequent steps for step (d) are reasonable
when completing this task?

To make questions more direct and objective
for the annotators, each question only focuses on
a small portion of steps in the generated graph
script. For example, given the output graph script
for the task "Make Strawberry Cake" as shown in
Fig.5, the annotator would be asked the following
questions (partial):

1. Optional: Make Strawberry Cake: Do you
think the step "cut the strawberries" is optional
when completing this task?

2. Interchangeable: Make Strawberry Cake: Do
you think the steps "add sugar to the mixture"
and "whisk the mixture" are interchangeable
(can be executed in either order) when com-
pleting this task?

3. Sequential: Make Strawberry Cake: Do you
think the previous and/or subsequent steps
for step "add flour to the mixing bowl" are
reasonable when completing this task?

5541

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index

We used 8 human annotators while each anno-
tator answered (on average) 65 questions. Each
question is assigned to ≥ 2 annotators with 72.31%
inter-annotator agreement. An example screenshot
of the annotation interface is shown in Fig.6.

5542

Output Graph Script: Make French Toast Output Graph Script: Make Strawberry CakeOutput Graph Script: Change a Tire

Figure 5: Example outputs of our non-sequential graph script induction model used in Human Evaluation

Figure 6: A screenshot from our annotation task on Mechanical Turk.

5543

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

7

�3 A2. Did you discuss any potential risks of your work?
8

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
3

�3 B1. Did you cite the creators of artifacts you used?
1

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
8

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
8

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
8

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
This information is not publicly available.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix

C �3 Did you run computational experiments?
4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

5544

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4, Appendix

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
4

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Appendix

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
8

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
8

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

�7 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
The data sources we used did not reveal this information.

5545

