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Abstract

The accurate prediction of lexical relations be-
tween words is a challenging task in Natural
Language Processing (NLP). The most recent
advances in this direction come with the use
of pre-trained language models (PTLMs). A
PTLM typically needs “well-formed" verbal-
ized text to interact with it, either to fine-tune
it or to exploit it. However, there are indica-
tions that commonly used PTLMs already en-
code enough linguistic knowledge to allow the
use of minimal (or none) textual context for
some linguistically motivated tasks, thus no-
tably reducing human effort, the need for data
pre-processing, and favoring techniques that
are language neutral since do not rely on syn-
tactic structures.

In this work, we explore this idea for the tasks
of lexical relation classification (LRC) and
graded Lexical Entailment (LE). After fine-
tuning PTLMs for LRC with different verbal-
izations, our evaluation results show that very
simple prompts are competitive for LRC and
significantly outperform graded LE SoTA. In
order to gain a better insight into this phe-
nomenon, we perform a number of quantitative
statistical analyses on the results, as well as a
qualitative visual exploration based on embed-
ding projections.

1 Introduction

Lexical Relation Classification (LRC) is the task
of predicting which lexical relation exists between
two given words (e.g., ‘tall’ and ‘small’ are related
by the antonymy relation), from a finite catalogue
of lexical relations. Discovering lexico-semantic re-
lations between words has received attention in the
NLP community since Hearst’s seminal research
in 1992 on the automatic acquisition of hyponyms
from large text corpora based on pre-designed pat-
terns (Hearst, 1992). Despite many recent advance-
ments, LRC continues to be an open research topic
in the NLP field (Wang et al., 2021; Ushio et al.,

2021). Applications of the task are numerous: auto-
matic thesauri creation, paraphrasing, textual entail-
ment, sentiment analysis, ontology learning, and
ontology population, among others (Weeds et al.,
2014; Cimiano, 2006).

The most recent advances in LRC come with
the use of pre-trained language models (PTLMs)
based on the transformers architecture (Vaswani
et al., 2017), which have been proven to capture a
large amount of lexico-semantic knowledge from
text successfully. One of the main benefits of the
adoption of PLTMs is that, while they were trained
for a general task (text generation) following a
masked language model (MLM) objective in an
unsupervised way, they can be easily adapted to
different downstream tasks (e.g., text classification,
text summarization, sentiment analysis) by intro-
ducing additional parameters and fine-tuning them
using objective functions specific to the task. That
avoids the need to train the model from scratch, still
obtaining SoTA results, while decreasing computa-
tional costs and the need for very large amounts of
data (Devlin et al., 2019).

More recently, the “pre-train, fine-tune” proce-
dure is shifting in NLP tasks towards the “pre-train,
prompt, and predict” paradigm (Liu et al., 2023). In
that case, instead of adapting PTLMs to the down-
stream task via fine-tuning, the task is reformulated
to look more like those solved during the original
model training with the help of a textual prompt.
Following the example in (Liu et al., 2023), when
recognizing the emotion of a sentence, “I missed
the bus today.”, we may continue with a prompt “I
felt very”, and ask the PTLM to fill the blank with
an emotion-bearing word.

A PTLM typically needs “well-formed" verbal-
ized text to interact with it, either to fine-tune it or
to exploit it via prompt engineering. While some
authors claim that longer, more complex verbaliza-
tions of the input data work best for real-world text
classification tasks (Schick and Schütze, 2022), or
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relation classification (Bouraoui et al., 2020), other
authors (LoganIV et al., 2022) have collected indi-
cations in the opposite direction for a wide range of
NLP tasks (such as paraphrasing, textual similarity,
or sentiment analysis).

We share the hypothesis that commonly used
PTLMs already encode enough linguistic knowl-
edge to allow the use of minimal (or none) textual
context for some linguistically motivated tasks. In
such cases, very simple prompts work almost as
well or even better than hand-crafted, more com-
plex verbalizations. Reducing the need of complex
prompting notably reduces the need of human ef-
fort and the need for data pre-processing, and fa-
vors techniques that are language neutral since they
do not rely on syntactic structures.

In this work1, we explore this idea for the LRC
task, and we extend it to graded lexical entailment
(LE), i.e., discovering the strength of the taxonom-
ical asymmetric hyponymy–hypernymy relation
between two words (Vulić et al., 2017). In previous
works, other authors have explored complex verbal-
izations for LRC (Ushio et al., 2021) while others
have essayed shorter ones (Wachowiak et al., 2020).
However, there has been no systematic study on
the impact of long/short prompting for LRC so far.
To that end, we have experimented with different
verbalizations of the training and test data in an
LRC experiment. Then, we analysed which verbal-
ization produces better predictions for at least one
of the lexico-semantic relations entailed between
a pair of words. We experiment with widely used
benchmarks for LRC namely, CogALexV (Santus
et al., 2016a), BLESS (Baroni and Lenci, 2011),
EVALution (Santus et al., 2015), K&H+N (Nec-
sulescu et al., 2015), and ROOT9 (Santus et al.,
2016b). Besides, we evaluate such models with the
Hyperlex (Vulić et al., 2017) dataset for graded LE.

Our main contributions are:

1. We show empirically that SoTA results for
LRC can be reached by providing very simple
verbalizations of the data or even no verbaliza-
tion at all (null prompting) when fine-tuning
and testing a PTLM.

2. We test the generalizability of such models
trained with minimal prompting to similar
tasks by testing them in graded LE, where
they outperform SoTA results.

1The code is available at: https://github.com/
sid-unizar/LRC

3. We provide an extensive analysis of the re-
sults (including error analysis) to further ob-
serve the strengths and limitations of minimal
prompting for LRC.

4. To further understand the models’ behaviour,
we add a qualitative analysis of their learning
process based on the visualisation of the em-
beddings that are built in their different layers.

Our paper is structured as follows: first, in Sec-
tion 3, we formally describe both the LRC task and
the LE task. Secondly, in Section 4, we describe
the chosen templates for the input verbalizations,
the used datasets and baselines we compare with,
as well as the hyper parameter and fine-tuning set-
ting of our models. Then, in Section 5, we analyze
our results showing: a) our quantitative results, an-
alyzing which template, model, and method work
best on each dataset, b) the error analysis, checking
how the distribution and linguistic characteristics
of the different datasets affected the performance of
our models and what examples and categories were
the most difficult ones, and c) a visualization of the
embedding projection, highlighting which layers
are more informative for relation classification and
how the model learns them through the different
epochs. Finally, in Section 6, we summarize the
conclusions and possible future work, stating the
limitations of our work.

2 Related Work

In this section we give an overview of some related
approaches that are relevant to our work.

2.1 Prompt-based Learning

In their extensive review, Liu et al. (2023) have ana-
lyzed the prompt-based learning paradigm, explor-
ing different verbalization techniques used to input
text to PTLMs, as a key point to reach SoTA results
in few and zero-shot learning scenarios. The cur-
rently under research question is: what kind of ver-
balizations work better? Here, two different trends
arise: a) automatically searched prompts (Shin
et al., 2020; Liu et al., 2022; Li and Liang) and
b) handcrafted prompts (Schick and Schütze, 2021,
2022). The main drawback of the first one is the
necessity of additional training and computational
resources to find the best prompt, and the second’s
major issue is the necessity of manual effort (Lo-
ganIV et al., 2022; Mahabadi et al., 2022). A third
option is however possible: null prompts (LoganIV
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et al., 2022) where the mask token is simply added
to the input sentence.

Currently, no consensus has been reached on
which kind of verbalizations work best, and, while
authors such as Schick and Schütze (2022) obtain
the best results in a variety of NLP tasks with hand-
crafted verbalizations, others (LoganIV et al., 2022;
Mahabadi et al., 2022) defend the advantages of
short or even null prompts while still achieving
competitive results. Liu et al. (2022) found differ-
ent behavior for their Ptuning-v2 method depend-
ing on the task: simple classification tasks prefer
shorter prompts, while hard sequence labeling tasks
prefer longer ones.

Other open questions about prompting rely on
the selection of the label to verbalize the mask and
the order in which the mask and input are provided.
Labels given in benchmark datasets are often multi-
word or rare expressions consisting of more than
one token, however, the mask needs to be filled
by just one token (Schick and Schütze, 2022) thus
there is a need to select the label either automati-
cally or manually. The order in which input and
mask are entered is also under current research (Ma-
habadi et al., 2022).

Previous comparisons of different prompting
techniques have been mostly applied to highly
context-dependent NLP tasks such as sentiment
analysis, subjectivity, classification, question clas-
sification, natural language inference, question an-
swering, word sense disambiguation or paraphras-
ing (LoganIV et al., 2022; Schick and Schütze,
2022; Mahabadi et al., 2022) were the input exam-
ple already consists of a well-formed sentence. Yet,
other NLP tasks that are less context-sensitive such
as LRC, Relation Extraction, or Lexical Entailment,
have received little or no attention so far in prompt
comparison studies.

2.2 Lexical Relation Classification

Seminal work on LRC started exploring pattern-
based techniques (Hearst, 1992), where a set of
patterns that elicit the relation entailed between a
pair of words is defined. A drawback of this method
is that not all lexical relations are explicit in texts
by a closed set of patterns. Then, the approach
towards LRC shifted to distributional semantics
with static embeddings, meaning one vector is
given to represent each word in the embeddings
space (Weeds et al., 2014; Santus et al., 2016a;
Shwartz et al., 2016; Wang et al., 2019; Shwartz

and Dagan, 2016). Such techniques were found
beneficial to LRC tasks, in which words were nor-
mally provided without additional context (Barkan
et al., 2020).

Recent work in LRC has focused on PTLMs and
their dynamic embeddings, owing to their capacity
to better capture polysemy than static embeddings,
which led to better results (Karmakar and McCrae,
2020; Ushio et al., 2021; Wang et al., 2021). Such
works have already used prompting to fine-tune
PTLMs. However, none of them has focused on
analyzing what kind of verbalization can be better
used to extract relation information, as we do. For
instance, while in (Ushio et al., 2021) the authors
opted to use hand-crafted complex verbalizations
motivated by previous research (Bouraoui et al.,
2020; Jiang et al., 2020), Wachowiak et al. (2020)
used minimal prompts, and in (Karmakar and Mc-
Crae, 2020) null prompting was used.

The focus of our work is comparing the verbal-
izations enumerated by Schick and Schütze (2022)
in their work: null-prompting, null-prompting with
punctuation, short templates and long templates
and see how they interact with a lexical-focused
task when some artificial context (i.e., not initially
available in the dataset) is added to the prompt,
versus when no context other than two words is
provided (as in null prompting).

3 Problem Statement

Let V = {w1, . . . , wn} be a set of words (our vo-
cabulary), and a sentence s be any finite sequence
of words from V . The set of all sentences over V
is denoted by S. Given a word w ∈ V , a context c
of w is any sentence such that w ∈ c. The set of all
contexts of a word w is denoted by Cw.

A binary relation r between words is a subset of
V × V . Let us denote by R the set of all binary
relations over the vocabulary V , that is, R is the
power set of V × V . We say that a set of relations,
R = {r1, . . . , rk}, where ri ∈ R, is mutually ex-
clusive if the relations in R are disjoint; and we
say that R is complete if the union of the relations
is equal to V × V . Note that we can make a re-
lation set R complete by adding a relation named
unknown, which is the complementary of all the
relations in R.

We consider that any context of two words in-
duces a relation from a predefined set of relations,
that is, there exists a function fR : P → R, where
P = {c ∈ S | c ∈ Cw1 ∩ Cw2 , w1, w2 ∈ V }. For
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instance, given the set of relations R = {partOf,
unknown}, the common context for the words bank
and river, “I play by the bank of the
river”, induces the relation partOf, while “I
will deposit the money in the bank beside
the river” would induce the unknown relation.
Thus, Relation Classification (RC) is the task of
using a function f̂R that estimates fR.

Lexical Relation Classification (LRC) is a sub-
type of RC where the relation between words is a
lexical one. The most usual and important lexical
relations are hyponymy, hyperonymy, antonymy,
synonymy, and meronymy. Among these relations,
hyponymy and, its counterpart, hyperonymy are
especially important in NLP and ontology engi-
neering.

Finally, Lexical Entailment (LE) is the task of
detecting the hyponymy relationship between two
words. This task becomes graded LE when we have
to calculate the numerical degree to which a word
w1 is a type of w2, becoming a more challenging
regression task.

4 Experimental Setup

The main goals of our experiments are: 1) to check
if LRC can be conducted without adding artificial
context when just a pair of words out of context
is given, 2) if so, to analyze which verbalization
works best for model fine-tuning, and 3) to check
the generalizability of our model to other language-
related tasks such as graded LE.

4.1 Chosen Verbalization

Similarly to (Schick and Schütze, 2022), we com-
pare null prompts to punctuated ones (just the target
and source words with added punctuation), and a
longer template (the best performing one in (Ushio
et al., 2021)). The chosen mask order and wording
placement in the verbalization is the best perform-
ing one in (Mahabadi et al., 2022), inserting the
mask token between both words. Table 1 presents
our chosen prompts.

We explore two different options: a) adopting
a sentence classification scheme, where a classifi-
cation layer is added on top of the output layer
(templates T1, T2, T3, and T4) to classify the
CLS(special classification token) that is added at
the beginning of every template, and b) instantiat-
ing the task as a fill in the blank task (templates
TM1, TM2, and TM3). We use T4 as a control
case to check what happens when train and test

Template Id
’ W1 ’ SEP ’ W2 ’ T1
W1 SEP W2 T2

Today, I finally discovered the rela-
tion between W1 and W2.

T3

Train: Today, I finally discovered
the relation between W1 and W2: W1
is the LABEL of W2.
Test: Today, I finally discovered the
relation between W1 and W2.

T4

’ W1 ’ MASK ’ W2 ’ TM1
W1 MASK W2 TM2

Today, I finally discovered the rela-
tion between W1 and W2: W1 is the
MASK of W2.

TM3

Table 1: Templates used in the experiments. Except
for T4, both training and test use the same template.
SEP (separator), MASK, and LABEL are substituted by
special tokens, see Appendix C.

templates are different.

4.2 Datasets and Baselines

LRC We conducted experiments on five
datasets2: CogALexV (Santus et al., 2016a),
BLESS (Baroni and Lenci, 2011), EVALu-
tion (Santus et al., 2015), K&H+N (Necsulescu
et al., 2015), and ROOT9 (Santus et al., 2016b).
These datasets contain a variety of lexical relations,
including hypernyms, meronyms, synonyms,
antonyms, and random (equivalent to unknown
relation defined in S3)3. For a deeper analysis
(error analysis and visualization), we focus on
CogALexV as it contains a subset of the most
complicated examples of EVALution. To compare
the performance of the different verbalizations in
PTLM fine-tuning to SoTA methods, we selected
the following baseline models: LexNet (Shwartz
and Dagan, 2016), SphereRE (Wang et al., 2019),
KEML (Wang et al., 2021), and RelBERT (Ushio
et al., 2021).

Graded LE We use Hyperlex dataset (Vulić et al.,
2017), which consists of 2616 pairs of words (2163
nouns and 453 verbs). Each pair was presented
to at least ten human annotators to answer the
question To what degree X is a type of Y? rang-

2All datasets are open source, covered by either Creative
Commons 4.0 or Apache 2.0 Licences

3In Appendix A, a further description of the datasets, their
distribution, and linguistic properties is provided

5610



ing from 0 to 6. The final given score for each
pair is the median of the human annotations. The
authors of Hyperlex provide an upper bound of
the Inter-Annotator Agreement (IAA) calculated
as the average Spearman correlation of a human
rater with the average of all the other raters; in par-
ticular, the annotation reaches an IAA-ρ of 0.864
(for nouns, IAA-ρ = 0.864, and for verbs, IAA-
ρ = 0.862). To train supervised systems, Hyperlex
is split into train/val/test datasets in two configura-
tions: a) random split: data are randomly split into
1831/130/655 train/val/test pairs, respectively (all
the words in the test split appear in the train/val
splits); b) lexical split: to avoid lexical memoriza-
tion, words in the test split are forced not to appear
in the train/val splits, leading to fewer pairs in each
split, 1133/85/269, respectively. To compare our
proposal, we have considered the following SoTA
models as baselines: LEAR (Vulić and Mrkšić,
2018), SDNS (Rei et al., 2018), GLEN (Glavaš
and Vulić, 2019), POSTLE (Kamath et al., 2019),
LexSub (Arora et al., 2020) and Hierarchy-fitting
(HF) (Yang et al., 2022). Note that all these models
use non-contextual embeddings; however, as far as
our knowledge, there are no models in the literature
that use contextual embeddings for graded LE as
we do.

4.3 Fine-tuning Setting

We begin by briefly describing the models we use,
continue by explaining how the models are fine-
tuned for LRC and graded LE, and how the fine-
tuned models are used for inference, and conclude
the section by describing the hyperparameter setup.

Chosen PTLMs In this work, we chose to use
RoBERTa and BERT, both recognized as SoTA
models for general domains and tasks in English.
In particular, we use both their base and large
versions that can be downloaded using the Hug-
gingface transformers library (Wolf et al., 2020)4.
Moreover, we use the appropriate version depend-
ing on the actual underlying task we are fine-tuning,
whether it is sequence classification (T1-4) or fill-
in-the-mask (TM1-3). Finally, note that BERT and
RoBERTa have different-sized vocabularies and
treat white spaces differently; thus, we must bear
in mind these differences to adapt the templates
and prompts for each model.

4Both models are open source with Apache 2.0 and MIT
licenses

LRC Our setup for fine-tuning a model has four
components: 1) a PTLM M and its token vo-
cabulary VM ; 2) a training set T = {(wi, yi) |
i = 1, . . . n}, where wi = (w1

i , w
2
i ) is a pair of

words and yi ∈ Y is the label of a lexical re-
lation (|Y | = K); 3) an injective function from
the set of labels to the vocabulary of tokens VM ,
v : Y → VM , called the mask verbalizer function;
and 4) a training and a testing template, Tt and Te,
used to verbalize wi. In this context, a template T
is a function, T : V × V → S, from pairs of the
word vocabulary to the set of sentences where the
CLS, SEP and MASK special tokens of the PTLM can
appear in the sentence. We denote by T (w)C and
T (w)M to the CLS and MASK tokens in the sentence
T (w), respectively.

Depending on the template used, we adopt one
of the following two training objectives: (T1-4) a
classification objective to estimate the probabil-
ity P (Y = yj |Tt(wi)C); and (TM1-3) a mask
prediction objective to estimate P (Tt(wi)M =
tj |Tt(wi)), where tj ∈ VM is any token in the
vocabulary of the PTLM. At inference time, for a
model trained with a classification objective, we
use the testing template Te to predict the label
with argmaxyi∈Y {P (Y = yi|Te(w)C)}, and for
the mask objective, argmaxyi∈Y {P (Te(w)M =
v(yj)|Te(w))}. For this latter case, note that at
inference time, we only use the tokens given by the
mask verbalizer function v.

Graded LE In this task, we have a similar setup
to the LRC one, but the training set tuples are ex-
tended with the hyponymy score for the pair of
words, si ∈ R; thus, T = {(wi, si, yi)}. We
first fine-tune a model M using only the labels yi
as for the LRC task. The model M produces a
logit, lji ∈ R for each pair wi ∈ T and label yj
(token v(yj)) for a model fine-tuned with a clas-
sification (masked) objective. Let us denote by
M(wi) = (l1i , . . . , l

K
i ) the logit vector produced

by the model and by A = [M(wi)] ∈ Rn×K the
matrix of logits. Then, a linear regression model
is fitted to predict the scores in the training set
{si | i = 1, . . . n} with the logits A. We obtain
K regression coefficients β = (β1, . . . , βK). For
an unseen pair w, the predicted score is the lin-
ear combination of the fitted regression coefficients
and the logits produced by the model M , that is,
the scalar product score(w) = β ·M(w).
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Hyperparameters and Fine-tuning Setup
Training and evaluation were performed on a
Tesla-T4 GPU through Google Colab. Overall
we consumed around 850h of GPU usage. To
fine-tune the models, we used the following
hyperparameters: batch size of 32, Adam weight
optimizer, learning rate of 2e−5, weight decay of
0.01, no warmup, 10 epochs, and 5 runs of training
and evaluation to asses model’s performance
variability. We use the train, validation, and test
splits provided by the original datasets, and, when
no validation split was provided, we did not use
any. We report the F1-score weighted by the
support of the labels to compare ourselves with
the other baselines. In the case of CogALexV, we
take out the results for RANDOM before reporting
the results as advised by its authors in (Santus
et al., 2016a). For graded LE and Hyperlex dataset,
the Spearman correlation between the median
human annotators scores and our proposed score is
reported. We also report the Spearman correlation
restricted to nouns and verbs.

K&H+N BLESS EVAL ROOT9

RoBERTa
T1 0.989 0.954 0.764 0.936
T2 0.989 0.955 0.757 0.936
T3 0.989 0.956 0.771 0.937
T4 0.312 0.133 0.087 0.934
TM1 0.988 0.947 0.761 0.936
TM2 0.988 0.946 0.764 0.928
TM3 0.985 0.951 0.746 0.926
RoBERTa base
T1 0.983 0.949 0.745 0.931
T2 0.988 0.947 0.744 0.931
T3 0.987 0.949 0.754 0.933
T4 0.299 0.043 0.023 0.923
TM1 0.986 0.940 0.747 0.926
TM2 0.983 0.944 0.727 0.925
TM3 0.986 0.944 0.729 0.924
SoTA
LexNET 0.985 0.893 0.600 0.813
KEML 0.993 0.944 0.660 0.878
SphereRE 0.990 0.938 0.620 0.861
RelBERT 0.949 0.921 0.701 0.910

Table 2: Results for K&N+N, BLESS, EVALution and
ROOT9 datasets in terms of the weighted F1-score by
the support of the labels.

5 Results

In this section, we report the qualitative and quanti-
tative results of our experiments.

5.1 Quantitative Results
LRC Results We report our results5 in Tables 2
and 3, comparing them to the SoTA6 results. We re-
port the mean value of the 5 runs for each measure,
underlining the highest value achieved for each
dataset (column-wise). Boldened numbers mark no
statistical significance (at confident level α = 0.01)
to be different from the greatest mean value apply-
ing Welch’s t-test. Except for KHN, we improve
the F1-score in all the datasets. In some of them
(EVALution and CogALexV), we outperform the
baselines by almost 10 points. We hypothesize that
not biasing the model by adding external artificial
context might let it choose the best sense of both
words. Coincidentally with (Schick and Schütze,
2022), the longer hand-crafted template (T3) ob-
tained the best results in most datasets. However,
the difference with simpler templates (T1, T2), was
very small and statistically not significant in most
cases. T4 reported the worst performance due to
the differences between train and test which mis-
guided the model’s learning. We must point out
that masked variants exhibited more stability when
small models, small prompts, and small datasets
are jointly used, as, in some instances with this
setting, T1 and T2 did not manage to converge, en-
tering a poor minimal local. Such situations were
solved by relaunching the training.

Graded LE results The results for graded LE
are shown in Table 4. We can see how models
trained with a mask objective (TM1-TM3) obtain
the best results, and improve the SoTA results by
more than 10 points globally (all) and focusing
only on noun pairs (nouns). In particular, in the
lexical split, our results are about 20 points above
previous proposals. Note as well that the difference
of the results in the lexical split is only about 4
points less than in the random split, which is a good
indicator of the generalization capabilities of our
models. To the best of our knowledge, previous
studies reported results just on all POS together,
and some focused on nouns as well. We expand this
research to verbs considering the results promising

5Among both models, we report here the best perform-
ing one, RoBERTa; we present the complete results table in
Appendix D including BERT as well.

6As reported in their original papers.
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ant hyp part syn all
RoBERTa
T1 0.873 0.703 0.752 0.604 0.743
T2 0.863 0.682 0.745 0.584 0.728
T3 0.884 0.718 0.784 0.629 0.762
T4 0.237 0.004 0.165 0.085 0.119
TM1 0.880 0.709 0.773 0.599 0.750
TM2 0.871 0.723 0.787 0.621 0.758
TM3 0.871 0.718 0.787 0.616 0.756
RoBERTa base
T1 0.806 0.677 0.732 0.570 0.704
T2 0.783 0.652 0.693 0.536 0.675
T3 0.820 0.676 0.731 0.577 0.709
T4 0.027 0.000 0.102 0.092 0.044
TM1 0.809 0.678 0.743 0.561 0.706
TM2 0.801 0.673 0.742 0.556 0.701
TM3 0.815 0.679 0.730 0.561 0.705
SoTA
LexNET 0.425 0.526 0.493 0.297 0.445
SphereRE 0.479 0.538 0.539 0.286 0.471
KEML 0.492 0.547 0.652 0.292 0.500
RelBert 0.794 0.616 0.702 0.505 0.664

Table 3: Results for CogALexV dataset.

as, even if they are lower than for nouns, they show
that the part of speech has influence in our models.
Finally, we want to remark that our models push
up the results for nouns near to the IAA given by
humans (0.837 vs. 0.864).

5.2 LRC Error Analysis

Results obtained for EVALution and CogALexV
datasets are noticeably lower. We hypothesize a
reason for this is that EVALution is an extended
version of BLESS dataset where the relations of
synonyms and antonyms were added. Adding such
relations makes the task of LRC more challeng-
ing as, particularly, synonyms are a very heteroge-
neous class difficult to be delimited even for hu-
mans. CogALexV becomes even more challenging
as it consists of a selected subset of EVALution,
where words were stemmed, decreasing possible
morpho-semantic cues. Moreover, both EVALu-
tion and CogALexV were created to avoid lexical
memorization, this meaning, they consistently use
words that participate in various relations. Finally,
the bigger dataset size of BLESS, ROOT09, and
K&H+N should also have a beneficial impact on
the results.

From now on, we focus our error analysis on

random lexical
RoBERTa Spearman ρ for all/noun/verb
T1 0.741/0.753/0.584 0.755/0.788/0.532
T2 0.152/0.170/0.030 0.287/0.350/0.063
T3 0.774/0.790/0.631 0.669/0.690/0.516
TM1 0.828/0.839/0.716 0.789/0.837/0.612
TM2 0.749/0.761/0.646 0.654/0.705/0.417
TM3 0.814/0.830/0.683 0.794/0.828/0.656
RoBERTa base
T1 0.737/0.749/0.594 0.677/0.713/0.543
T2 0.652/0.683/0.377 0.407/0.483/0.167
T3 0.742/0.757/0.637 0.626/0.693/0.391
TM1 0.796/0.811/0.639 0.736/0.800/0.553
TM2 0.781/0.793/0.664 0.711/0.757/0.525
TM3 0.783/0.795/0.635 0.757/0.807/0.634
SoTA
LEAR 0.686/0.710/ ----- 0.174/ ----- / -----
SDNS 0.692/ ----- / ----- ----- / ----- / -----
GLEN 0.520/ ----- / ----- 0.481/ ----- / -----
POSTLE 0.686/ ----- / ----- ----- /0.600/ -----
LexSub 0.533/ ----- / ----- ----- / ----- / -----
HF 0.690/ ----- / ----- ----- / ----- / -----

IAA 0.864/0.864/0.862

Table 4: Results for Hyperlex dataset. The Spearman ρ
correlations for all/noun/verb are reported.

EVALution and CogALexV as they contain the
most challenging examples7. Unknown (or equiv-
alently Random) relations and models trained
with the T4 control template have been excluded
from this analysis. We focused this analysis on
the best-performing model in our experiments,
Roberta-large, and we got two groups of word
pairs, those which were well and wrongly clas-
sified with all templates. For these two groups,
we analyzed different features (presented below),
checking whether there was a statistically signifi-
cant difference between the two groups by using
χ2-tests or Welch’s t-tests. We considered that a
feature had a significant impact when the p-value
was below 0.05.

Relationship Type We observed that, in both
datasets, all the trained models struggled correctly
classifying synonyms, while they are particularly
good at predicting antonyms. In comparison to pre-
vious studies with static embeddings (Etcheverry
and Wonsever, 2019; Samenko et al., 2020), where

7For a detailed discussion of our error analysis, see Ap-
pendix B.
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antonyms and synonyms were mutually confused
in the classification, with our setting we overcame
this problem. Yet, synonyms, in line with previ-
ous studies (Santus et al., 2016a), remain the most
challenging class.

Polysemy Initially, we expected more polyse-
mous words would be more problematic and worse
predicted, as, at first sight, a wider range of cate-
gories could describe different relations between
source and target words. Moreover, we expected
that the lack of context (or the addition of an ar-
tificial one, not adapted to the word pair context)
in our approach would make it more difficult to
disambiguate between the different senses, and
thus to choose the best relation. However, counter-
intuitively, we did not find statistical evidence that
polysemy8 affected our results.

POS When looking at the part of speech, we
found out that adjectives were the best-predicted
ones, compared to verbs and nouns. To extract the
part of speech, the predominant part of speech an-
notated for the CogALexV and EVALution datasets
were selected.

Semantic Domains and Prototypicality These
datasets provide us for each word pair with human-
annotated semantic domains9 for both the source
and target words as well as their prototypical rela-
tion. We found out that our model predicted better
word pairs that contained abstract rather than con-
crete words, and objects better than events. Our
error analysis strengthens previous studies (Nec-
sulescu et al., 2015) that suggest LRC is sensitive
to domain bias. Regarding prototypicality, as pre-
viously noted in (Santus et al., 2016a), categories
more generally associated with a pair of words
were the best-predicted ones (in contrast to cate-
gories where human annotators doubted the accu-
racy of the provided annotations).

Sampled Errors Table 5 shows a sample of the
most challenging examples that failed with all our
templates on all runs using CogALExV and EVA-
Lution. However, they point out the limitations of
both our approach and the dataset. In the first five

8Polysemy was estimated by obtaining the product of the
number of WordNet synsets associated with both words in the
relation.

9Semantic domains were annotated by anonymous raters
through crowdsourcing. As recommended by EVALution, we
only perform our analysis when two or more people tagged a
word with the same domain.

examples, our setting was not able to correctly cap-
ture the relation between words, as in (‘cube’,‘die’)
that can be either synonyms as annotated, or ran-
dom as predicted (e.g., in relation to death). Pol-
ysemy might induce error in such cases. On the
other hand, the last five examples show that some
of the original annotations were misleading and our
model predicted more sensible relationships.

Pair Annotated Predicted
(purpose, goal) IsA Random
(law, theory) PartOf Antonym
(boy, man) IsA Antonym
(cube, die) Synonym Random
(city, build) HasA IsA
(fish, animal) Antonym IsA
(sand, beach) Synonym PartOf
(orange, fruit) PartOf IsA
(england, great britain) IsA PartOf
(rabbit, animal) PartOf IsA

Table 5: Examples of pairs failed by our models. The
first five show errors in our approach, while the five
below ones would be caused by dataset issues.

5.3 Embedding Projection Visualization

In Figure 1, we can observe the learning process
of the network represented by the distribution of
the embeddings with Principal Component Analy-
sis (PCA)(F.R.S., 1901) across layers and epochs.
We show the test embedding projections using the
TensorFlow embedding projector platform10 for
RoBERTa base fine-tuned model with template T2
for the CogALexV dataset. Each type of relation
is represented by a color, and each point represents
a pair of words. Highlighted pairs of words repre-
sent the embeddings for the word pairs containing
the word “dollar”. Lexical memorization (Levy
et al., 2015) seems to happen in epoch 5, where the
network already clusters by lexical relations (upper
figures in every row) but also by words (lower ones).
However, in epoch 10, the embedding projection
shows how word pairs are now distributed through-
out the whole vectorial space. Thus, it seems that
the model is indeed learning the relation entailed
between different pairs of words without pairing a
particular word to a relation. Visualization supports
the idea that our model avoids the lexical memo-
rization problem (similar distributions were seen
when using the other templates).

10Accessible in: https://projector.tensorflow.org/
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Figure 1: CogALexV embedding projection when finetuning RoBERTa with T2 template. Black and White figures
highlight relations containing ‘dollar’.

In the visualization of the embedding projec-
tions, we annotated our data with some linguistic
features such as polysemy, word frequency, and
linguistic register (formal vs colloquial and geo-
graphical differences) extracted from WordNet to
check whether any clear clusters appeared for the
unattested relations group. Yet, in this initial explo-
ration, we could not find any clear clustering.

6 Conclusions and Future Work

Our experiments show that minimal prompts work
equally well to more complex ones for the LRC
task, thus, allowing less human effort and compu-
tational cost, and following a language-neutral ap-
proach. Moreover, we show that minimal prompt-
ing outperforms SoTA results in graded LE. We

conducted an extensive error analysis showing that:
synonymy remains the hardest category to clas-
sify, there is some domain and POS bias, and poly-
semy was proven to be an issue. We highlight the
need of crafting more balanced datasets in terms of
POS and domain, with finer-graded annotations for
the different types of synonyms. As future work,
we would like to a) address LRC as a multilabel
classification task to alleviate the polysemy chal-
lenge, b) check the approach with other languages,
c) extend the study to other semantic relations, and
d) gain insights in why null prompting improves
the SoTA for LRC and if this line of research could
be generalized to other relations, or if not, what
characterizes Lexico-Semantic relations to fit this
well the null prompting approach.
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7 Limitations

1. Computational cost: For our experiments,
we used almost 850h of GPUs. In future re-
search, we could try to lower this cost by ex-
perimenting with prompting for LRC task in
few-shot scenarios, which would also help
when conducting the task for low-researched
languages.

2. Language: Our experiments were conducted
just for the English language. Thus, and with
the advantage derived from minimal prompt-
ing of being language independent, in further
research we would like to expand our experi-
ments to multilingual datasets such as the ones
from (Wachowiak et al., 2020).

3. Original dataset limitations: In line with
(Lang et al., 2021), we found some misleading
annotations in CogALexV dataset. This not
only decrease the performance of the model
but can also lead to hard-to-detect biases.
Once again, few-shot tuning would decrease
the annotation cost, making it possible to train
with, although less, better-annotated examples.
Additionally, synonymy remains the most dif-
ficult relation to capture, a more fine-graded
annotation of the different kinds of synonyms
could improve their classification.

4. Domain dependence: The limitation spotted
by (Necsulescu et al., 2015) is persistent in
our model. A richer domain annotation would
be advised to better research domain bias in
the LRC task.
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A Datasets Description

All the five datasets used for LRC, except K&H+N,
are to some extent expansions and modified ver-
sions of the BLESS dataset. BLESS aimed to pro-
vide pair of words to conduct research on distri-
butional semantics through analogies. This first
dataset used the McRae norms, Wordnet and Con-
ceptNet as sources. They used single words instead
of multiwords and crowdsourced random words
to create noise in the dataset at the same time that
they assured no relation between them was entailed.
They tried to avoid ambiguities, and relied on pro-
totypical terms to stay as ’little controversial as
possible’. As categories, they study meronyms and
hyponyms, excluding synonyms due the alleged
problematic description and heterogeneity.

EVAlution was developed as an expansion of
BLESS, to which synonyms and antonyms were
added, containing IsA (hypernymy), antonymy,
synonymy, meronymy (part of, member of, and
made of), entailment, hasA(possession), has prop-
erty (attribution) relations with heterogeneous dis-
tribution of them. Complementary linguistic data
is also provided, as for example the domain11. Co-
gALexV dataset was provided at the ACL lexical
relation classification workshop in 2016 as a chal-
lenging subset of Evalution, where words were
stemmed. ROOT9 is an expansion of CogALexV.

K&+N is an expansion of Kozareva and Hongs,
2010 dataset, which extracted its original data from
hyponymy and hypernymy relations in Wordnet,
for animal, plant and vehicle domains. In the cur-
rent K&H+N dataset, cohyponyms and meronyms
were added. As in the previous datasets, multi-
words were avoided.

Most datasets, by being descendants of BLESS,
contain the same limitations, being mostly the elu-
sion of rare vocabulary and ambiguous words.

For graded LE, in the original Hyperlex dataset,
the hyponym pairs are annotated in four levels,
namely hyp-i, 1 ≤i≤ 4, where i is the path length
in the WordNet hierarchy. We collapse all labels
hyp-i to hyp in our experiments. The same ratio-
nale is applied to the hyperonym labels r-hyp-i.

In Table 6, we show the number of pairs for
relation in the train/validation/test splits.

11Domain information was crowdsourced and not always
reliable, thus, authors advised to only take domains as valid
when two or more raters annotated the word as belonging to
the same domain

B Detailed Error Analysis

To conduct the error analysis, we take the easiest
and the most difficult examples to classify trained
with RoBERTa (large) for CogaALexV and EVA-
Lution datasets. We take two groups of pairs: those
which were well and wrongly classified in all of
the 5 runs and all templates, except for template
T4. We test if there is statistical evidence that some
features influence the well/wrongly classified pairs.
We have a total of 1527 pairs, 586 from CogALexV
and 941 from EVALution, divided into 1359/168
well/wrongly predicted pairs.

The first studied feature is the relation between
the words, that is, we ask if there is some lexical
relation that it is easier/harder to predict. Figure 2
contains a visualization of the contingency tables
of the well/wrongly predicted pairs by relation. In
both datasets, applying a χ2-test, there is statistical
evidence that the relation type influences the pre-
diction (p-values<< 0.05). In particular, there is
a great difference in the predictions for antonyms
and synonyms, the former being better predicted
than the latter.

We check if the pairs containing polysemous
words are more difficult to predict. We use Word-
Net to obtain the number of synsets for each word,
and we consider that the polysemous level of a
pair is the product of the number of synsets of the
words in the pair. Although the mean of the poly-
semous level is less for well-predicted pairs, 108.5
vs. 120.6, performing a Welch’s t-test to evaluate
if the means are different, we find that there is no
statistical evidence, with a high p-value equal to
0.40.

We also study if the part of the speech (POS)
influences the predictions. CogALexV and EVA-
Lution datasets are also annotated with the predom-
inant POS and a list of the different possible POS
of each word. We restrict our POS study to the
well/wrongly predicted pairs where both words in
the pairs have the same predominant POS or there
is only one POS in the intersection lists of possible
POS. As it is appreciated in the contingency ta-
ble (Figure 3), adjectives are easier to predict than
nouns and verbs.

The domain of the words in CogALexV and
EVALution were annotated by humans. We get
pairs with common domains, and we restrict the
study to the most common domains: abstract, con-
crete, event and object domains. The visualization
of the contingency table can be seen in Figure 4.
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K&H+N BLESS EVALution ROOT9
Unknown 18,319/1,313/6,746 8,529/609/3,008 - 4,479/327/1,566
Hypoym 3,048/202/1,042 924/63/350 1,327/94/459 2,232/149/809

Co-hyponym 18,134/1,313/6,349 2,529/154/882 - 2,222/162/816
Meronym 755/48/240 2,051/146/746 218/13/86 -
Attribute - 1,892/143/696 903/72/322 -
Antonym - - 1,095/90/415 -
Synonym - - 759/50/277 -

Has a - - 377/25/142 -
Event - 2,657/212/955 - -

CogALexV Hyperlex (lexical) Hyperlex (random)
Unknown 2,228/3,059 112/10/35 202/14/74
Hyponym 255/382 563/39/119 849/63/243

Co-hyponym - 111/8/26 209/7/16
Meronym 163/224 115/10/22 166/14/61
Antonym 241/360 39/3/15 73/6/19
Synonym 167/235 72/4/20 13/10/53

Table 6: Datasets statistics: Number of pairs for each relation in the train/validation/test splits.

There is statistical evidence (p-value<< 0.5) that
the domain influences the correctness of the predic-
tion: words in the abstract and object domains are
better predicted.

Finally, CogALexV and EVALution were anno-
tated by humans with the prototypicality of the an-
notated relation. The pairs of words in the datasets
were exposed to five humans to answer to what ex-
tent they agreed with the annotated relation (from
0-strongly disagree to 5-strongly agree). So, it is in-
teresting to check if the prototypicality is higher for
well-predicted pairs. We perform a Welch’s t-test
to test if the prototypicality means for well/wrongly
predicted pairs are equal. We get that well/wrongly
means are 4.63/4.51 with p-value<< 0.05, so they
are different. Although the means seem quite simi-
lar, take into account that about 90% of the proto-
typicality in the datasets range from 4 to 5.

C Mask Verbalizer

In Table 7 it is shown the used tokens to verbalize
the mask token in templates TM1, TM2 and TM3.

D Complete Results

We present the results for BERT and RoBERTa
(large and base) models. Table 8 contains the mean
of the weighted by the support labels of precision
of the 5 runs, recall and F1-score. The greatest
value for each measure (column) is underlined. A
value is boldened if there is no statistical evidence
to be different from the greatest one performing

a Welch’s t-test for the mean values. A similar
rationale is applied for Table 9, with the complete
results for CogALexV dataset and Table 10 for
Hyperlex dataset.
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Relation label Chosen verb. mask token
BLESS EVALution CogALexV KH&+N ROOT9 BERT RoBERTa
event event event

hasa contains contains
madeof material material

mero partof part_of mero part part
random random false random random random
coord sibl coord coordinated coordinated

synonym syn synonym equivalent
antonym ant contrary contrary

attri hasproperty attribute attribute
hyper isa hyper hypo hyper minor subclass

Table 7: Verbalization of the relation label for the mask token for each dataset and model in templates TM1, TM2
and TM3. Each word in the “Verb. token mask” column corresponds with one token in the vocabulary of the model.
The underscores in the RoBERTa mask verbalizations are to emphasize that the tokens have a white space in front
of them.

CogALexV

EVALution

Figure 2: Visualization of the contingency tables for
bad/wrongly-predicted pairs regarding the relation type.

Figure 3: Visualization of the contingency table for
bad/wrongly-predicted pairs regarding the POS.

Figure 4: Visualization of the contingency table for
bad/wrongly-predicted pairs regarding the domains of
the words.
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K&H+N BLESS EVALution ROOT9
pre rec F1 pre rec F1 prec recl F1 pre rec F1

BERT
T1 0.989 0.989 0.989 0.952 0.951 0.951 0.748 0.748 0.747 0.927 0.926 0.926
T2 0.989 0.989 0.989 0.95 0.948 0.948 0.739 0.739 0.737 0.93 0.929 0.929
T3 0.99 0.99 0.99 0.953 0.952 0.952 0.753 0.75 0.751 0.931 0.931 0.931
T4 0.741 0.588 0.51 0.244 0.2 0.088 0.116 0.149 0.053 0.929 0.928 0.928
TM1 0.987 0.987 0.987 0.942 0.941 0.941 0.755 0.744 0.745 0.927 0.925 0.925
TM2 0.987 0.987 0.987 0.946 0.944 0.945 0.738 0.729 0.722 0.925 0.925 0.925
TM3 0.986 0.986 0.985 0.948 0.947 0.947 0.73 0.726 0.724 0.927 0.924 0.924
RoBERTa
T1 0.989 0.989 0.989 0.955 0.954 0.954 0.769 0.765 0.764 0.937 0.936 0.936
T2 0.989 0.989 0.989 0.955 0.954 0.955 0.759 0.759 0.757 0.936 0.936 0.936
T3 0.989 0.989 0.989 0.956 0.955 0.956 0.773 0.771 0.771 0.938 0.937 0.937
T4 0.603 0.326 0.312 0.511 0.194 0.133 0.23 0.191 0.087 0.936 0.934 0.934
TM1 0.989 0.989 0.988 0.948 0.946 0.947 0.772 0.762 0.761 0.936 0.936 0.936
TM2 0.988 0.988 0.988 0.947 0.945 0.946 0.771 0.765 0.764 0.93 0.929 0.928
TM3 0.986 0.985 0.985 0.951 0.95 0.951 0.774 0.754 0.746 0.926 0.926 0.926
BERT base
T1 0.988 0.988 0.988 0.944 0.942 0.942 0.69 0.691 0.689 0.926 0.924 0.924
T2 0.987 0.987 0.987 0.943 0.941 0.941 0.675 0.672 0.672 0.919 0.918 0.918
T3 0.987 0.987 0.987 0.944 0.942 0.942 0.696 0.694 0.694 0.922 0.921 0.921
T4 0.548 0.429 0.316 0.37 0.228 0.165 0.213 0.218 0.119 0.921 0.919 0.919
TM1 0.986 0.986 0.986 0.939 0.936 0.936 0.707 0.7 0.698 0.917 0.917 0.917
TM2 0.985 0.986 0.985 0.94 0.939 0.94 0.69 0.686 0.684 0.918 0.917 0.917
TM3 0.985 0.985 0.985 0.941 0.939 0.939 0.697 0.692 0.686 0.918 0.915 0.915
RoBERTa base
T1 0.983 0.984 0.983 0.95 0.949 0.949 0.749 0.744 0.745 0.932 0.931 0.931
T2 0.988 0.988 0.988 0.948 0.947 0.947 0.746 0.744 0.744 0.931 0.931 0.931
T3 0.987 0.987 0.987 0.95 0.949 0.949 0.756 0.753 0.754 0.934 0.933 0.933
T4 0.66 0.455 0.299 0.504 0.139 0.043 0.121 0.095 0.023 0.924 0.923 0.923
TM1 0.987 0.986 0.986 0.941 0.94 0.94 0.758 0.745 0.747 0.927 0.926 0.926
TM2 0.983 0.983 0.983 0.946 0.944 0.944 0.74 0.724 0.727 0.926 0.926 0.925
TM3 0.986 0.986 0.986 0.946 0.944 0.944 0.74 0.737 0.729 0.924 0.924 0.924
SoTA
LexNET 0.985 0.986 0.985 0.894 0.893 0.893 0.601 0.607 0.6 0.813 0.814 0.813
KEML 0.993 0.993 0.993 0.944 0.943 0.944 0.663 0.66 0.66 0.878 0.877 0.878
SphereRE 0.99 0.989 0.99 0.938 0.938 0.938 0.62 0.621 0.62 0.86 0.862 0.861
RelBERT - - 0.949 - - 0.921 - - 0.701 - - 0.91

Table 8: Complete results for K&H+N, BLESS, EVALution and ROOT9 datasets.
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ant hyp part syn all
BERT
T1 0.77 0.68 0.715 0.564 0.69
T2 0.769 0.675 0.728 0.528 0.683
T3 0.789 0.681 0.736 0.566 0.7
T4 0.119 0.044 0.078 0.0 0.063
TM1 0.798 0.682 0.746 0.585 0.709
TM2 0.782 0.688 0.742 0.56 0.7
TM3 0.779 0.682 0.742 0.563 0.698
RoBERTa
T1 0.873 0.703 0.752 0.604 0.743
T2 0.863 0.682 0.745 0.584 0.728
T3 0.884 0.718 0.784 0.629 0.762
T4 0.237 0.004 0.165 0.085 0.119
TM1 0.88 0.709 0.773 0.599 0.75
TM2 0.871 0.723 0.787 0.621 0.758
TM3 0.871 0.718 0.787 0.616 0.756
BERT base
T1 0.554 0.591 0.657 0.361 0.546
T2 0.529 0.544 0.61 0.278 0.499
T3 0.565 0.605 0.684 0.375 0.562
T4 0.081 0.0 0.101 0.006 0.044
TM1 0.645 0.625 0.707 0.431 0.607
TM2 0.57 0.622 0.685 0.393 0.573
TM3 0.636 0.648 0.721 0.43 0.615
RoBERTa base
T1 0.806 0.677 0.732 0.57 0.704
T2 0.783 0.652 0.693 0.536 0.675
T3 0.82 0.676 0.731 0.577 0.709
T4 0.027 0.0 0.102 0.092 0.044
TM1 0.809 0.678 0.743 0.561 0.706
TM2 0.801 0.673 0.742 0.556 0.701
TM3 0.815 0.679 0.73 0.561 0.705
SoTA
LexNET 0.425 0.526 0.493 0.297 0.445
SphereRE 0.479 0.538 0.539 0.286 0.471
KEML 0.492 0.547 0.652 0.292 0.5
RelBert 0.794 0.616 0.702 0.505 0.664

Table 9: Complete results for CogALexV dataset.

random lexical
BERT all/noun/verb
T1 0.644/0.654/0.525 0.686/0.737/0.499
T2 0.577/0.586/0.432 0.402/0.433/0.286
T3 0.728/0.742/0.551 0.747/0.781/0.623
TM1 0.8/0.822/0.577 0.766/0.807/0.672
TM2 0.778/0.804/0.553 0.657/0.717/0.478
TM3 0.794/0.817/0.578 0.741/0.781/0.633
RoBERTa
T1 0.741/0.753/0.584 0.755/0.788/0.532
T2 0.152/0.17/0.03 0.287/0.35/0.063
T3 0.774/0.79/0.631 0.669/0.69/0.516
TM1 0.828/0.839/0.716 0.789/0.837/0.612
TM2 0.749/0.761/0.646 0.654/0.705/0.417
TM3 0.814/0.83/0.683 0.794/0.828/0.656
BERT base
T1 0.643/0.666/0.426 0.471/0.557/0.173
T2 0.626/0.657/0.306 0.374/0.446/0.116
T3 0.638/0.669/0.375 0.614/0.691/0.312
TM1 0.719/0.747/0.428 0.597/0.68/0.38
TM2 0.707/0.743/0.366 0.575/0.656/0.277
TM3 0.685/0.717/0.417 0.584/0.6650.356
RoBERTa base
T1 0.737/0.749/0.594 0.677/0.713/0.543
T2 0.652/0.683/0.377 0.407/0.483/0.167
T3 0.742/0.757/0.637 0.626/0.693/0.391
TM1 0.796/0.811/0.639 0.736/0.8/0.553
TM2 0.781/0.793/0.664 0.711/0.757/0.525
TM3 0.783/0.795/0.635 0.757/0.807/0.634
SoTA
LEAR 0.686/0.71/- 0.174/-/-
SDNS 0.692/-/- -/-/
GLEN 0.52/-/- 0.481/-/-
POSTLE0.686/-/- -/0.60/-
LexSub 0.533/-/ -/-/
HF 0.69/-/- -/-/
IAA 0.864/0.864/0.862

Table 10: Complete results for Hyperlex dataset.
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