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Abstract

Recent studies have demonstrated that natural-
language prompts can help to leverage the
knowledge learned by pre-trained language
models for the binary sentence-level sentiment
classification task. Specifically, these methods
utilize few-shot learning settings to fine-
tune the sentiment classification model using
manual or automatically generated prompts.
However, the performance of these methods
is sensitive to the perturbations of the utilized
prompts. Furthermore, these methods depend
on a few labeled instances for automatic prompt
generation and prompt ranking. This study
aims to find high-quality prompts for the given
task in a zero-shot setting. Given a base
prompt, our proposed approach automatically
generates multiple prompts similar to the base
prompt employing positional, reasoning, and
paraphrasing techniques and then ranks the
prompts using a novel metric. We empirically
demonstrate that the top-ranked prompts are
high-quality and significantly outperform the
base prompt and the prompts generated using
few-shot learning for the binary sentence-level
sentiment classification task.

1 Introduction

The recent advance of large language models such
as ChatGPT (ChatGPT, 2022), GPT-3 (Brown et al.,
2020), and T5 (Raffel et al., 2020) has shown an
astounding ability to understand natural languages.
These pre-trained models can conduct various
Natural Language Processing (NLP) tasks under
the zero/few-shot settings using natural language
instructions (i.e., prompts) when no or a few
training samples exist. The prompts play crucial
roles in these scenarios.

The prompts can be generated manually or
automatically (Schick and Schütze, 2021; Gao
et al., 2021; Gu et al., 2022; Wang et al., 2022).
The manual prompts are handcrafted based on the
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user’s intuition of the task (Schick and Schütze,
2021; Gao et al., 2021). Humans can easily write
prompts, but the manual prompts are likely to
be suboptimal since the language models may
understand the instruction differently from humans.
Prior studies have also shown that the performance
of the language models is sensitive to the choice of
prompts. For example, (Gao et al., 2021; Jiang
et al., 2020) have shown that the performance
is sensitive to the choice of certain words in the
prompts and the position of the prompts. Due to
the sensitivity and the potential misunderstanding
of the instruction, manual prompts tend to suffer
from poor performance under zero-shot settings.
The language models tend to understand human
intentions better when used with a small amount
of training data. Therefore, the model can improve
significantly under few-shot settings.

To address the problems of manual prompts,
some studies (Jiang et al., 2020; Gao et al., 2021)
further propose to generate prompts automatically
following few-shot settings. These models utilize
generative language models, such as the T5
model, to write automatic prompts using small
training data from the task. Some studies
(Shin et al., 2020) also use the small training
set to fine-tune the language models or to
evaluate the prompts. However, there are several
drawbacks to automatically generated prompts
in real applications. First, prompts cannot be
generated in zero-shot settings, and the generated
prompts may not follow the human intuition of the
tasks. Second, deploying the generative language
models also poses challenges. It can be costly to
deploy on local hardware due to the size of the
pre-trained generative language models. Using the
generative language models via API (ChatGPT,
2022) also faces limitations, such as privacy
concerns when uploading confidential customer
or organizational data.
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In this work1, we aim to study how to improve
manual prompts for classification tasks under
zero-shot settings using moderately sized masked
language models. Specifically, we use the binary
sentence-level sentiment classification tasks as the
testbed. Instead of deploying large generative
language models, we study the usability of
moderately sized masked language models, such
as BERT (Devlin et al., 2019), which can be
deployed and tuned in-house easily for real-world
applications. The prompt follows the cloze-style
format, where the position of the label is masked
(e.g., “Battery life was great. The sentence was
[MASK]”, where a positive polarity is the goal
of prediction). The prompts are used to predict
probability scores for the polarity labels from the
pre-trained masked language model.

To overcome the sensitivity of the language
model to a manual prompt, we propose
augmentation strategies to automatically generate
more candidate prompts similar to the manual
prompt (i.e., the base prompt), which is not
required to be complex or optimized. Three
augmentation techniques are designed: positioning,
subordination, and paraphrasing. Different from
Gao et al. (2021), where generative language
models are used to generate candidate prompts,
we use the same masked language models to
paraphrase the base prompt. To find high-quality
prompts under the zero-shot setting, we propose
a novel ranking metric designed based on the
intuition that high-quality prompts should be more
sensitive to changing certain keywords. If a prompt
is not sensitive to the change of certain keywords,
it is not high-quality, and vice versa.

We conduct extensive experiments on various
benchmark datasets from different domains of
binary sentence-level sentiment classification
and show the efficacy of the proposed ZS-SC
model compared with different prompts, including
manually and automatically generated prompts, in
the zero-shot setting. The experimental results
demonstrate the effectiveness of the proposed
method in real applications.

In summary, the main contributions of this paper
are as follows:

• We propose a prompt augmentation method
using moderately sized masked language

1The code can be found at https://github.com/
Mohna0310/ZSSC

models to improve manual prompts for
classification tasks under zero-shot settings.

• To rank the automatically generated prompts
under the zero-shot setting, we propose a
novel ranking metric based on the intuition
that high-quality prompts should be sensitive
to the change of certain keywords in the given
sentence.

• Extensive experiments and ablation studies
performed on benchmark datasets for
sentence-level sentiment classification tasks
validate the effectiveness of the proposed
method.

2 Related Work

Prompt-based learning is a recent paradigm used in
the zero/few-shot setting. In the zero-shot setting,
the model is given a natural language instruction
(prompt) describing the task without any training
data (Brown et al., 2020), whereas in the few-
shot setting, a few samples of training data are
used along with the prompt. In prompt-based
learning, the downstream tasks are formalized as
masked language modeling problems using natural
language prompts. Then, a verbalizer is used to
map the masked language model prediction to the
labels of the downstream task. This work uses
prompt-based learning for the binary sentence-
level sentiment classification task. This section
discusses the related work that explored prompt-
based learning from generic and task-specific
perspectives.
Prompt-based Learning: With the introduction
of GPT-3 (Brown et al., 2020), recent years have
witnessed a series of studies based on prompt-
based learning. Schick and Schütze (2021)
utilized manual-designed hard prompts, composed
of discrete words, to fine-tune the pre-trained
language model. Finding the best-performing
manual prompt is challenging, and to alleviate
the problem, Jiang et al. (2020); Gao et al.
(2021); Shin et al. (2020) designed methods for
automatic prompt generation. Specifically, Shin
et al. (2020) performed the downstream tasks
using gradient-guided search utilizing a large
number of annotations for an automatic prompt
generation. Gao et al. (2021) proposed LM-BFF
that auto-generates prompts using the T5 model but
relies on few annotations for an automatic prompt
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generation. However, the auto-generated prompts
are hard prompts making them sub-optimal.

To overcome the limitations of hard prompts,
Zhong et al. (2021b); Li and Liang (2021); Wang
et al. (2021) proposed methods to learn soft
prompts under the few-shot settings. Soft (or
continuous) prompts are composed of several
continuous learnable embeddings, unlike hard
prompts. Motivated by the prior studies, Zhao
and Schütze (2021) utilized both the hard and
soft prompts for training the pre-trained language
model. Gu et al. (2022) proposed pre-training
hard prompts by adding soft prompts into the pre-
training stage to obtain a better initialization.

Another line of study (Khashabi et al., 2022;
Wang et al., 2022; Zhong et al., 2021a) designed
manual task-specific prompts by fine-tuning pre-
trained language models on multiple tasks. The
fine-tuned language model is then used on unseen
tasks under the zero/few-shot setting.

Prompt-based Learning for Sentence-level
Sentiment Classification: Over the past years, a
large body of studies (Shin et al., 2020; Gao et al.,
2021; Gu et al., 2022; Wang et al., 2022) have
demonstrated excellent performance in few-shot
settings on sentence-level sentiment classification
tasks. Specifically, Shin et al. (2020) used gradient-
guided search to generate automatic prompts,
whereas Gao et al. (2021) used a more general-
purpose search method to generate automatic
prompts. Following the limitation of automatic
prompts, Gu et al. (2022) suggested hybrid training
combining hard and soft prompts in the initial
stage, obtaining a better initialization. Wang
et al. (2022) proposed a Unified Prompt Tuning
framework and designed prompts by fine-tuning a
pre-trained language model over a series of non-
target NLP tasks and using the trained model to fit
unseen tasks. For instance, when the target task is
sentiment classification, the training data is from
other domains like NLI and paraphrasing.

These studies consider access to labeled
instances and perform the sentence-level sentiment
classification task using a large-scale pre-trained
generative language model. In our study, we do not
use any training data, and the base prompt can be
considered as a natural language description for the
task. Therefore, this study follows the zero-shot
setting. Using a moderately sized masked language
model further makes the proposed method more
appealing in practice.

Base Prompt                . The sentence was

Input Mapping  {positive: great, negative: terrible}           

- Sentence             
- [MASK]

Figure 1: Model Input

3 Methodology

This section first discusses the problem formulation
and the overview in Section 3.1 and Section
3.2. Our proposed method handles the language
model’s sensitivity to a manual prompt by
utilizing prompt augmentation techniques to
generate multiple candidate prompts. The
detailed description of the prompt augmentation is
discussed in Section 3.3. To rank the automatically
generated prompts in the zero-shot setting, we
propose a novel ranking metric, discussed in
Section 3.4. Finally, the top-ranked prompts are
used for prediction, discussed in Section 3.5.

3.1 Problem Formulation
Given an unlabeled corpus D with N sentences,
an input mapping M : Y → V for the labels
y ∈ Y = {−1, 1}, in the vocabulary V of L
and a base prompt Bp, the task is to find quality
prompts similar to the base prompt in a zero-
shot setting for the binary sentence-level sentiment
classification task. Figure 1 shows one example
input to the model. In this example, y ∈ Y =
{negative, positive}, M(positive) = great,
and M(negative) = terrible.

3.2 Overview
Given a base prompt Bp, the proposed ZS-SC
first generates multiple prompts similar to the
base prompt using augmentation techniques.
Specifically, we introduce positioning,
subordination, and paraphrasing techniques
in the augmentation process, which are discussed
in detail in Section 3.3.

With more automatically generated candidate
prompts, ZS-SC ranks the prompts using a novel
ranking metric. This metric is designed based on
the observation that quality prompts should flip the
predicted label if M(y) present in the sentence is
replaced with M(y′), where y ̸= y′, whereas the
predicted label should stay the same if M(y) is
replaced with its synonyms. Section 3.4 discusses
the proposed ranking metric in detail.
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.The sentence was  

so the sentence was
The sentence was        because

Subordinate Technique

. the sentence was
The sentence was        .

Positioning Technique

so this feedback is
A response of        . 

Paraphrasing Technique

so the sentence was
The sentence was       .
A response of        .

3
3
2

Selection Aggre
gation

Great 0.74
Terrible 0.26

Great  0.85
Terrible  0.15

positive

Base Prompt

Prompt Augmentation

Ranking Metric

Prediction

positive

- Sentence             
- [MASK]

Figure 2: Overview of ZS-SC.

Finally, the top-ranked prompt is selected, or
top−k highly ranked prompts are aggregated to
conduct the zero-shot prediction for the unlabeled
corpus D (Section 3.5).

Figure 2 illustrates the overview of the proposed
approach, ZS-SC.

3.3 Prompt Augmentation

A single base prompt provided by a user
may not provide optimal results for the given
task. Prior studies (Gao et al., 2021; Jiang
et al., 2020) have shown that the performance
of the prompts is sensitive to the choice of
certain words and the position of the prompts,
respectively. Furthermore, we observe that using
subordinate conjunctions to join the prompt and
sentence can improve the method’s performance
on some datasets since it introduces a dependency
between the prompt and sentence, thereby leading
the model to relate the predicted label with
the context of the sentence. Based on the
above observations, we propose to apply three
augmentation techniques to generate prompts
automatically, namely positioning, subordination,
and paraphrasing techniques.

The positioning technique places the prompt
either before or after the given sentence.
The subordination technique uses subordinate
conjunctions like "because" and "so" to join
the prompt and the sentence. Specifically, the
conjunction "because" is used if the prompt is

[CLS]      .        sentence was positive [SEP]
[CLS]      .The was positive [SEP]
[CLS]      . The sentence positive [SEP]

“was”
…

“were”

“response”
“review

…
“reaction”

“The”
…

“This”

- Sentence             
- [MASK]
- MLM HEAD

Figure 3: Paraphrasing Technique.

placed before the sentence, and the conjunction
"so" is used if the prompt is placed after the
sentence.

The paraphrasing technique generates multiple
prompts similar to the base prompt Bp by swapping
the tokens in the base prompt with similar tokens.
These similar tokens should have the same part
of speech tags as the tokens they are replacing
and should not change the context of the prompt.
Therefore, to obtain these similar tokens, we use
a pre-trained MLM model L. Pre-trained MLM
models are trained to predict the missing tokens
that fit the context of the given sentence and
thus would be suitable for the purpose. Figure
3 illustrates the paraphrasing technique for the
base prompt. The label “positive" is used as a
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so the sentence was  battery life was great

excellent

terrible

positive

negative

extraordinary

horrible positive

positive

positive

same

flip

- Sentence             
- [MASK]

Figure 4: Ranking Metric.

placeholder so that pre-trained MLM model can
learn the context of the given sentence.

If a specific sentence is joined with the base
prompt, the MLM model L can understand the
context better, so the replacing tokens will make
more sense. Therefore, instead of using prompts
alone, we form sample instances by randomly
selecting sentences from the unlabeled corpus D.
We then mask the replaceable tokens from the base
prompt one at a time and use the MLM model L to
predict the masked token. For each masked token,
the MLM model L gives a score to all the tokens in
its vocabulary. We choose the top-K ranked tokens
as similar token candidates and remove those that
do not have the same POS tag as the masked token.

These three techniques can be applied in
different combinations and permutations to
generate prompts automatically. The number of
candidate paraphrasing tokens K can be increased
to generate more prompts. Figure 3 illustrates the
process of obtaining paraphrasing tokens to the
tokens of the base prompt.

3.4 Ranking Metric

Not all the automatically generated prompts in
Section 3.3 obtain good performance for the task.
Therefore, we aim to rank these prompts and
choose quality prompts for the tasks. Previous
works (Gao et al., 2021; Shin et al., 2020) have used
validation or manually annotated few-shot training
data for evaluating the automatically generated
prompts. However, under the zero-shot setting, we
do not assume there exists any manually annotated
data. Therefore, we have to rank the automatically
generated prompts in the absence of manually
annotated data which is not considered by the
previous works.

Intuitively, if the mapping token of the opposite
label replaces the mapping token in a given
sentence, the predicted label by a quality prompt
should flip. On the other hand, the predicted label

should remain the same if the mapping token in the
sentence is replaced by its synonyms. For example,
suppose we replace the word "great" in sentence
"battery life was great" with "terrible". In this
case, the predicted label should flip, whereas if we
replace "great" with "excellent", the predicted label
should remain the same. We use this intuition to
measure the sensitivity of the prompt to the change
of the mapping tokens in the given sentences. The
measured sensitivity implies the quality of the
prompt, namely prompts sensitive to the change
of the mapping tokens in the given sentence can
achieve good performance for the task. Figure 4
illustrates the key idea of the proposed ranking
metric.

We model the above intuition as a zero-one
scoring function. To do so, we first obtain sentences
from the unlabeled corpus D that contain the
mapping tokens M(y) ∈ V obtained from the
provided input mapping M : Y → V . If the
mapping tokens are not present in the corpus D,
the synonyms of the mapping tokens can be used.

For a sentence sin ∈ SW , let the label predicted
by the model for a given prompt P be l1. We
then replace the mapping token M(y) in sin with
M(y′), where y ̸= y′ to obtain a new sentence s′in.
Let the label predicted for s′in be l2. The zero-one
scoring function for this scenario is defined as:

λsin =

{
1, if l2 ̸= l1

0, Otherwise
. (1)

We consider the synonyms of M(y) to further
diversify the scoring function. Specifically, we
use Wordnet (Miller, 1995) to obtain synonyms
for M(y). We replace M(y) by its synonym to
obtain a new sentence s′′in. Let the label predicted
for s′′in be l3. The scoring function for this scenario
is defined as:

λsin =

{
1, if l3 = l1

0, Otherwise
. (2)

Similarly, we can also consider the synonyms of
M(y′). The predicted label should flip if M(y) is
replaced by synonyms of M(y′).

Let Z be the set of new sentences obtained
through synonym replacement. The overall score
for a given prompt (P ) is defined as:

Score(P ) =

|SW |∑

i=1

|Z|∑

j=1

λsij . (3)
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A higher score indicates that the prompt is more
sensitive to the polarity of mapping tokens.

The score is calculated for all the prompts
generated in the prompt augmentation step (Section
3.3), and then the prompts are ranked based on
their calculated score. The top-ranked prompt is
the prompt with the highest score. Figure 4 depicts
the functioning of our ranking metric.

3.5 Prediction

First, we define how we obtain the prediction
probabilities using any given prompt. Given an
input mapping M : Y → V that maps the task
label space to individual words in the vocabulary
V of pre-trained MLM model L, the probability
of a label y ∈ Y for a given sentence sin in the
unlabeled corpus D using a prompt P is obtained
as:

p(y|sin) = p([MASK] = M(y)|sP )

=
exp(wM(y).h[MASK])∑

y′∈Y exp(wM(y′).h[MASK])
, (4)

where sP = P (sin) is the sentence sin joined with
the prompt P , which contains exactly one masked
token at the position of the label, h[MASK] is the
hidden vector of the [MASK] token and wv is the
pre-softmax vector corresponding to v ∈ V . The
predicted label for the given sentence sin is the
label y with the highest probability.

Our proposed approach is to use quality prompts
for the zero-shot prediction tasks. We can either
select the top-ranked prompt or aggregate top-k-
ranked prompts. If the top-1 prompt is selected, Eq.
(4) is used to obtain the label probability for each
sentence, and the label with the highest probability
is the predicted label.

Prompt aggregation may help correct the
mistakes of the individual prompts. We consider
prediction confidence and use the soft labels
computed by Eq. (4) in aggregation. Let
p1(y), p2(y), .., pk(y) be the prediction probability
for label y ∈ Y obtained using top-k prompts. The
aggregated prediction probability is:

p(y) =

∑k
i=1 Score(pi) ∗ pi(y)∑k

i=1 Score(pi)
, (5)

and then the label with the highest aggregated
prediction probability is chosen for the sentence.

Table 1: Statistics of the Datasets

Datasets SST-2 MR CR
Pos Neg Pos Neg Pos Neg

Train 3610 3310 4331 4331 1407 368
Dev 444 428 0 0 0 0
Test 909 912 1000 1000 1000 1000
Total 4963 4650 5331 5331 2407 1368

4 Experiments

In this section, we evaluate the proposed ZS-SC
model on several benchmark binary sentence-
level sentiment classification datasets from various
domains. More studies can be found in the
Appendix A.

4.1 Dataset
The performance of ZS-SC is evaluated across 3
widely used sentiment classification datasets: SST-
2 (Socher et al., 2013), MR (PANG, 2002), and
CR (Hu and Liu, 2004). The dataset statistics are
provided in Table 1.

4.2 Evaluation Metrics
Since no training data is used in zero-shot settings,
we evaluate all prompts on the entire dataset. We
use Accuracy (Acc.) and macro F1 score (F1)
for all the datasets to evaluate the performance
of ZS-SC and compare it with baselines under
different settings. Note that Accuracy is equivalent
to micro F1 score in binary classification tasks.

4.3 Baseline Methods
Since none of the prior work has performed the task
of binary sentence-level sentiment classification
under the zero-shot setting, we compare it with
the baselines that have performed the task under
the few-shot setting for the datasets discussed in
Section 4.1. For a fair comparison, we modified
these studies as per the zero-shot setting, using
the prompts reported in their paper. The baseline
templates are discussed in Table 5 of Appendix A.

LM-BFF (Gao et al., 2021): This paper explores
manual prompts and generates automatic prompts
under the few-shot setting. Specifically, they
use few-shot examples to automatically generate
prompts using the T5 model. The performance
of their method is evaluated on a range of
classification and regression tasks using RoBERTa-
large (Liu et al., 2019) with fine-tuning. We
compare ZS-SC with their manual prompt and their
top-ranked automatic prompts.
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Table 2: Results of the sentiment classification task on the three benchmark datasets using BERT base and BERT
large. We report accuracy and F1 score for all datasets. The results are evaluated on the entire dataset. We report the
majority voting results for the automatic prompt baselines. The best-performing and runner-up model per column
are highlighted in bold and underlined, respectively.

Method Prompt
BERT base BERT large

SST-2 MR CR SST-2 MR CR
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

LM-BFF
Automatic

58.46 62.24 57.94 62.81 71.35 69.66 52.69 59.33 57.3 63.69 70.55 69.11
UPT 57.46 61.79 62.65 66.78 75.09 73.53 53.82 61.08 65.2 69.69 72.62 71.4

LM-BFF

Manual

62.3 65.75 58.18 62.16 74.9 72.81 61.15 65.41 57.88 62.64 72.59 70.85
PPT 52.53 56.93 50.5 53.41 64.03 61.02 52.29 57.68 50.5 56.0 63.9 62.21

Base Prompt† 62.3 65.75 58.18 62.16 74.9 72.81 61.15 65.41 57.88 62.64 72.59 70.85
Base Prompt⋆ 63.22 63.15 59.97 60.25 69.04 64.29 54.12 58.6 54.43 57.12 56.59 62.14

ZS-SC (Top-1)†

Automatic

67.48 67.52 58.93 62.07 73.36 70.16 74.13 75.66 69.84 71.75 73.12 70.65
ZS-SC (Top-3)† 67.12 68.22 60.15 60.14 71.19 68.23 67.58 70.65 64.15 67.91 70.05 67.82
ZS-SC (Top-5)† 67.99 68.94 61.19 62.92 71.51 69.32 66.55 70.09 63.47 67.76 69.41 67.32
ZS-SC (Top-1)⋆ 72.18 72.36 68.24 68.26 75.09 72.1 74.74 74.71 70.29 70.36 80.47 78.43
ZS-SC (Top-3)⋆ 71.92 72.01 67.88 67.89 76.82 74.43 77.11 77.58 72.96 73.54 79.17 77.84
ZS-SC (Top-5)⋆ 71.5 71.46 66.74 66.88 77.26 74.52 76.9 77.54 72.46 73.43 81.45 79.52

PPT (Gu et al., 2022): This paper proposes pre-
training hard prompts by adding soft prompts to
achieve better initialization into the pre-training
stage on classification tasks. ZS-SC is compared
with their manual prompt.

UPT (Wang et al., 2022): This paper proposes
a Unified Prompt Tuning framework and designs
prompts by fine-tuning a pre-trained language
model (RoBERTa-large) over a series of non-target
NLP tasks. After multi-task training, the trained
model can be fine-tuned to fit unseen tasks. ZS-SC
is compared with their top-ranked prompts.

4.4 Settings
The experiments are conducted using pre-trained
uncased BERT (BERT base and BERT large)
encoders. BERT base has 12 attention heads, 12
hidden layers, and a hidden size of 768 resulting
in 110M pre-trained parameters, whereas BERT
large has 16 attention heads, 24 hidden layers, and
a hidden size of 1024 resulting in 336M pre-trained
parameters. We set K, the hyperparameter for the
number of candidate words in paraphrasing, to 30.
We obtain 6 synonyms for each mapping word from
WordNet (Miller, 1995). The size of the set of new
sentences through synonym replacement (Z) is 12,
6 of which are obtained by replacing the mapping
token M(y) with its synonyms, and the other 6 are
obtained by replacing the mapping token by M(y′)
and synonyms of M(y′), where y ̸= y′.

For ZS-SC, we considered two different base
prompts. The first base prompt is "<sentence>. It
was [MASK]", which is the same as the manual
prompt used by LM-BFF (denoted by † in Table 2),
whereas the second base prompt is "<sentence>.

The sentence was [MASK]" (denoted by ⋆ in Table
2). The base prompts defined are generic and used
for all datasets.

4.5 Results and Discussion
To better compare the performance of different
methods, we categorize them based on the prompt
(manual or automatic).

Table 2 shows the results of all prompts using
BERT base and BERT large pre-trained MLM
models, respectively. ZS-SC with the ⋆ base
prompt significantly outperforms both manual and
automatic baseline methods on both pre-trained
MLM models on all three datasets. Overall,
the aggregation strategy tends to outperform the
selection strategy, but the outperformance is
inconsistent across different data. We conduct more
studies on the impact of top-k prompts in Section
4.6.

It is interesting to notice that for † base prompt
ZS-SC outperforms on SST-2 and MR datasets but
not on the CR dataset. Furthermore, the margin
of ZS-SC over the base prompt decreases for †
compared to ⋆ base prompt. This is because “It was”
is harder to augment than “The sentence was” since
the former is shorter and contains no concrete word.
Even though the † base prompt is not ranked top-1
by ZS-SC on the CR dataset, it is ranked as the 4-th
for both pre-trained MLM models, demonstrating
that ZS-SC can recognize † base prompt as a high-
quality prompt.

It is also interesting to note that for baseline
methods, either using manual or automatic prompts,
there is no significant gain using the BERT large
over the BERT base encoder, and the performance
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Table 3: Ablation study results with and without WordNet on the three benchmark datasets for sentiment classification
tasks. We report accuracy and F1 score for all datasets using BERT base and BERT large. The results are evaluated
on the entire dataset.

Method Encoder SST-2 MR CR
Acc. F1 Acc. F1 Acc. F1

ZS-SC-W (Top-1) 62.77 64.14 59.25 63.3 72.04 71.29
ZS-SC-W (Top-3) 62.57 65.73 60.1 64.34 75.78 72.76
ZS-SC-W (Top-5) BERT 62.85 66.41 61.0 64.91 75.67 73.63

ZS-SC (Top-1) base 72.18 72.36 68.24 68.26 75.09 72.1
ZS-SC (Top-3) 71.92 72.01 67.88 67.89 76.82 74.43
ZS-SC (Top-5) 71.5 71.46 66.74 66.88 77.26 74.52

ZS-SC-W (Top-1) 73.55 74.1 70.29 70.36 80.47 78.43
ZS-SC-W (Top-3) 74.54 75.0 69.94 71.03 79.17 77.83
ZS-SC-W (Top-5) BERT 75.68 76.74 71.89 73.14 81.0 78.94

ZS-SC (Top-1) large 74.74 74.71 70.29 70.36 80.47 78.43
ZS-SC (Top-3) 77.11 77.58 72.96 73.54 79.17 77.84
ZS-SC (Top-5) 76.9 77.54 72.46 73.43 81.45 79.52

of a prompt can change significantly using
different pre-trained language models. However,
we can observe that the performance of ZS-SC
improves with the scale of the model. The
key difference between ZS-SC and the automatic
prompts generated by baseline models is that
we use the same language models to generate
prompts and conduct classification tasks, whereas
baselines generate prompts manually or using a
different model. These results suggest that different
language models have different knowledge of
the language, so prompts need to be generated
specifically for the chosen language model.

4.6 Study of Selection VS Aggregation

Comparing top-1 selection to top-k aggregation,
from Table 2, we can observe that top-1 selection
performs better compared to top-k aggregation
on BERT base whereas on BERT large top-k
aggregation performs better. Furthermore, we can
observe that the top-k aggregation result does not
increase with k as suggested by previous works
(Gao et al., 2021).

To further analyze our observation, we plot the
change in performance of ZS-SC with respect
to the number of aggregated top-k prompts for
BERT large encoder on ⋆ base prompt in Figure
5. Figure 5 shows that the top-k aggregation
performance increases with k only for SST-2
dataset and does not increase for CR and MR
datasets. This implies that top-k aggregation
performance increases with k only for some
datasets but not all. Furthermore, we can also
observe that top-k aggregation performance can be
better than top-1 selection performance on all three
datasets. We believe that aggregation performance
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Figure 5: Performance vs the number of aggregated
top-k prompts for BERT large on ⋆ base prompt.

improves when the top-ranked prompts make
independent mistakes.

4.7 Study of the Proposed Ranking Metric

To study the effectiveness of the proposed ranking
metric, we plot the accuracy of the augmented
prompts evaluated using ground truth labels with
respect to their ranks based on the proposed ranking
metric. The results for SST-2 dataset using the
BERT base model on ⋆ base prompt are shown
in Figure 6. The figure shows that the highly-
ranked prompts achieve higher accuracy than the
low-ranked prompts in general, demonstrating
the effectiveness of our proposed ranking metric.
Furthermore, we can observe that the accuracy of
the prompts decreases as the rank provided by our
proposed ranking metric increases.
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Figure 6: Proposed Metric vs Ground Truth
Performance for SST-2 dataset using BERT base model
on ⋆ base prompt .

4.8 Ablation Studies
We conduct ablation studies to investigate the
contributions of Wordnet synonyms to the overall
model performances.

Table 3 shows the performance of ZS-SC with
and without Wordnet. From the results, we can
observe that ZS-SC with Wordnet outperforms
ZS-SC without Wordnet for both variants of pre-
trained MLM models. The results show that
diversification of the mapping tokens helps the
scoring function to rank the prompts better and
subsequently improve the performance.

5 Conclusion

This work proposes to study how to improve
manual prompts for binary sentence-level
sentiment classification tasks under zero-shot
settings. To overcome the sensitivity of the
language model to a manual prompt, we propose
prompt augmentation techniques to generate
multiple candidate prompts. Further, to rank
the generated prompts without labeled data, we
propose a novel ranking metric based on the
intuition that high-quality prompts should be
sensitive to the change of certain keywords in
the given sentence. Extensive experiments and
ablation studies demonstrate the power of the
proposed ZS-SC on three benchmark datasets.

Limitations

The proposed method is tested for a binary labeling
scenario where each instance can belong to one of
the labels but not both. The scenario of overlapping
labeling space is not tested, nor is the scenario
for multi-class labeling space. Since we aim to
obtain high-quality prompts similar to the base

prompt, if the base prompt is very restrictive, then
the suggested prompt might be the same as the
base prompt. The approach only applies to two
moderately sized MLM models, and the extension
to other larger models is not tested.

Ethics Statement

We comply with the ACL Code of Ethics.
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A Appendix

A.1 Case Study
Table 4 shows the top-5 ranked prompts for
three datasets, SST-2, MR, and CR. The table
shows that prompts with subordinate conjunctions
like “because" and “so" are ranked higher. The
ranking confirms our intuition that subordinate
conjunctions that introduce a dependency between
the prompt and the sentence can improve the
performance of the prompts. Note that the
proposed ranking metric ensures that low-quality
prompts are not ranked higher. Therefore the
results from the table suggest that prompts with
subordinate conjunctions are high-quality.
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Table 4: Top 5 Ranked Prompts for BERT large and BERT base

Dataset BERT large BERT base

SST-2

The sentence sounded [MASK] because <sentence> . <sentence>. Every sentence was [MASK] .
Every sentence was [MASK] . <sentence> . Every sentence was [MASK]. <sentence> .
<sentence> . Every sentence was [MASK] . Each sentence was [MASK] . <sentence> .
The result was [MASK] . <sentence> . <sentence>. Each sentence was [MASK] .
Each sentence was [MASK] . <sentence> . <sentence> so every sentence was [MASK] .

MR

The sentence sounded [MASK] because <sentence> . <sentence>. Every sentence was [MASK] .
The sentence seemed [MASK] because <sentence> . Every sentence was [MASK]. <sentence> .
The result was positive . <sentence> . Each sentence was [MASK] . <sentence> .
Every sentence was [MASK] because <sentence> . <sentence> . Each sentence was [MASK] .
Every sentence was [MASK] . <sentence> . <sentence> so the sentence sounded [MASK] .

CR

The sentence sounded [MASK] because <sentence> . The sentence sounded [MASK] . <sentence> .
The sentence sounded [MASK] . <sentence> . <sentence> . The sentence sounded [MASK] .
<sentence> . The sentence sounded [MASK] . Every sentence was [MASK] . <sentence> .
Every sentence was [MASK] . <sentence> . <sentence> . Every sentence was [MASK] .
The answer was [MASK] . <sentence> . This sentence was [MASK] . <sentence> .

Table 5: Ranked Prompts of Baselines

Dataset LM-BFF PPT UPT

SST-2

<sentence>. A [MASK] one. <sentence>. [MASK]. <sentence>. It was [MASK].
<sentence>. A [MASK] piece. <sentence>. I thought it was [MASK].
<sentence>. All in all [MASK]. <sentence>. It is [MASK].

<sentence>. The review is [MASK].
<sentence>. A [MASK] one.

MR

It was [MASK] ! <sentence>. <sentence>. [MASK]. <sentence>. A [MASK] piece of work.
<sentence>. It’s [MASK]. <sentence>. It is [MASK].
<sentence> A [MASK] piece of work. <sentence>. The film is [MASK].

<sentence>. A really [MASK] movie.

CR

<sentence>. It’s [MASK] ! <sentence>. [MASK]. <sentence>. It was [MASK].
<sentence>. The quality is [MASK]. <sentence>. It looks [MASK].
<sentence>. That is [MASK]. <sentence>. It is [MASK].

<sentence>. The quality is [MASK].
<sentence>. I thought it was [MASK].
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