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Abstract

In this paper, we introduce Cross-View Lan-
guage Modeling, a simple and effective pre-
training framework that unifies cross-lingual
and cross-modal pre-training with shared archi-
tectures and objectives. Our approach is mo-
tivated by a key observation that cross-lingual
and cross-modal pre-training share the same
goal of aligning two different views of the
same object into a common semantic space.
To this end, the cross-view language model-
ing framework considers both multi-modal data
(i.e., image-caption pairs) and multi-lingual
data (i.e., parallel sentence pairs) as two dif-
ferent views of the same object, and trains the
model to align the two views by maximizing
the mutual information between them with con-
ditional masked language modeling and con-
trastive learning. We pre-train CCLM, a Cross-
lingual Cross-modal Language Model, with
the cross-view language modeling framework.
Empirical results on IGLUE, a multi-lingual
multi-modal benchmark, and two multi-lingual
image-text retrieval datasets show that while
conceptually simpler, CCLM significantly out-
performs the prior state-of-the-art with an aver-
age absolute improvement of over 10%. More-
over, CCLM is the first multi-lingual multi-
modal pre-trained model that surpasses the
translate-test performance of representative
English vision-language models by zero-shot
cross-lingual transfer.1

1 Introduction

Recently, the tremendous success of self-
supervised language model pre-training (Peters
et al., 2018; Radford et al., 2018; Devlin et al.,
2019; Liu et al., 2019; Radford et al., 2019; Dong
et al., 2019; Raffel et al., 2019; Lewis et al., 2020;
Brown et al., 2020) has been expanded to the

∗Equal Contribution. Work done at ByteDance.
†Correspondence to: zengyan.yanne@bytedance.com

1The code and pre-trained models are available at https:
//github.com/zengyan-97/CCLM.

multi-lingual (Conneau and Lample, 2019; Con-
neau et al., 2020; Pfeiffer et al., 2020; Chi et al.,
2021) and multi-modal (Lu et al., 2019; Tan and
Bansal, 2019; Su et al., 2020; Chen et al., 2020; Li
et al., 2020) domain. Advances on multi-lingual
pre-training enables cutting-edge language tech-
nology to benefit a much boarder group of users
including non-English speakers. Similarly, multi-
modal pre-training makes pre-trained models appli-
cable to a much larger set of tasks and user groups.
Both of these directions make people’s lives in
a multi-lingual multi-modal world easier. There-
fore, a natural next step is to explore multi-lingual
multi-modal pre-training which enables pre-trained
models to solve multi-modal tasks expressed in
non-English languages without the need of collect-
ing training data in these languages, which can be
very costly for certain low-resource languages.

While appealing, multi-lingual multi-modal pre-
training has its own challenges. Unlike multi-
lingual pre-training and multi-modal pre-training
where relatively large amount of parallel data is
available, there exists only a few multi-lingual
multi-modal corpora and their language coverage
is also limited. Two pioneering works, M3P (Ni
et al., 2021) and UC2 (Zhou et al., 2021), propose
to pivot either on English texts or images to align
multi-lingual multi-modal representations. Both
of them introduce a number of new objectives to
make use of the anchor for alignment. However,
a recent benchmark on multi-lingual multi-modal
pre-training (Bugliarello et al., 2022) reveals that
these multi-lingual multi-modal pre-trained mod-
els are still falling short: while achieving seem-
ingly promising zero-shot cross-lingual transfer
performance on some vision-and-language tasks,
they still significantly under-perform “translate-
test”, a simple baseline which translates the test
examples into English and uses an English-only
vision-language model for inference. This prevents
existing multi-lingual multi-modal models to be
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applicable in real-world applications. In contrast,
multi-lingual pre-trained models such as XLM-
R (Conneau et al., 2020) significantly outperforms
the translate-test baseline in most languages and is
widely used in practical applications.

This paper aims to fully exploit the potential of
multi-lingual multi-modal pre-training. We point
out two major limitation of current state-of-the-
arts. First, existing methods do not exploit parallel
text corpora, which can be easily collected and are
abundant for many language pairs. Instead, M3P
performs masked language modeling with monolin-
gual texts in different languages for multi-lingual
alignment. However, parallel texts are shown to
be more helpful according to multi-lingual pre-
training literature (Conneau et al., 2020; Chi et al.,
2021). Second, a number of new pre-training ob-
jectives involving specific architecture changes and
different input-output formats are introduced for
English or image pivoting, making it non-trivial to
combine them together for better performance and
scale to larger data.

In this work, we argue that multi-lingual and
multi-modal pre-training are essentially achiev-
ing the same goal of aligning two different views
of a same object into a common semantic space.
Therefore, we believe these two seemingly dif-
ferent strategies can be combined into a unified
framework. To this end, we introduce cross-view
language modeling, a simple and effective frame-
work that unifies cross-lingual and cross-modal pre-
training with shared architecture and objectives.
Specifically, we consider both multi-modal data
(i.e., image-caption pairs) and multi-lingual data
(i.e., parallel sentence pairs) as pairs of two differ-
ent views of the same object. With either multi-
modal or multi-lingual data as input, we encode
the two views with Transformer models and then
fuse their representations with a cross-attention
Transformer model shared for both cross-modal
and cross-lingual fusion. We train the model to
align the two views into a common semantic space
by maximizing the mutual information between
them with a conditional masked language model-
ing objective, a contrastive learning objective, and
a matching objective. In this way, the cross-view
language modeling framework unifies English piv-
oting and image pivoting schemes seamlessly and
makes the best of both worlds.

To evaluate the effectiveness of our approach,
we pre-train CCLM, a Cross-lingual Cross-modal

Language Model, with the proposed cross-view lan-
guage modeling framework. Experimental results
show that CCLM significantly outperforms prior
state-of-the-art with an averaged absolute improve-
ment of over 10% and 30% on multi-lingual vision-
language understanding and retrieval tasks in terms
of accuracy and R@1 on IGLUE (Bugliarello
et al., 2022), a recently released multi-lingual multi-
modal benchmark. Notably, CCLM is the first
multi-lingual vision-language model that surpasses
the “translate-test” performance of mono-lingual
vision-language models via zero-shot cross-lingual
transfer, which we believe is a crucial step towards
practical multi-lingual multi-modal pre-training.
Since previous work used different pre-training
datasets, making direct comparison difficult, we
also conduct an in-depth ablation study to investi-
gate the contribution of different parts in our frame-
work. The results show that use of parallel sentence
pairs helps to fully exploit the potential of language
pivoting for multi-lingual multi-modal pre-training
and also confirm the importance of unified archi-
tectures and objectives in CCLM.

Contributions. (1) We propose a cross-view
language modeling framework that unifies multi-
lingual and multi-modal pre-training with shared
architectures and objectives. (2) CCLM advances
the state-of-the-art of multi-lingual vision-language
pre-training by a large margin. It also surpasses
the translate-test baseline for the first time, demon-
strating the potential of multi-lingual multi-modal
pre-training. (3) We further scale up CCLM with
massive pre-training data and larger model size.
We will release our large-scale pre-trained multi-
lingual multi-modal models to benefit a larger set
of tasks and user groups and setup a strong and
easily reproducible baseline for multi-lingual multi-
modal research.

2 Related Work

Multi-lingual Pre-training Multilingual
BERT (Devlin et al., 2019) demonstrates that
good cross-lingual transfer results can be achieved
by performing masked language modeling on
multi-lingual corpora with shared vocabulary
and weight. Later, XLM (Conneau and Lample,
2019), XLM-R (Conneau et al., 2020), and
Unicoder (Huang et al., 2019) introduce a number
of new objectives including translation language
modeling (TLM), cross-lingual word recovery, and
cross-lingual paraphrase classification to improve
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multi-lingual pre-training. More recently, MAD-
X (Pfeiffer et al., 2020) and InfoXLM (Chi et al.,
2021) further improve multi-lingual pre-training
via adapter (Houlsby et al., 2019) and contrastive
learning.

Vision-Language Pre-training Inspired by the
success of language model pre-training, a number
of work (Lu et al., 2019; Tan and Bansal, 2019; Li
et al., 2020; Chen et al., 2020; Zeng et al., 2021;
Wang et al., 2022; Yu et al., 2022) investigates
vision-language pre-training on large scale image-
caption pairs and proposes a number of objec-
tives to align vision and language representations,
including masked multi-modal modeling, multi-
modal alignment prediction, RoI feature regres-
sion, image-text matching, to name a few. Vision-
language pre-training has reshaped the landscape
of vision-and-language research and pushed the
state-of-the-arts on a wide range of vision-language
tasks (Zhou et al., 2022). However, it is non-trivial
to collect large scale image-caption pairs in other
languages. As such, most existing vision-language
pre-trained models are limited to English tasks.

Multi-lingual Multi-modal Pre-training Multi-
lingual multi-modal pre-training aims to make
multi-modal models applicable on non-English
texts by cross-lingual transfer. In this paper
we mainly consider multi-modal in the vision-
language context. The key difficulty of multi-
lingual multi-modal pre-training is the lack of
non-English image-text pairs. Two representative
works tackle the lack of non-English image-text
pairs by pivoting on either English texts or im-
ages. Specifically, M3P (Ni et al., 2021) uses
English as pivot and alternates between English-
only vision-language pre-training and multi-lingual
masked language modeling. UC2 (Zhou et al.,
2021), on the other hand, translates English cap-
tions into multiple languages and considers images
as the anchor, achieving state-of-the-art on various
multi-lingual vision-language tasks. More recently,
MURAL (Jain et al., 2021) collects large-scale
image-text pairs in 110 languages and pre-trains a
dual encoder model via contrastive learning. MU-
RAL achieves new state-of-the-art on multi-lingual
image-text retrieval tasks. However, the dual en-
coder architecture of MURAL makes it unable to
perform multi-modal understanding tasks well.

3 Cross-View Language Modeling

3.1 Overview
Cross-view language modeling is a simple frame-
work that unifies cross-lingual pre-training and
cross-modal pre-training with shared architecture
and objectives. CCLM consists of an image en-
coder, a cross-lingual text encoder, and a fusion
model. All components are Transformer-based.
Specifically, the image encoder (Dosovitskiy et al.,
2021) first splits an image into non-overlapping
patches, and then embeds these patches with trans-
former layers, yielding {v⃗cls, v⃗1, ..., v⃗N1}. For an
image of resolution of 224x224 and patch size of
32x32, we have N1 = 49. Similarly, the cross-
lingual text encoder encodes a text input via trans-
former layers, yielding {w⃗cls, w⃗1, ..., w⃗N2}. N2 is
the length of the text input. Then, the fusion model
fuses text features with the corresponding image
features or features of the translated text based on
cross-attention, producing {x⃗cls, x⃗1, ..., x⃗N2}.

As illustrated in Figure 1, with either (text, im-
age) pairs or (text, translation) pairs as input, we
consider the paired input as two different views
and train the model to align their representations
in a common semantic space. This unified cross-
view perspective allows us to share input-output
formats, architectures, and training objectives be-
tween cross-lingual inputs and cross-modal inputs.
Specifically, we completely share the fusion model
for both cross-lingual fusion and cross-modal fu-
sion, and optimize the model by contrastive loss,
matching loss, and conditional masked language
modeling loss for both cross-lingual and cross-
modal inputs. We select these objectives because
they are universally effective in both cross-lingual
and cross-modal pre-training literature (Chi et al.,
2021; Li et al., 2021). We will show that the three
loss maximize sequence-level and token-level mu-
tual information between image-caption pairs or
parallel sentence pairs. On the other hand, we
empirically find that the three loss are more effec-
tive for cross-lingual cross-modal pre-training than
certain task-specific loss such as masked region-
to-token language modeling which is specially for
multi-modal pre-training or translation language
modeling for multilingual pre-training.

3.2 A Mutual Information Maximization
Perspective

In this section, we explain our approach from an
information-theoretic perspective. Formally, given
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Figure 1: Illustration of the cross-view language modeling framework. CCLM takes two different views of the same
object, i.e., either (a) image-caption pairs or (b) parallel sentence pairs, as input. CCLM first encodes the two views
separately. Then the representations of the two views are fused by a Transformer-based model, which is shared for
both cross-lingual and cross-modal fusion. CCLM is optimized by maximizing the mutual information between the
two views via conditional masked language modeling loss, contrastive loss, and matching loss.

two random variablesA andB, mutual information
I(A,B) measures dependencies between the two
random variables. We define A = a and B = b
as two different views of a data point, which can
be either an image-caption pair or a parallel sen-
tence pair. In this case, we will show that CCLM
maximizes a lower bound of I(A,B) for cross-
lingual cross-modal pre-training by minimizing the
InfoNCE loss (Oord et al., 2018) defined as:

Lnce = −Ep(A,B)

[
log

exp(fθ(a, b))∑
b̃∈B̃ exp(fθ(a, b̃))

]
, (1)

where fθ ∈ R is a function parameterized by θ
and B̃ contains the positive sample b and |B̃| − 1
negative samples.

The contrastive loss between the image encoder
and the cross-lingual text encoder is a symmetric
version of Lnce:

Lcl = −1

2
Ep(A,B)

[
log

exp(fθ(a, b))∑
b̃∈B̃ exp(fθ(a, b̃))

+ log
exp(fθ(a, b))∑

ã∈Ã exp(fθ(ã, b))

]
, (2)

where |Ã| = |B̃| = N is the batch size, and
we predict (a, b) pairs from in-batch negatives.
fθ(a, b) = gv(v⃗cls)

⊤gw(w⃗cls)/τ given an image-
caption pair or fθ(a, b) = gw(w⃗

a
cls)

⊤gw(w⃗b
cls)/τ

given a translation pair. v⃗cls and w⃗cls are the output

[CLS] embedding of the image encoder 2 and the
cross-lingual text encoder. gv and gw are transfor-
mations that map the [CLS] embeddings to nor-
malized lower-dimensional representations. τ is a
learnable temperature parameter.

Similarly, the matching loss applied on the out-
put [CLS] embedding of the fusion model (denoted
as x⃗cls(a, b)) can also be viewed as a symmetric
version of Lnce:

Lmatch = − 1

2
Ep(A,B)

[
log

exp(fθ(a, b))

exp(fθ(a, b)) + exp(fθ(a, bneg))

+ log
exp(fθ(a, b))

exp(fθ(a, b) + exp fθ(aneg, b))

]
,

(3)

where we only sample a negative instance for
each ground-truth (a, b) pair and predict whether
a pair is matched (true or false). In this case,
fθ(a, b) = v⃗⊤truex⃗cls(a, b), where v⃗true is a para-
metric vector.

The conditional MLM loss can also be inter-
preted as maximizing mutual information (Kong
et al., 2020) between the context c = (â, b) (â
denotes the masked text input, and b is the corre-
sponding image or translated text) and the masked
token wi in a:

Lmlm = −Ep(C,W )

[
log

exp(fθ(c, wi))∑
w̃∈V exp(fθ(c, w̃))

]
, (4)

2Some vision transformers, e.g. Swin-Transformer, use
the output of average pooling layer as the [CLS] embedding.
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where fθ(c, wi) = ψ(wi)
⊤x⃗i(â, b). x⃗i is the

output vector at wi position of the fusion model.
ψ(w) : V → Rd is a lookup function that maps a
word token w into a parametric vector. V is the full
vocabulary set.

Finally, the pre-training objective of CCLM is
defined as: L = Lcl + Lmatch + Lmlm, where
the contrastive loss and matching loss maximize
sequence-level mutual information while the MLM
loss maximizes token-level mutual information,
which are complement of each other.

4 Experiment

4.1 Experimental Settings

4.1.1 Pre-training Datasets
We pre-train CCLM on the combination of image-
caption pairs and parallel multilingual texts. Ap-
pendix A.1 describes compared models in details.
Multi-modal Data For image-caption pairs, we
follow the practice of UC2 to make a fair compar-
ison and use their released translation-augmented
version of CC3M dataset. It contains the original
CC3M image-caption pairs (Sharma et al., 2018)
and machine-translated captions in five different
languages (German, French, Czech, Japanese, and
Chinese). This multi-modal dataset is widely uti-
lized by previous work, including UC2, mUNITER
and xUNITER. We denote this variant as CCLM3M.
In additional to this setting, we leverage large-scale
vision language pre-training by utilizing the pre-
trained weights of X2-VLM (Zeng, 2021; Zeng
et al., 2022) which has been trained on more than
1B image-text pairs in English. Based on it we
apply the proposed framework for multi-lingual
multi-modal pre-training.
Multi-lingual Data Previous work such as mU-
NITER, xUNITER, and M3P use large-scale mono-
lingual texts in different languages, namely multi-
lingual Wikipedia 101G dataset, for multilingual
alignment. Differently, we propose to utilize par-
allel text corpus. We collect a subset of the Wiki-
Matrix (Schwenk et al., 2021) dataset containing
parallel texts between English and other languages
in the IGLUE benchmark. Appendix A.2 shows the
number of pairs per language. In total, the dataset
consists of 19M parallel sentence pairs.

4.1.2 Implementation Details
CCLMbase consists of 12 Transformer layers for
the image encoder and the text encoder respectively.
CCLMlarge consists of 24 layers for each encoder.

The fusion encoder contains 6 Transformer lay-
ers for both CCLMbase (d = 768) and CCLMlarge

(d = 1024). In total, CCLMbase and CCLMlarge

consist of ∼ 420M and ∼ 970M parameters re-
spectively. Following existing models such as M3P
and UC2, we also utilize XLM-R (Conneau et al.,
2020) as the text encoder. Concretely, CCLM3M is
initialized with a pre-trained image encoder (Liu
et al., 2021b) and XLM-R. CCLM is initialized
with the pre-trained X2-VLM (Zeng, 2021; Zeng
et al., 2022) and XLM-R.

In pre-training, the image encoder takes im-
ages of resolution of 224 × 224 as input for pre-
training. During fine-tuning, we increase the im-
age resolution to 384 × 384 and interpolate the
positional embeddings of image patches follow-
ing Dosovitskiy et al. (2021). The maximum se-
quence length is set to 30 and 64 for image captions
and parallel multilingual texts respectively. We ap-
ply mixed precision for pre-training. We use the
AdamW (Loshchilov and Hutter, 2019) optimizer
with a weight decay of 0.02. We mix different
types of data in a training batch. Following UC2,
to make a fair comparison, we train CCLM3M for
30 epochs on 8 NVIDIA A100 GPUs and the batch
size is set to 1024, which tasks ∼ 1.5 days. The
learning rate is warmed-up to 1e−4 in the first 2500
steps and decayed linearly. We train CCLMbase

and CCLMlarge for 40 epochs.

4.1.3 Downstream Tasks
We evaluate CCLM on the IGLUE bench-
mark (Bugliarello et al., 2022), a recently released
benchmark for evaluating multi-lingual multi-
modal pre-training, and a multi-lingual image-text
retrieval benchmark including the multi-lingual ver-
sion of Flickr30K (Young et al., 2014; Elliott et al.,
2016) and MSCOCO (Chen et al., 2015). Note that
CCLM can also be applied on generation tasks such
as image captioning by following the adaptation
strategy of X-VLM (Zeng et al., 2022; Zeng and
Nie, 2021).
XVNLI: The Cross-lingual Visual NLI dataset
is collected by combining SNLI (Bowman et al.,
2015) with its multi-modal (Xie et al., 2019) and
multi-lingual (Agić and Schluter, 2018) counter-
parts. It requires the model to predict if a text-
hypothesis “entails”, “contradicts”, or is “neutral”
to an image-premise.
xGQA: The Cross-lingual Grounded Question An-
swering task (Pfeiffer et al., 2021) is collected by
manually translating the GQA (Hudson and Man-
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Model
NLI QA Reasoning Retrieval

XVNLI xGQA MaRVL xFlickr&CO WIT
IR TR IR TR

Translate everything to English and use English-only model (Translate-Test)

UNITER 73.65 50.62 61.92 41.04 37.49 15.43 16.01
ViLBERT 73.45 50.33 62.39 36.97 33.21 15.40 16.93
VisualBERT 74.12 48.72 62.35 41.64 36.44 15.36 15.75
VL-BERT 73.86 49.78 64.16 38.18 31.84 15.11 16.09

Fine-tune model on English training set (Zero-Shot)

mUNITER 53.69 9.97 53.72 8.06 8.86 9.16 10.48
xUNITER 58.48 21.72 54.59 14.04 13.51 8.72 9.81
M3P 58.25 28.17 56.00 12.91 11.90 8.12 9.98
UC2 62.05 29.35 57.28 20.31 17.89 7.83 9.09

CCLM3M
base 74.64 42.36 65.91 67.35 65.37 27.46 28.66

CCLMbase 74.78 48.12 68.49 76.94 76.22 33.90 35.26
CCLMlarge 78.95 56.25 74.83 83.78 83.46 43.74 44.88

Table 1: Results on IGLUE benchmark. R@1 and Accuracy are reported for retrieval tasks (xFlickr&CO and WIT)
and understanding tasks (XVNLI, xGQA, MaRVL) respectively. In the zero-shot setting, the models are fine-tuned
on English train sets and directly evaluated on target languages. We report few-shot results in Appendix A.4.

ning, 2019) validation set into 7 languages. It re-
quires a model to answer several types of structured
questions about an image. We model GQA as a
generation task following Li et al. (2021).
MaRVL: The Multicultural Reasoning over Vision
and Language dataset (Liu et al., 2021a) requires to
determine whether a textual description is true or
false about a pair of images. The MaRVL dataset is
used for testing and the NLVR2 (Suhr et al., 2019)
dataset is used for training.
xFlickr&CO and WIT: The xFlickr&CO dataset
is collected by combining 1000 images from
Flickr30K and MSCOCO respectively and crowd-
source image descriptions in 6 other lan-
guages. Similarly, the Wikipedia-based Image Text
dataset (Srinivasan et al., 2021) is collected from
Wikipedia in 108 languages. We follow the data
preprocessing and splitting details in IGLUE for
both datasets.
Multi30K: This dataset (Elliott et al., 2016) ex-
tended Flickr30K (Young et al., 2014) from English
(en) to German (de), French (fr) and Czech (cs). It
contains 31,783 images and provides five captions
per image in English and German, and one caption
per image in French and Czech. Dataset splits are
defined as the original Flickr30K.
MSCOCO: This dataset extends the MSCOCO
caption dataset (Chen et al., 2015) by translating

the captions into Japanese (Yoshikawa et al., 2017)
and Chinese (Li et al., 2019). The Japanese and
Chinese subsets consist of 820k and 20k captions
respectively. Following previous work, we use
the same train, dev, and test splits for English and
Japanese as defined in Karpathy and Li (2015). As
for Chinese, we use the COCO-CN split (Li et al.,
2019).

For all retrieval tasks, we follow previous
work (Li et al., 2021) and X-VLM (Zeng et al.,
2021). During fine-tuning, we optimize Lcl and
Lmatch. For inference, we first compute similarity
for all images and texts, and then take the top-k
candidates and calculate the final ranking scores
using the fusion model.

4.2 Experimental Results

4.2.1 Results on IGLUE Benchmark

Table 1 shows CCLM performance on the IGLUE
benchmark. First, for zero-shot cross-lingual trans-
fer, we can see that CCLM3M

base outperforms all
compared models by a substantial margin while
pre-trained on the same multi-modal data. Specifi-
cally, compared to UC2, the prior state-of-the-art,
CCLM3M

base obtains an average accuracy improve-
ment of 11.4% on multi-lingual multi-modal un-
derstanding tasks including XVNLI, xGQA, and
MaRVL, and an average R@1 improvement of
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Model
Multi30K MSCOCO

EN DE FR CS EN ZH JA

M3P 87.7 82.7 73.9 72.2 88.7 86.2 87.9
UC2 88.2 84.5 83.9 81.2 88.1 89.8 87.5
MURALbase 92.2 88.6 87.6 84.2 88.6 - 88.4
MURALlarge 93.8 90.4 89.9 87.1 92.3 - 91.6

CCLM3M
base 95.3 92.4 92.1 91.2 93.1 92.2 93.2

CCLMbase 97.2 94.6 95.5 94.8 95.4 93.2 95.7
CCLMlarge 97.8 95.8 96.6 96.2 95.6 94.0 96.1

Table 2: Results on multi-lingual image-text retrieval
in all-language fine-tune setting, where a model is fine-
tuned on the combination of training data in all lan-
guages. Following previous work, we compute the av-
erage Recall@K for both image-to-text retrieval and
text-to-image retrieval with K = 1, 5, 10, as the eval-
uation metric. We additionally report results in other
fine-tune settings in Appendix A.5.

47.3% and 18.2% on multi-lingual multi-modal
retrieval datasets including xFlickr&CO and WIT.
This confirms that previous multi-lingual multi-
modal models fail to fully exploit the potential of
multi-lingual multi-modal pre-training and our pro-
posed cross-view language modeling framework
can better align multi-lingual multi-modal repre-
sentations with unified objectives.

We also find that the performance of our frame-
work can be significantly improved by leverag-
ing large-scale image-text pre-training in English
(CCLMbase) and/or scaling up the model size
(CCLMlarge). Notably, CCLM is the first multi-
lingual multi-modal pre-trained model that sub-
stantially outperforms the translate-test results of
representative English VLMs tested in the IGLUE
benchmark. This, for the first time, proves the po-
tential of multi-lingual multi-modal pre-training on
building practical real-world applications involving
vision-language tasks in different languages.

4.2.2 Results on Multi-lingual Retrieval
Table 2 gives the results on the multi-lingual image-
text retrieval benchmark. When pre-trained on
the same multi-modal data, CCLM3M

base substan-
tially outperforms UC2, the prior state-of-the-art,
with an averaged improvement of over 10% (in
terms of averaged recall) across four languages on
Multi30K. This confirms that our approach can bet-
ter align multi-lingual multi-modal representations.
CCLM3M

base even outperforms MURAL. This is no-
table because MURALlarge is larger than our model
and is pre-trained on much more data (∼ 450×
more image-text pairs and 390× more parallel sen-

tence pairs). Moreover, we show that CCLM also
outperforms MURAL without fine-tuning in Ap-
pendix A.5.

We also find that the cross-view language model-
ing framework yields better performance if leverag-
ing large-scale pre-training on image-text pairs in
English (CCLMbase) and/or scaling up the model
size (CCLMlarge), which is consistent with the ex-
perimental results on the IGLUE benchmark. It
confirms that the proposed framework is scalable
to both massive data and larger model size.

4.2.3 Cross-lingual Transfer Gap

Figure 2: Visualization of cross-lingual transfer gap.

In addition to absolute cross-lingual transfer re-
sults reported in Table 1 and Table 2, we also
compare the cross-lingual transfer gap of differ-
ent models. We visualize the ratio of a model’s
performance on non-English languages to its per-
formance on English test set, in Figure 2. A larger
radar chat indicates the model has a smaller relative
transfer gap and can better transfer its performance
to non-English test sets. We can see that CCLM’s
relative cross-lingual transfer gap is consistently
smaller than that of UC2 across all tasks in the
IGLUE benchmark (a) and all languages in the
multi-lingual retrieval datasets (b). The absolute
cross-lingual transfer gap is even more significant.
For example, in Appendix A.5, we can see that
for M3P, the absolute zero-shot cross-lingual trans-
fer gap between EN-CS and EN-JA in Multi30K
and MSCOCO are 41.4% and 32.6% respectively.
This indicates that masked language modeling on
unpaired texts in multiple languages are not very ef-
fective for cross-lingual alignment of multi-modal
models. The gap for UC2 is reduced to 13.2%
and 16.4%, demonstrating the effectiveness of us-
ing machine-translated captions for multi-lingual
multi-modal pre-training. CCLM3M

base further re-
duces this gap to 5.4% and 4.4%. This confirms
that the proposed cross-view language modeling
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Methods Multi30K MaRVL xGQA xFlickr&CO
IR TR

Ours 92.67 67.05 41.66 63.77 62.13
-w/o shared cross-attn 92.49 66.67 36.76 63.73 62.01
-w/o shared FFN 92.24 63.63 35.53 63.15 61.04
-w/ TLM 91.88 62.65 35.84 58.44 56.73
-w/ TLM + CL 92.34 65.00 36.13 63.42 61.33
-w/o parallel sentence pairs 91.90 58.37 28.80 44.11 43.24

Table 3: Ablation study results. Models w/o shared cross-attention and FFN are ablated variants where these
modules are separately parameterized in the cross-lingual fusion model and the cross-modal fusion model. Models
w/ TLM and TLM + CL are variants where the multi-lingual objectives are that used in XLM-R and InfoXLM,
which are not unified with the multi-modal objectives. All compared models are pre-trained for 15 epochs.

framework can effectively transfer multi-modal rep-
resentations from English to other languages with-
out language-specific fine-tuning. In addition, we
also visualize the multi-lingual text representations
and image representations in CCLM and a baseline
approach in Appendix A.6, which clearly shows
our approach can better align multi-lingual image-
text representations.

4.3 Ablation Study

Since previous work such as M3P, UC2, and MU-
RAL all use different pre-training datasets, making
direct comparison difficult, we conduct an in-depth
ablation study to investigate the contribution of dif-
ferent design choices in the cross-view language
modeling framework. We pre-train 5 ablated vari-
ants of CCLM where parallel sentence pairs, uni-
fied architecture, or unified objectives are ablated.
All compared models are pre-trained with the same
CC3M and WikiMatrix data (except that w/o par-
allel sentence pairs) for 15 epochs to ensure a fair
comparison. The results are shown in Table 3.

First, we find that the use of parallel sentence
pairs plays a very important role. This indicates
that previous methods fail to fully exploit the po-
tential of language pivoting for multi-lingual multi-
modal pre-training. On the other hand, CCLM
variant trained without parallel sentences in Ta-
ble 3 which uses the same pre-training dataset as
UC2 still significantly outperforms previous mod-
els such as M3P and UC2.

We then compare other ablated variants which
all utilized parallel sentence pairs. We find that
separate parameterization of cross-attention and
FFN modules for the cross-lingual and the cross-
modal task in the fusion model leads to inferior
results, especially for multi-lingual multi-modal

understanding tasks such as xGQA.
Moreover, we conduct ablation study on loss

functions. We mainly consider multi-lingual ob-
jectives because the multi-modal objective combi-
nation of itc+mlm+itm is the de-facto choice for
multi-modal loss (Li et al., 2021; Zeng et al., 2021).
We find that using common objectives in the multi-
lingual pre-training literature underperforms our
unified objective. These observations confirm the
importance of unifying architectures and objectives
for multi-lingual multi-modal pre-training.

5 Conclusion

In this paper, we introduce cross-view language
modeling, a simple and effective framework that
unifies cross-lingual and cross-modal pre-training.
It considers cross-lingual and cross-modal pre-
training as the same procedure of aligning the repre-
sentation of two different views of the same object,
thus using shared model architectures and train-
ing objectives for multi-lingual multi-modal pre-
training. We train CCLM with the proposed frame-
work and show that it advances the state-of-the-art
on all downstream multi-lingual vision-language
tasks by a large margin. Moreover, it surpasses
the translate-test baseline for the first time, demon-
strating the potential of multi-lingual multi-modal
pre-training. Furthermore, the experimental results
also confirm that the proposed framework is scal-
able to massive data and larger model sizes. We
believe our model will become a foundation for fu-
ture multi-lingual multi-modal research and serve
as a strong baseline. Moreover, the cross-view
language modeling framework also has the poten-
tial of unifying more modalities such as audio and
video with the same architectures and objectives.
We leave this for future work.
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Limitations

In this paper, we pre-train CCLM with moder-
ate multi-modal data, e.g. CC3M, to make a fair
comparison with previous work such as M3P and
UC2. We leverage large-scale vision language pre-
training simply by utilizing the pre-trained weights
of X2-VLM which has been pre-trained on billion-
scale image-text pairs in English. Collecting more
image-text pairs in different languages will very
likely lead to further performance improvements.
Moreover, there exists larger public available multi-
lingual datasets, such as MultiUN (Ziemski et al.,
2016) and OPUS (Tiedemann, 2012). Leverag-
ing more multi-lingual datasets for pre-training
should also yield a more powerful multi-lingual
multi-modal model.

As for social impact, multi-modal pre-trained
models can be used in applications that help people
with disability in one modality. Our work makes
these applications applicable to minority people
speaking non-English, and potentially low-resource
languages. In sum, our work potentially enables
deep learning technology to benefit more people,
and is unlikely to have direct negative social im-
pact.
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A Appendix

A.1 Compared Models

mUNITER and xUNITER: A multi-lingual vari-
ant of the UNITER (Chen et al., 2020) model pre-
trained by Liu et al. (2021a). The model is pre-
trained by alternating between a batch of multi-
modal English data from CC3M with UNITER
objectives and a batch of text-only multilingual
Wikipedia data with the MLM objective. mU-
NITER and xUNITER differ in their initializa-
tion: mUNITER and xUNITER are initialized from
mBERT and XLM-R.

M3P: A multi-lingual multi-modal model initial-
ized from XLM-R and pre-trained with the combi-
nation of multilingual masked language modeling,
multi-modal code-switched masked language mod-
eling, multi-modal code-switched masked region
modeling, and multi-modal code-switched visual-
linguistic matching. The code-switched training
method allows the model to explicitly align images
with non-English languages. In each multi-modal
batch, image-text pairs are fed to the model ei-
ther fully in English or with code-switched words
according to a given sampling ratio. Similar to
mUNITER and xUNITER, the model is trained by
alternating multi-modal and multi-lingual batches.

UC2: The state-of-the-art multi-lingual vision-
language model which relies on (text-only) ma-
chine translation technologies to obtain CC3M
data in five languages (Czech, French, German,
Japanese, and Mandarin). The model is then
pre-trained on multi-lingual multi-modal batches
where a caption is sampled uniformly from the
available languages for each image. As for pre-
training objectives. In addition to conventional
vision-language pre-training objectives, a visual-
conditioned translation language modeling objec-
tive is added to improve multi-lingual multi-modal
alignment.

A.2 Details for Multi-lingual Data

ES FR PT RU DE VI ID AR JA ZH

3,130 2,645 2,322 1,598 1,467 998 974 968 841 783

EL CS TR DA BG KO BN ET TA SW

609 509 455 412 353 281 269 241 61 51

Table 4: The number of parallel sentence pairs per lan-
guage (K) in the subset of WikiMatrix.

A.3 Results on English Tasks

Table 5 reports CCLM performance that is pre-
trained on COCO, VG, SBU, and CC3M, on three
common English multi-modal tasks. We can ob-
serve that CCLM also has very competitive per-
formance compared to strong English multi-modal
baselines.

Methods VQA2.0 NLVR2 MSCOCO(5K)
test-dev dev test-P IR TR

VinVLbase 75.95 82.05 83.08 58.10 74.60
ALBEF (4M) 74.54 80.24 80.50 56.80 73.10
CCLM4M

base 77.17 82.66 83.22 60.89 77.72

Table 5: Results on common English multi-modal
tasks. R@1 and Accuracy are reported for MSCOCO
(5K test set) and understanding tasks respectively.

A.4 Few-Shot Results on IGLUE

Table 6 gives results on IGLUE benchmark. For
our models, mean and standard deviation (in brack-
ets) of 3 different runs with different random seeds
are reported. Results of compared models are di-
rectly copied from the IGLUE benchmark. In the
few-shot setting, the English trained models are
continually fine-tuned with a few labeled exam-
ples in a target language before evaluating on this
language. We select exactly the same few-shot ex-
amples following IGLUE instructions to ensure our
results are compatible with that reported in IGLUE.
We omit few-shot evaluation on the WIT dataset
because this setup is also omitted in IGLUE. We
find that similar to existing models, CCLM can also
benefit from few-shot learning with a few examples
in the target languages.

A.5 More Results on Retrieval Tasks

Table 7 reports results on multi-lingual image-text
retrieval of CCLM. We follow the practice of prior
work and evaluate in three different settings in-
cluding English-only fine-tuning, single-language
fine-tuning, and all-language fine-tuning, where
the model is fine-tuned on English data, target lan-
guage data, and the combination of training data in
all languages, respectively.

We also report multi-lingual image-text retrieval
results without fine-tuning (zero-shot) in Table 8.
M3P and UC2 do not report their zero-shot retrieval
performances. We can observe that CCLM3M

base

outperforms MURAL which is pre-trained on much
larger data. Besides, the performance gap on non-
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Model NLI QA Reasoning Retrieval

XVNLI xGQA MaRVL xFlickr&CO WIT
IR TR IR TR

Few-shot train English fine-tuned model on target languages (Few-Shot)

mUNITER 53.95 37.21 53.41 8.54 9.32 - -
xUNITER 60.55 40.68 57.46 14.30 13.54 - -
M3P 59.36 41.04 49.79 13.21 12.26 - -
UC2 63.68 42.95 58.32 19.79 17.59 - -
CCLM3M

base 75.15(.03) 50.94(.02) 70.53(.18) 66.04(.05) 68.15(.04) - -

Table 6: Few-Shot Results on IGLUE benchmark. R@1 and Accuracy are reported for retrieval tasks (xFlickr&CO
and WIT) and understanding tasks (XVNLI, xGQA, MaRVL) respectively. For our model, mean and standard
deviation (in brackets) of 3 different runs with different random seeds are reported.

Model
Multi30K MSCOCO

EN DE FR CS EN ZH JA

English-only Fine-tune (Zero-Shot)

M3P 87.4 58.5 46.0 36.8 88.6 53.8 56.0
UC2 87.2 74.9 74.0 67.9 88.1 82.0 71.7
CCLM3M

base 94.8(.11) 90.3(.08) 90.9(.38) 89.4(.21) 93.2(.05) 91.0(.18) 88.8(.06)

Single-Language Fine-tune

M3P 87.4 82.1 67.3 65.0 88.6 75.8 80.1
UC2 87.2 83.8 77.6 74.2 88.1 84.9 87.3
CCLM3M

base 94.8(.11) 91.9(.16) 90.6(.18) 88.9(.05) 93.2(.05) 90.2(.24) 93.3(.26)

Table 7: Results on multi-lingual image-text retrieval. We compute the average Recall@K for both image-to-text
retrieval and text-to-image retrieval with K = 1, 5, 10, as the evaluation metric. For our model, mean and standard
deviation (in brackets) of 3 different runs with different random seeds are reported.

Model
Multi30K MSCOCO

EN DE FR CS EN ZH JA

MURALbase 82.4 76.2 75.0 64.6 79.2 - 73.4
CCLM3M

base 83.7 79.1 76.7 73.9 81.5 79.5 76.8

Table 8: Zero-shot results on multi-lingual image-text
retrieval. We compute the average Recall@K for both
image-to-text retrieval and text-to-image retrieval with
K = 1, 5, 10, as the evaluation metric. Results of com-
pared models are directly copied from the corresponding
papers.

English test sets of MURAL is larger, which shows
our model has better cross-lingual transfer ability.

A.6 Visualization of Representations

Figure 3 visualizes several examples in
xFlickr&CO test set in 2D space using t-
SNE (Van der Maaten and Hinton, 2008). The
image representations and text representations are
the output [CLS] embeddings of the image encoder
and the cross-lingual text encoder respectively.

Figure 3: Visualization of image (denoted by stars)
and text (denoted by points) representations. For a test
example, there are eight texts in different languages.
Points and stars in the same color are of the same test
example. (a) is the ablated variant of CCLM that does
not utilize parallel sentence pairs.

We can observe that CCLM’s text representations
in different languages are more gathered and
the distances between text representations and
corresponding image representations are relatively
shorter. This indicates our approach can better
align multi-lingual image-text representations.
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