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Abstract
We have recently witnessed a number of im-
pressive results on hard mathematical reasoning
problems with language models. At the same
time, the robustness of these models has also
been called into question; recent works have
shown that models can rely on shallow patterns
in the problem description when generating a
solution. Building on the idea of behavioral
testing, we propose a novel framework, which
pins down the causal effect of various factors in
the input, e.g., the surface form of the problem
text, the operands, and math operators on the
output solution. By grounding the behavioral
analysis in a causal graph describing an intu-
itive reasoning process, we study the behavior
of language models in terms of robustness and
sensitivity to direct interventions in the input
space. We apply our framework on a test bed
of math word problems. Our analysis shows
that robustness does not appear to continuously
improve as a function of size, but the GPT-3
Davinci models (175B) achieve a dramatic im-
provement in both robustness and sensitivity
compared to all other GPT variants.1

1 Introduction

Many natural language understanding situations,
such as understanding the financial news, require
reasoning with text that includes numbers. How-
ever, such mathematical reasoning is challenging
for NLP models (Cobbe et al., 2021; Mishra et al.,
2022b). Mathematical reasoning for text has been
an active area of research for a while (Seo et al.,
2015; Sachan and Xing, 2017; Sachan et al., 2017,
2018, inter alia), and has also emerged as a key
task to track the capabilities of large language mod-
els (LLMs) in recent years (Brown et al., 2020;
Ouyang et al., 2022; Wei et al., 2022a, inter alia).

However, despite the impressive performance of
LLMs on various math reasoning benchmarks (e.g.,

∗Equal contribution.
1Our code and data are available at https://github.

com/alestolfo/causal-math.

Kyle could fit n1=26 drawings on each page. If he has n2=11 
pages, the number of drawings he can make is ___.

Kyle could fit n1=2 drawings on each page. If he has n2=143 
pages, the number of drawings he can make is ___.

Prediction

LLMs

Original text:

Example do-intervention 
by our framework:

Keep ground-truth g,
but change n1, n2

After do-intervention

Pred = 286 = g
P(286)=0.085

Pred = 143 (incorrect)

P(286)=0.001

Original prediction

Distribution of the Predicted Numerical Answer

P(R)

Figure 1: Through our framework, we conduct do-
interventions on the input and evaluate the change in the
distribution P(R) of the prediction R by LLMs, in this
figure, GPT-J. This allows us to measure the causal ef-
fect of each factor in the input on the model’s response.

Ouyang et al., 2022; Chowdhery et al., 2022), it
remains unclear whether these models have learned
mere artifacts in the data or have truly mastered
the mathematical concepts needed to consistently
solve all variations of the same problem (Patel et al.,
2021; Razeghi et al., 2022; Welleck et al., 2022).
In sharp contrast with a large number of papers on
improving the performance of LLMs on various
types of math-based problems, there has been little
effort on behavioral analysis of LLMs for these
tasks. Existing methods for understanding the ro-
bustness of these models (Patel et al., 2021) rely on
manually constructing variations of math problems,
and we do not yet have a principled, comprehensive
framework for quantifying such robustness.

Thus, in this work, we propose a formal frame-
work based on causal inference, to quantify the ro-
bustness of NLP models’ math reasoning abilities.
Specifically, we describe a causal graph formula-
tion of math reasoning, where the graph allows us
to measure the difference in the structural causal
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Figure 2: Causal graph of model predictions on math questions. We highlight the difference between a cognitively-
inspired correct reasoning path (Gh) and the undesired effects that some factors might have on the model’s prediction
(red arrows). By performing controlled interventions of the numerical values (N ) and on the textual framing of the
problem (T , S), we are able to quantify the causal effects of each factor.

models of human reasoning and model judgment.
We consider various causal factors such as the tex-
tual framing of the question, numerical operands,
and operation types. Then, we identify a set of
interventions in the context of math word prob-
lems (an example of which is illustrated in Figure
1), and provide a causal inference framework to
obtain causal effects of each factor via direct do-
interventions (Pearl, 1995) and causal mediation
analysis (Pearl, 2001). While our approach is remi-
niscent of recent studies using causal analysis for
LLMs (Finlayson et al., 2021; Vig et al., 2020;
Meng et al., 2022), in this work, we provide a new
theoretical analysis framework specifically suitable
for math reasoning. Using our framework, we dis-
entangle factors affecting the model’s predictions
and measure their influences. This way, we are able
to provide insights into the model’s reasoning in
terms of robustness and sensitivity with respect to
changes in these factors.

We apply our framework to study a set of thirteen
GPT models with various sizes and training proce-
dures (i.e., instruction-tuned and non-instruction-
tuned). We observe that, among non-instruction-
tuned language models, the larger ones tend to be
more sensitive to changes in the ground-truth result
of a math word problem, but not necessarily more
robust. However, we observe a different behavior
in the instruction-tuned GPT-3 models (Ouyang
et al., 2022), which show a remarkable improve-
ment in both sensitivity and robustness, although
the robustness reduces when problems get more
complicated. We additionally investigate the role
of size and instruction tuning on the model’s per-
formance with three models of the LLaMA family

(Touvron et al., 2023) and Stanford Alpaca (Taori
et al., 2023).

2 Problem Setup

We consider a dataset D of math word problems
(MWPs), where each MWP is denoted as a ques-
tion Q. Q is a list (T ,N) consisting of a ques-
tion template T and an ordered list of operands
N = (N1, N2, . . . , Nm). Each question template
T := (O, S) further contains two types of informa-
tion: a set of arithmetic operations O implicitly ex-
pressed in the question, and the text surface form S
irrelevant to the arithmetic operations. O incorpo-
rates the information relative to the operations as a
collection of tuples {(O1, i1, j1), (O2, i2, j2), . . . },
where Ok ∈ {+,−,×,÷} (k ∈ N) and ik, jk ∈ N
represent the indices of the operands to which op-
erator Ok should be applied to.2 The ground-truth
result G = fO(N) is calculated by computing the
function fO, which represents the application of all
the operators in O to the respective operands. We il-
lustrate the factors in Q and their inter-dependency
in the causal graph in Figure 2. A two-operand in-
stance q of Q in this form from Patel et al. (2021)
is:

Template t: Mark has n1 trees in his
backyard. If he plants n2 more, how
many trees will he have?
Operands n: (n1 = 12, n2 = 13)
Operations o: {(“+”, 1, 2)}
Result: g = fo(n) = n1 + n2 = 25

2The intermediate result of operation Ol is indicated by
ik = m+ l.
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Our goal is to quantify the robustness of a model
M on the set of problems q ∈ D. Ideally, D
should be a dataset not seen by the model during
training. We assume that a model takes q as input
and predicts a probability distribution of the result
R: P(R | t,n). Our formulation below will be
easier to understand using this finite discrete set
and can be generalized to any kind of data pairing
a natural language template with a function that
maps a set of operands to a result (e.g., a Python
program; Mishra et al. 2022a).

3 A Causal Framework

In this section, we describe our framework in three
steps. First, we define the idea of model robust-
ness on MWPs. Then, we identify possible do-
interventions (Pearl, 1995) that we can perform.
Finally, we describe the causal effects that we mea-
sure to quantify the robustness of various models.

3.1 Step 1. Question Reformulation

We address the research question “Is a model rea-
soning robustly on MWPs?” by comparing the
causal mechanisms of the model’s decisions to a
hypothesized human reasoning mechanism. Note
that we do not claim to know how humans reason
about these problems. We simply propose a reason-
able and intuitive way to judge model robustness
given a reasonable and intuitive human reasoning
mechanism inspired by findings regarding the inde-
pendence of language and mathematical reasoning
in humans (Brannon, 2005; Monti et al., 2012).

Human Reasoning Mechanisms. The causal
mechanisms of how humans might solve q include

o = fabstract(q) , (1)

g = fo(n) , (2)

where they first abstract the arithmetic operations
o from the problem q by some cognitive pro-
cess fabstract, and then apply the operation to the
operands to obtain the result g. We show these
mechanisms in the green subgraph Gh of Figure 2.

Model Reasoning Mechanisms. In contrast, the
causal mechanisms of how a model might solve q
are as follows:

r = fblackBox(t,n) , (3)

where we are unsure about (1) what part(s) of t the
model takes into account, and (2) how it operates
over the relevant variables.

Thus, we draw all possible causal mechanisms
that might take place in the black-box model
fblackBox in the complete causal graph in Figure 2.
Some possible fine-grained causal mechanisms are

1. The model might attend over the question
template t in two ways: paying attention to
the text surface form s via the causal path
T → S → R, or text relevant to the math op-
erations o via the causal path T → O → R.

2. The model might also attend to the operands
n := (n1, n2, . . . ) via a causal path N → R.

3. If the model learns the correct causal mech-
anisms as in the human cognitive process,
it should capture how the operator and the
operands matter to the ground-truth result g
(via O → G and N → G) and then the model
prediction should be sensitive to any changes
in the ground truth, namely G→ R. No spuri-
ous correlations can directly affect R without
going through the mediator G.

Hence, to answer the question “How robust is
the mathematical reasoning of a model on MWPs?”
we can answer the following subquestions:

1. How does R change in response to G? By
quantifying this, we assess the sensitivity (cor-
rect responsiveness) of the model to changes
in the problem. In other words, does the model
correctly adjust its prediction in response to a
change in the correct solution of the problem?

2. What is the (unwanted) direct causal effect
size of S → R, and N → R? We see the
quantities as a measure of the brittleness (i.e.,
wrong responsiveness) of the model to result-
preserving changes in the input. The lower
the direct causal effect of S and N , the more
robust the model is.

3.2 Step 2. Causal Intervention List

After formulating the cognitively-inspired sub-
graph Gh and defining the undesired causal paths
in Figure 2, we list all feasible limited actions that
allow us to perform our causal analysis. In the con-
text of MWPs, we use the following interventions:

1. Direct intervention on all possible n1, n2, . . . ;

2. Partially controllable interventions on T . We
can replace the template T in two ways:
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(a) both S and O are affected, or
(b) S is affected but O is not affected.

3.3 Step 3. Turning Limited Actions into
Causal Effect Sizes

Next, we explain how we can obtain the causal
effect sizes we want (listed in Step 1) from the lim-
ited set of interventions we can do (listed in Step
2). Specifically, we first start from all the feasi-
ble interventions, and for variables that we cannot
directly intervene on, we apply deductions from
do-calculus (Pearl, 1995) to obtain or approximate
the direct causal effect sizes. In the following, we
describe a list of causal effect sizes that we need.

General Formulation. Let us consider an inter-
vention do(X : x → x′), where X ∈ {T , S,N}
and a problem Q = {T ,N}. The support of the
numerical values Ni’s and R is I ⊆ N, and we
consider N to be distributed uniformly over the set
{n ∈ I2 | fO(n) ∈ I}. We denote the distribution
before the intervention P(R | T ,N) as P and the
distribution after the intervention as P ′.

Following the distributional definition of causal
effect by Pearl (1995), we quantify the effect of
factor X in our causal graph using a distance metric
δ between the distributions P and P ′. That is,

CE = δ(P, P ′), (4)

where CE can refer to the total causal effect
(TCE, i.e., the joint effect through all the directed
causal paths from a variable to another), or the
direct causal effect (DCE, i.e., the effect from the
directed causal path from a variable to another that
does not go through any intermediate variables)
(Pearl, 2001). We describe our choices for δ in
Section 3.4.

Causal Effects of the Operands. When inter-
vening on the operands N := (N1, N2, . . . ), we
can obtain the size of the total causal effect of N
on R, namely

TCE(N on R) := En′∼P(N)[δ(P, P
′)], (5)

where P ′ = P(R|T , do(N = n′)) . (6)

Note that this TCE is not the exact desired quantity,
because we want to separate two different paths
of how N affects R: (1) the path N → G → R,
which is the correct decision path that we want
the model to pick up (where the model reacts to

the change in the ground-truth answer), and (2)
the path N → R, which is the spurious correlation
that the model might have learned (where the model
relies on some spurious correlations with certain
numerical values, which could be traced to perhaps
their frequencies in the training corpus).

We can quantify the direct causal effect (DCE,
i.e., the effect from the directed causal path from
a variable to another that does not go through any
intermediate variables) (Pearl, 2001) of N on R,
namely the strength of the direct causal path N →
R, by controlling for G to be fixed every time we
intervene on N :

DCE(N → R) := En′∼P(N |G)[δ(P, P
′)], (7)

where P ′ = P(R|T , do(N = n′)) . (8)

For example, if we observe a model doing 100 +
100 = 200 correctly, we want to separate the math
ability here into (1) the model’s sensitivity towards
the ground-truth answer, and (2) the model’s deci-
sions based on its familiarity with just the operand
100. Here, the overall effect is the calculable
TCE(N on R) by Eq. 5, and one of the subeffects
is the calculable DCE(N → R) by Eq. 7.

Causal Effects of the Text Surface Form. As
for the operands, we can compute both the direct
and indirect effects of the surface form representing
the math problem. In particular, intervening on T
without controlling for O (intervention 2a in Sec.
3.2), we can compute the total effect, i.e.,

TCE(T on R) := Et′∼P(T )[δ(P, P
′)], (9)

where P ′ = P(R|N ,do(T = t′)) . (10)

Controlling for the operations O (intervention
2b in Sec. 3.2) will instead allow us to obtain the
direct causal effect of the surface text:

DCE(S → R) := Et′∼P(T |O)[δ(P, P
′)], (11)

where P ′ = P(R|N , do(T = t′)) . (12)

Note that since there is no mediator between S and
R, the DCE(S → R) is also TCE of S on R. The
only adaptation that we need to make with regard
to the MWPs is that it is not feasible to enumerate
all possible perturbations of S. Therefore, the prac-
tical results that researchers can achieve are over a
certain subset of S. In practice, we obtain this by
intervening on T without affecting O.
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Causal Effects of the Operators. The ideal way
to obtain the TCE of O on R is through some care-
ful human annotation that minimally changes the
templates as Kaushik et al. (2020) do for sentiment
classification. The challenge for MWPs in our case
is that with all our possible interventions, we cannot
only intervene on O without introducing changes to
the irrelevant surface form. However, we might get
some information about TCE(O on R) because,
on the causal graph, the total causal influence of
T on R actually flows into two directed paths, one
through S to R (which is the DCE(S → R)), and
the other from O to R, which is our interested
quantity TCE(O on R). Therefore, we compare
the two quantities we know, TCE(T → R) and
DCE(S → R), to get a sense of the causal influ-
ence of O on R that we cannot obtain in any other
way.

3.4 Step 4. Quantifying the Causal Influence
Consider a realization of problem Q with operands
n and ground-truth result g = fo(n), and denote
by g′ the result after the intervention do(X : x→
x′). We quantify the causal effect of factor X on
the model’s prediction R in two ways: by assessing
the change in the predicted result, and by measur-
ing the change in the probability assigned by the
model to the correct result g (or g′).

Change in the Prediction. To account for the
inability of LMs to capture the continuous property
of numbers (Jin et al., 2021a), we measure the
change in the model’s prediction using an indicator
of the “change result” event:

δcp(P, P
′) := 1(r ̸= r′) , (13)

where r = argmaxx∈I P (x), and r′ =
argmaxx∈I P

′(x).

Relative Change in Confidence. Inspired by Fin-
layson et al. (2021), we also highlight the change
in terms of the relative difference in the probability
assigned to g and g′. We formulate two types of
relative change, one quantifying the relative change
in the confidence of g, and the other quantifying
the relative change in the confidence of g′:

∆rel =
P (g)− P ′(g)

P ′(g)
(14)

∆′
rel =

P ′(g′)− P (g′)
P (g′)

. (15)

We quantify the overall relative change in con-
fidence (RCC) as the average of the two relative

changes above:

δrcc(P, P
′) =

1

2

Å
∆rel +∆′

rel

ã
. (16)

A Unified Form. We are interested in the average
causal effect of the intervention across all problems
in D. Thus, we measure the average of the effects
over all instances q ∈ D. We denote by the sub-
scripts TCEcp/DCEcp and TCErcc/DCErcc the
causal effects computed using the change in predic-
tion metric and the relative change in confidence,
respectively. We describe how we construct the
dataset D in Section 4.2.

4 Experimental Setup

In this section, we describe the data used to perform
the interventions and to measure the causal effects.

4.1 Datasets
For our analyses, we use instances of math word
problems from three popular datasets: ASDiv-A
(Miao et al., 2020), MAWPS (Koncel-Kedziorski
et al., 2016), and SVAMP (Patel et al., 2021).
The examples contained in these collections are
pairs (t,o) consisting of a question template t with
its annotated operations o. Each of these pairs
can be instantiated multiple times into problems
q = (t,n) by filling the template with numeri-
cal values (n1, n2, . . . ) and computing the ground-
truth result g = fo(n) (most problems involve two
to three operands, i.e., |n| ∈ {2, 3}). We select
a set of 437 two-operand and 307 three-operand
template-expression pairs that we use to gener-
ate pairs of prompts representing an intervention.
More details about the prompt generation proce-
dure are in Appendix A. We use (t,n) to refer to
an instantiated template that we use as a prompt.

4.2 Intervention Data
Given an MWP q = (t,n) and its solution g,
we generate a second problem-solution instance
(q′, g′) depending on the type of causal effect CE
we want to measure and on the considered variable.
When intervening on the operands of the problem,
the text of the problem is kept unaltered and a set of
new operands n is sampled in such a way that the
result g is affected or not depending on the effect
that is being measured. When changing the textual
description of the problem, we change t such that
either o′ = o, or o′ ̸= o. In the former case, we
sample a different template t′ = (s′,o) from the
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set of templates describing the same operations o,
in the latter case we sample a new t′ describing
a different operation. In Appendix B.1 we report
some examples of (q, q′) pairs representing the
different types of interventions.

Given a model, we use the question pair (q, q′)
to obtain a pair of answer distributions P(R|t,n)
and P(R|t′,n′), which we use to measure the
causal effect of the intervention. We consider
the space for the numerical values to be I =
{1, 2, . . . , C} consisting of integer values, follow-
ing the setup of several existing MWP datasets
(Miao et al., 2020; Koncel-Kedziorski et al., 2016;
Patel et al., 2021). To control our experimental
costs and make sure the models keep the number
as one token, we set C = 300. From all the tokens
in a model’s vocabulary, we focus on the proba-
bility assigned to the numbers in our numerical
space I, and thus we use P(R = r) to denote
the normalized probability Praw(R = r)/Z, where
Z =

∑C
r=1 Praw(R = r), and Praw(x) is the raw

probability score assigned to the vocabulary token
x. For each intervention type, we generate a dataset
D consisting of (q, q′) pairs. Unless otherwise
specified, for our experiments we generate 500 in-
tervention pairs for each template, and results are
averaged over three seeds.

4.3 Models to Evaluate

We use our framework to assess the robustness of
reasoning in thirteen pre-trained language models.
We consider five sizes of the GPT-2 model (Radford
et al., 2019): distilled (Sanh et al., 2019), small,
medium, large, and XL. We evaluate four models
from EleutherAI that were pre-trained on the Pile
(Gao et al., 2020): GPT-Neo 1.3B and 2.7B (Black
et al., 2021), GPT-J-6B (Wang and Komatsuzaki,
2021), and GPT-NeoX-20B (Black et al., 2022).
We use HuggingFace Transformers (Wolf et al.,
2019) to access the models. Additionally, we ex-
periment with a set of instruction-tuned versions of
GPT-3 (Brown et al., 2020): Instruct (Ouyang et al.,
2022), Curie, Davinci-002, and Davinci-003.3 Ex-
periments with GPT-3 are carried out under the
constraints set by the OpenAI APIs4, which pre-
vent us from computing the causal effect using the
same procedure as for the other models. We report
the details about how the metrics were computed

3The OpenAI ids for these models are, respec-
tively, davinci-instruct-beta, text-curie-001,
text-davinci-002, and text-davinci-003.

4https://openai.com/api/
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Figure 3: Comparison of DCE(N → R) and
TCE(N on R). ∗approx values, see Appendix C.

for GPT-3 in Appendix C. In the reported results,
we indicate with an asterisk (∗) the metrics that
were influenced by this limitation.

5 Results

Our analyses focus primarily on two-operand prob-
lems (Sections 5.1 and 5.2) and later extend to more
complex problems that involve three operands (Sec-
tion 5.5) for the models that perform best on the
two-operand test bed. We compare the direct causal
effect DCE and the total causal effect TCE of N
and T on R. DCE represents the undesired effect
for a model to being mistakenly responsive to a
change in N or T not leading to a change in the
result g (low robustness), whereas higher values
of TCE indicate a higher ability of the model to
correctly adjust the probability weight assigned
to the new solution g′ after the intervention (high
sensitivity).

5.1 Effect of N on R

From the results in Figure 3, we notice that larger
models exhibit a larger TCErcc/DCErcc ratio. In
particular, in GPT-J-6B and NeoX, the TCE is, re-
spectively, 30x and 1000x larger than the DCE.
However, this improvement in sensitivity is not
manifested in terms of change of prediction (δcp),
for which the models show to be affected by result-
preserving changes almost as equally as by result-
altering interventions. This behavior changes sig-
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nificantly in instruction-tuned models. In particular,
for the 175B-parameter GPT-3, performance varies
depending on the type of supervision, with the PPO-
trained Davinci-003 exhibiting an 84% difference
between direct and total effect.

In Figure 4, we present a different visualization
of the direct causal effect of N on the model’s
prediction. We report the heatmaps showing the
probability assigned by the model to the result g
of a problem (t, (n1, n2), g) | g = n1 + n2, ∀g ∈
{0, 1, . . . , 50}, ∀(n1, n2) ∈ {0, 1, . . . , 50}2. For
Distil-GPT-2 we observe low overall probability
assigned to g and diagonal patterns indicating con-
sistency in assigning higher probability to specific
results (e.g., 10, 20, 30, 40, 50). For the two larger
models we notice a higher probability mass as-

signed to the problem’s result, but less consistency
on the prediction of the same result with different
sets of operands (this is true for GPT-J in particular).
This result is consistent with the observed higher
DCE and TCE in larger models: P (g) might vary
more considerably when intervening on N without
affecting g, but overall the model assigns higher
probability weight to the correct result, which cor-
relates with higher sensitivity.

5.2 Effect of T on R

In Figure 5, we report the total causal effect of
the textual framing T and the direct causal effect
of the irrelevant text elements S on the model’s
prediction. For the instruction-tuned models, the
improvement in terms of prediction change (δcp)
follows a similar trend as for N , with GPT-3
Davinci-003 showing a 76% difference between
direct and total effect. An interesting observation
is that the irrelevant textual information S appears
to have a lower direct effect than N for all non-
instruction-tuned models. However, in the GPT-3
Davinci-00x models, we observe the opposite (i.e.,
DCE(N → R) ≤ DCE(S → R)). This suggests
that large instruction-based models tend to be more
susceptible to variation in the textual framing of a
problem, while smaller models are more respon-
sive to changes in the numerical values (though not
necessarily correctly).

5.3 Overall Insights
In comparison to other models, GPT-3 Davinci
shows the highest DCErcc, but low DCEcp. This
discrepancy is related to the quantities that the two
metrics consider. δrcc takes into account the prob-
ability assigned to g, while δcp does not consider
the ground truth solution. One interpretation of this
result is that GPT-3 Davinci consistently predicts
the same answer r = r′ when g = g′, but the prob-
abilities P (g) and P ′(g) might vary significantly.
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The results observed for the two kinds of inter-
vention do(T : t → t′) and do(N : (n1, n2) →
(n′

1, n
′
2)) show similar trends. Small models (Dis-

tilled and Small GPT-2) exhibit low sensitivity to
interventions. Larger models (from GPT-2 Medium
to GPT-Neo) appear to be more influenced by
changes in both N and T . However, they display
similar sensitivity to both result-altering and result-
preserving interventions. An improvement in sen-
sitivity is noticeable in GPT-J and NeoX, though
not accompanied by an improvement in robustness.
Remarkably different behavior is instead shown
by the GPT-3 Davinci models, which demonstrate
substantially higher sensitivity to result-altering in-
terventions (high TCE), and higher robustness (in
terms of prediction change). In Appendix B.2, we
report the accuracy of the models on the generated
instances of MWPs, which exhibits a similar trend
as the robustness/sensitivity changes we observed.

Possible explanations for the improved robust-
ness and sensitivity demonstrated by the large GPT-
3 models might be the dramatic size increase and
extension/enhancement of the training procedure
involving instructions. The former idea is aligned
with the emergent abilities hypothesis (Wei et al.,
2022a), which postulates the existence of skills
that are displayed by large-scale models but are
not present in smaller-scale models. However, our
observations show different performances in ver-
sions of GPT-3 Davinci that differ in the training
procedure.5 This raises the question of whether the
capability of LLMs to reason about math problems
benefits from instruction-based tuning. We address
this question in the following section.

5.4 Extending to LLaMA-Based Models

To further investigate the roles played by size and
training method in the model’s performance, we
carry out our experimental procedure on three ver-
sions with different sizes (7B, 13B, and 30B) of
the LLaMA model (Touvron et al., 2023), and on
Stanford Alpaca (which applies instruction tuning
on LLaMA 7B) (Taori et al., 2023). We present
these results separately, as the LLaMA tokeniza-
tion makes the prediction setup different from the
one used from the other models, and prevents us
from computing the relative change in confidence

5A high-level description of the training procedures for
the models is provided at https://beta.openai.com/
docs/model-index-for-researchers.
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Figure 6: Comparison of direct and total effects of N
on R for LLaMA and Alpaca.

(δrcc).6

From the results (Figure 6), two notable observa-
tions emerge. Firstly, the increased difference be-
tween TCE and DCE observed with the increasing
size of the LLaMA models suggests that a larger
number of parameters can be a significant driver
behind robustness/sensitivity improvement. How-
ever, this is not necessarily the case across dif-
ferent models: GPT-NeoX-20B shows a smaller
TCEcp-DCEcp gap compared to LLaMA 7B (5.2%
vs 9.0%). Secondly, the instruction tuning proce-
dure of Alpaca does not seem to help significantly
with mathematical computation: the decrease in
both TCE and DCE shows that robustness improves
at the expense of sensitivity. Nonetheless, over-
all, when comparing Alpaca compared to its base
model, LLaMA 7B, we observe an increase in the
gap between TCE and DCE, although this differ-
ence is minimal (9.5% vs 9.0%).

The limited improvement of Alpaca might be at-
tributed to its instruction tuning procedure consist-
ing of “a list of user-oriented instructions including
email writing, social media, and productivity tools”
(Taori et al., 2023), which differs from reasoning-
intensive tasks. We suggest future work to examine
different types of instruction tuning (e.g., focused
on reasoning procedures or reinforcement learn-
ing from human feedback), which might help the
model answer more complex types of questions in
a step-by-step manner and more accurately. We
hypothesize that the different performances in ver-
sions of GPT-3 Davinci might be produced by the
specific type of instructions used for training, by
the reinforcement learning component (Ouyang
et al., 2022), or simply by an extension of the lan-
guage modeling pre-training. It is challenging to

6The LLaMA tokenizer considers each digit as an inde-
pendent token in the vocabulary. This makes it problematic
to compare the probability value assigned by the model to
multi-digit numbers.
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Figure 7: Comparison of direct and total effects of N
on R for three-operand problems.

pinpoint the exact factor in the training procedure
that contributes to this improvement, as specific
methodological details are not available.

5.5 Moving to Three-Operand Problems

We extend our evaluation to consider the three-
operand problems in the dataset. In these ex-
periments, we consider only the GPT-3 175B-
parameter models, as they are the only models
performing well on the simpler bivariate problems.
The results regarding the effects of N are reported
in Figure 7. We notice that the large difference be-
tween the desired (TCE) and undesired (DCE) ef-
fects observed on simpler problems shrinks signifi-
cantly for both metrics. In particular, for Davinci-
003, the direct effect of N (measured as δcp) grows
from 0.17 to 0.87. That is, GPT-3 Davinci-003 pre-
dicts a different result 87% of the time after an
intervention that does not affect the ground-truth
solution. The increase in direct effect indicates a
performance degradation in terms of brittleness:
even the models that show good performance on
two-operand problems, now display an unstable
behavior after result-preserving interventions.

6 Related Work

Causal NLP. Causal inference aims to study the
cause and effect from observational and interven-
tional data (Pearl, 2009; Peters et al., 2017). Tra-
ditionally, researchers usually apply causal tech-
niques to phenomena in nature and human society.
With the rise of powerful models in NLP, recent
research has started to explore the intersection of
causal inference and NLP, forming the study of
Causal NLP (Jin et al., 2022; Feder et al., 2021a).

There are several formulations for Causal NLP:
the causality for NLP thread involves using the
causal framework for data collection and task for-

mulation (Jin et al., 2021c), inspecting the (path-
specific) causal effect of certain neurons on pre-
dictions (Vig et al., 2020; Meng et al., 2022), un-
derstanding the causal effect of data and learning
paradigm for model performance (Ni et al., 2022),
and as a way to frame prompts (Lyu et al., 2023);
and NLP for causality involves testing the pure
causal inference skills of LLMs (Jin et al., 2023a,b),
and use text as a variable for causal effect estima-
tion (Roberts et al., 2020; Veitch et al., 2020; Jin
et al., 2021b, 2023c).

The most similar line of research to our work
is the application of causal effect estimation on in-
terpreting models’ behavior, such as how models
understand syntactic agreement (Finlayson et al.,
2021), and how interventions in the representations
and weights affect the model prediction (Feder
et al., 2021b). To the best of our knowledge, our
work is the first to formulate a causal framework
for robustness behavioral tests, and also we are the
first to introduce the idea to quantify the differences
in the causal mechanisms of human reasoning and
model decisions.

Math Reasoning in NLP. A growing body of work
tries to improve the math reasoning capability in
NLP models (Zhang et al., 2020; Geva et al., 2020;
Spokoyny et al., 2021), and prompting techniques
for LLMs (Cobbe et al., 2021; Shen et al., 2021;
Kojima et al., 2022; Wei et al., 2022b; Chowdh-
ery et al., 2022). For analysis, significant atten-
tion has been given to models’ ability to under-
stand numerical quantities (Wallace et al., 2019;
Thawani et al., 2021) and numerical operations (Pal
and Baral, 2021; Berg-Kirkpatrick and Spokoyny,
2020; Piękos et al., 2021; Razeghi et al., 2022).

7 Conclusion

We developed a framework to disentangle and sep-
arately measure the effect of different factors influ-
encing the predictions of LLMs for math reasoning.
Our results indicate that a drastic increase in both
robustness and sensitivity emerges in the GPT-3
Davinci models. Additionally, we study the contri-
bution of size and instruction tuning in the models
of the LLaMA family, observing that the Alpaca
instruction tuning, while increasing the model’s ro-
bustness, does not significantly improve the overall
performance. Our framework provides a formal-
ized theory of behavioral testing for math reasoning
models and opens new future directions to design
behavioral tests of models in a principled way.
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Ethical Considerations

As for the ethical practice in this work, the data
involved are from existing MWP datasets with no
private user information, and available under the
MIT license. As for the ethical impact of the use
of this work, the study is about providing a metric
and analyzing existing models’ robustness, so there
is less concern over harmful usage. Rather, it is
more about putting checks on existing AI models
and helping humans understand them better before
use. Potential stakeholders that could benefit from
this research include NLP researchers working on
math models, practitioners working on various ap-
plications involving mathematical reasoning with
text, and e-learning design.

Limitations

A key limitation in our work is that LLMs might
have seen these math problems. Our work the-
oretically assumes this is not the case. Another
limitation is that for the sake of simplicity, our
work makes some assumptions. For example, we
assume all numbers in the range of integers 0 to
C = 300. This would not cover every MWP out
there. And future work is needed to generalize our
framework to other forms of MWPs. In this work,
we are also constrained by the limitations of the
OpenAI policy on the GPT-3 API. This limits the
number of perturbations we consider in this work
as well as the accuracy with which we can esti-
mate our causal distributions. Finally, our work
is restricted to English, and extending it to other
languages will require us to create an MWP dataset
in that language.
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A Creation of the Prompts

We consider MWP examples from the union of
the three datasets SVAMP, ASDiv-A, and MAWPS.
The textual template t of a problem consists of a
context (describing a real-world state and/or ac-
tions) and a question. In order to obtain suitable
prompts for the models, we convert the problems’
questions into statements where the result of the
problem is expected to be the first token after the
prompt. E.g., in the example in section 2, how
many trees will he have? is converted into the num-
ber of trees that he will have is _. From the MWP
templates of the SVAMP/ASDiv-A/MAWPS col-
lection (we consider all splits), we filter out the
templates whose questions do not start with How
many..., and we use spaCy7 to identify the subject,
the object and the verbs in the sentence. This al-
lows us to convert the last sentence of the template
from The number of... is. This way, we obtain 437
statement-based MWP templates for two-operand
problems and 307 for three-operand problems. We
manually checked a subset of the templates to iden-
tify possible mistakes in the conversion procedure.

B Frequently Asked Questions

B.1 How do the intervention data look like?

In Table 1 we report examples of MWP pairs rep-
resenting different types of intervention.

B.2 What is the accuracy of the evaluated
models on the generated problems?

We report the accuracy of the models considered for
evaluation in terms of accuracy at 1 and accuracy
at 10. Results are displayed in Figure 8.

B.3 What is the relation between accuracy
and the RCC metric?

We examine the relationship between performance
and robustness, computing the Pearson correla-
tion coefficient between accuracy (accuracy@10)
and the relative confidence change (RCC) met-
ric. On a per-template basis (500 instances for
each template), we found accuracy to be positively

7https://spacy.io
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TCE(N → R)

Ruby has 87 candies. If she shares the candies among 29
friends, the number of candies that each friend gets is

g = 87/29 = 3

Ruby has 35 candies. If she shares the candies among 5
friends, the number of candies that each friend gets is

g = 35/5 = 7

DCE(N → R)

The school is composed of 13 buildings each having 10
classrooms. The number of classrooms that the school has is

g = 10× 13 = 130

The school is composed of 65 buildings each having 2 class-
rooms. The number of classrooms that the school has is

g = 65× 2 = 130

DCE(S → R)

The razorback t-shirt shop ordered 6 cases of t-shirts. If
each case contains 17 t-shirts the number of t-shirts that they
ordered is

g = 17× 6 = 102

The roller coaster at the state fair costs 6 tickets per ride. If
17 friends were going to ride the roller coaster the number of
tickets that they would need is

g = 17× 6 = 102

TCE(T → R)

Sean has 23 whistles. He has 6 more whistles than Charles.
The number of whistles that Charles has is

g = 23− 6 = 17

Jovana filled her bucket with 23 pounds of shells. If she
adds 6 more pounds of shell to fill her bucket, the number of
pounds that she has is

g = 23 + 6 = 29

Table 1: For each of the causal effects measured (left column), we report a pair of MWPs illustrating the intervention
performed (center), along with their respective ground-truth result (left column).
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Figure 8: Average accuracy of the models on the gen-
erated instances of MWPs. Results are averaged over
two sets consisting of 500 problem instances generated
for each template. The lower figure shows a zoomed-in
visualization of the accuracy at 1.

correlated with TCE(N on R) and TCE(T on R)
(0.24 and 0.49, respectively) and negatively cor-
related with DCE(N → R)and DCE(S → R)
(-0.26 and -0.36, respectively). We see these re-
sults as a quantitative validation of the intuition
behind our framework: the better the model’s per-
formance, the more the model tends to correctly
adjust its prediction after a result-altering interven-
tion (higher sensitivity) and to correctly not change
its prediction after a result-preserving intervention
(higher robustness).

Moreover, we conduct an additional sanity check
as in Patel et al. (2021): removing the question
from the MWP templates, we observe a sensitivity-
robustness degradation to random guessing (i.e.,
TCE ≃ DCE). This indicates that the measurement
of the causal effects within our framework is not
affected by patterns in the templates that might
have been picked up or memorized by large models.

C Computation of Causal Effects for
GPT-3

We access GPT-3 through the OpenAI APIs, which
allow a user to prompt the model and obtain the
probabilities assigned by the model to the k-th most
likely vocabulary entries, for each token generated.
To overcome this limitation, we approximate the
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relative probability change δrcc as follows, depend-
ing on the kind of effect measured.

The limit for k is set by OpenAI to 5. However,
for our main set of experiments (i.e., computing the
causal effects of N , S, and T ) we were granted
an increased limit of k to 100. This allowed us to
obtain reasonable estimates for the causal effects,
as the number of cases in which P (g) is not defined
is less than 10% of the number of examples that
we consider.

Algorithm 1 Computation of δrcc for GPT-3
Q = (t,n, g)
Q′ = (t′,n′, g′)
if P (g) is defined then

if P ′(g) is defined then
∆ = P (g)−P ′(g)

P ′(g)

else
P̂ ′ ← P ′(k-th most likely token)

∆ = P (g)−P̂ ′

P̂ ′

end
else

∆ = 0
end
if P ′(g′) is defined then

if P (g′) is defined then
∆′ = P ′(g′)−P (g′)

P (g′)

else
P̂ ← P (k-th most likely token)

∆′ = P ′(g′)−P̂

P̂

end
else

∆′ = 0

end
δrcc =

1
2(∆ +∆′)

C.1 TCE(N on R) and TCE(T on R)

In cases when P (g) is defined (i.e. when g appears
in the top k token predictions) and P ′(g) is not
defined, we compute a lower bound on the relative
change using the upper bound on P ′(g) given by
the probability of the k-th most likely token. This
gives us a conservative estimate of ∆. For cases
in which P (g) is not defined, we cannot say any-
thing about the relative change, and we set ∆ = 0.
The same applies when swapping P and P ′. This
procedure is illustrated by Algorithm 1.

C.2 DCE(N → R) and DCE(S → R)

In this case, we simply discard the examples for
which P (g) is not defined or P ′(g) are not defined.
In that is not the case, then we compute δrcc as in
Section 3.4.

C.3 Heatmap Illustration
The heatmap for GPT-3 displayed in Figure 4 was
computed by taking the raw probability score pro-
duced by the model over the whole vocabulary,
as the limit on the available top predicted tokens
makes it impossible to normalize it over the set
{0, . . . , 300}, as done for the other models. The
probability was set to 0 when g did not appear in
the model’s top 5 predictions for the next token
after the prompt.

D Computing Infrastructure & Inference
Details

To run our experiments, we used a single NVIDIA
TITANRTX with 24GB of memory for all the ver-
sions of GPT-2 and GPT-Neo. We used a single
NVIDIA A100 with 40GB of memory for GPT-J-
6B and a single NVIDIA A100 with 80GB of mem-
ory for GPT-NeoX and the LLaMA models (two
for the 30B version). We accessed GPT-3 using
the OpenAI APIs. The longest run (GPT-J) on the
four kinds of experiments corresponding to the four
kinds of effects measured took ∼12 hours, using
500 MWP instances for each of the 437 templates.
Due to budget and resource constraints, the exper-
iments on GPT-3, GPT-NeoX, and LLaMA were
carried out using 20 examples generated for each
template and took ∼7 hours. Experiment tracking
was carried out using Weights & Biases8.

8http://wandb.ai/
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