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Abstract

Argument maps structure discourse into nodes
in a tree with each node being an argument that
supports or opposes its parent argument. This
format is more comprehensible and less redun-
dant compared to an unstructured one. Explor-
ing those maps and maintaining their structure
by placing new arguments under suitable par-
ents is more challenging for users with huge
maps that are typical in online discussions.

To support those users, we introduce the task
of node placement: suggesting candidate nodes
as parents for a new contribution. We establish
an upper-bound of human performance, and
conduct experiments with models of various
sizes and training strategies. We experiment
with a selection of maps from Kialo, drawn
from a heterogeneous set of domains.

Based on an annotation study, we highlight the
ambiguity of the task that makes it challenging
for both humans and models. We examine the
unidirectional relation between tree nodes and
show that encoding a node into different em-
beddings for each of the parent and child cases
improves performance. We further show the
few-shot effectiveness of our approach.

1 Introduction

Online discussions can have huge numbers of con-
tributors and contributions, making the discussion
hard to follow for new users. Getting an overview
of a discussion and finding points of interest for a
new user might be hard in such an unstructured for-
mat which is also prone to redundancy. Argument
maps, in their simplest form, structure arguments
into a tree with each node being a pro or contra
argument for its parent node (also an argument, see
Figure 1). Relying on the structure of the map,
users can dive deeper into specific aspects of an
argument and collectively add more arguments to
support or oppose it: this improves the overall qual-
ity of the discourse and at the same time, triggers
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Figure 1: Node placement finds for a new node suitable
parent nodes in an argument tree. The darker shades
represent better candidates making the best ranking:
n6, n3, n8, n7,.. When representing the nodes it is
beneficial to decouple parent and child representations
so that n6child → n3parent but n3child ↛ n6parent

the generation of new ideas and the continued dis-
cussion of existing ones. For an argument map to
serve its purpose, it is essential to keep a some-
what clean structure, but this can be challenging
for larger maps since finding where to add a new
contribution can become a tedious task, and where
the user initially decides to add their contribution
based on their limited exploration of the map might
be a sub-optimal choice.

To support in creating argument maps, we pro-
pose node placement as a new task defined as
finding suitable candidates from an argument tree
to be the parent of an argument. Deciding if an ar-
gument is pro or contra its parent is not a focus here
as it does not constitute a bottleneck when adding a
new contribution (binary decision vs. choosing the
suitable parent from possibly hundreds of nodes).
A number of nodes could be suitable as parents at
varying or more similar degrees making the task
inherently ambiguous (nodes n3, n8 are equally
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suitable in Figure 1). The effect of this could be
loosened by presenting the user with top-n recom-
mendations (visualized using color shades similar
to Figure 1). The task then could be employed to
support users in two ways: 1) exploration: the user
enters a short keywords-argument and based on its
suggested node placement, finds the most relevant
places in the map to explore; 2) optimization: after
a user is done writing the argument, node place-
ment suggestions are used to better place the final
new contribution (example in Figure A.5). The
task could be also seen as a first step to automati-
cally and incrementally build argument maps from
unstructured discussions or to enrich existing argu-
ment maps based on those discussions.

We use publicly available argument maps from
Kialo1 (where users manually & collectively main-
tain discussions in maps) and conduct an anno-
tation study on a sample of nodes with 10 chal-
lenging candidates per node, in order to gain in-
sights about the task and estimate human perfor-
mance. We highlight the challenging nature of
the task even with this low number of candidates.
We formulate the task as a ranking problem and
conduct modeling experiments using sentence-
transformers with large and small models and a
variety of intermediate-task training. We show that
more intermediate-task training yields better re-
sults, and that the performance of the large trained
models is on par with humans on our annotated
samples. We highlight the unidirectional nature
of the relationship between child and parent nodes
showing that it is beneficial to decouple the parent
and child representations of the same node. To
address this, we propose using different textual tem-
plates for the child vs. parent representation of a
node (see embeddings in Figure 1), and show a
boost in performance as a result (∼4, 3 points for
top1, top5 accuracy of the large model). We further
examine the data-efficiency of our training strate-
gies in low-resource scenarios where the number
of maps and/or the size of maps are small. We
show that the zero-shot performance is still rela-
tively good and is consistently improved with few-
shot training even with a small number of samples
and that using templates is especially beneficial for
a smaller number of samples.

Our main contributions are summarized as:
1) Defining a new task, node placement in argu-
ment maps; 2) Estimating human performance on

1https://www.kialo.com

the task through an annotation study; 3) Conduct-
ing modeling experiments, proposing a simple ap-
proach to tackle unidirectional relations between
text pairs, and employing this to improve the per-
formance of the proposed task; 4) Demonstrating
the effectiveness of our training in low-resource
scenarios. A detailed analysis of the results is also
conducted to gain insights into our task and method.
Our code is made publicly available2.

2 Related Work

Node Placement in Argument Maps The task is
related to two widely explored tasks in Argument
Mining: argument retrieval and modeling argument
relationships. Argument retrieval can be viewed as
a more general form of node placement, in which
a system should provide relevant arguments given
a controversial question or topic (Stab et al., 2018;
Reimers et al., 2019; Bondarenko et al., 2021) or
a suitable counter-argument given an input argu-
ment (Wachsmuth et al., 2018). With respect to
general argument retrieval, our task tackles a finer-
grained problem: finding suitable positions in the
argument tree. Regarding the modeling of the rela-
tionship between arguments (Stab and Gurevych,
2017), e.g. support/attack, only few works consider
it in the context of a full, structured debate. To au-
tomatically construct argument graphs, Lenz et al.
(2020) use structured debates to classify relation-
ship between argumentative units. Agarwal et al.
(2022) model the relationship between arguments
as a polarity prediction task using the tree-structure,
and exploiting the ancestors of a node to classify
support/attack relationships.
Retrieval & Ranking: Cross-encoders like BERT
(Devlin et al., 2019) can be used to score pairs of
sentences, but this does not scale well for large
number of candidates in retrieval & ranking tasks.
Siamese networks (Bromley et al., 1993) (also
called bi-encoders) have long been used to cre-
ate embeddings for efficiently tackling those tasks
using contrastive learning. sentence-transformers
(Reimers and Gurevych, 2019) employs this by us-
ing BERT or other Transformer models and utiliz-
ing labeled data while ConSERT (Yan et al., 2021)
and SimCSE (Gao et al., 2021) also utilize unla-
beled data. The original BERT can be used to en-
code each sample (of a pair) into a vector for more
efficiency, but the resulting embeddings have high

2https://github.com/imanjundi/
argument-relations
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similarity in general which BERT-flow (Li et al.,
2020) and WhiteningBERT (Huang et al., 2021)
tackle using normalization. We utilize bi-encoders
and pay attention to the high similarity issue with
a thorough analysis of the effect our approach has
on the embedding space.
Templates & low-resource: Templates were re-
cently heavily used in prompts to tap into the
knowledge encoded in large PLMs and to make
use of their few-shot capabilities by using a task-
information template (Petroni et al., 2019; Brown
et al., 2020). They were also used to fine-tune
PLMs in a few-shot setup (Schick and Schütze,
2021; Tam et al., 2021; Liu et al., 2022) while oth-
ers attempted to do away with them (Logan IV
et al., 2022; Karimi Mahabadi et al., 2022; Tun-
stall et al., 2022), but they were mainly employed
to directly solve NLP tasks and not to learn em-
beddings. Prompts were used for the latter more
recently (Jiang et al., 2022) with contrastive learn-
ing. We simply utilize templates with no language
modeling training or inference and show they are
beneficial with contrastive learning to learn embed-
dings in high and low-resource.

3 Data

We use argument maps from Kialo, an online plat-
form on which people engage in discussions on
specific topics or statements. In a discussion about
a controversial thesis topic, the thesis acts as a root
node under which further and increasingly more
specific arguments for or against this point of view
can be added. An example of how the original data
looks like is shown in Figure 2 (taken from Kialo 3).
It shows how the tree of arguments evolves for
the root node or thesis “Video game storytelling
should portray gender equality.” Users can navigate
through the tree to find aspects of the discussion
that they are interested into or to find a good node
to attach their new input to. Each new argument
can in turn be attacked or supported with a variety
of different arguments. Thus every debate in Kialo
represents a unidirected tree, where each edge rep-
resents a support or attack relation (henceforth, pro
and con).

We rely on data from Agarwal et al. (2022) and
use a total of 1,378 maps covering a wide variety of
topics: politics, technology, ethics, etc. (overview
in Appendix Figure A.2). The majority contain up
to 200 nodes, but a quarter of the data are large-

3https://www.kialo.com

scale discussions (up to 6k nodes) for which an au-
tomatic support is especially beneficial (complete
analysis in Section A.1).

4 Annotation Study

To have a better understanding of the task and data,
generalize a baseline of human performance, and,
estimate the difficulty and cost humans encounter
with such a task, we conduct an annotation study.
Design: We employed 3 annotators with a back-
ground in NLP and Social Sciences (details in Sec-
tion A.2. The annotators were presented a specific
contribution to a discussion4 – the child – and 10
candidate parents selected from the discussion’s
argument map to which the child could attach. The
annotators were tasked to classify each of the can-
didates with one of the following labels: BEST

PARENT (count 1), SUITABLE PARENT (max. 4), or
LESS SUITABLE PARENT. The annotation guide-
lines and an example are provided in Appendix
Figures A.6 and A.7.

In order to control for an appropriate variety of
candidates that a user might encounter, the candi-
dates consisted of the actual parent, 6 candidates
closely related in the tree to the child (with a maxi-
mum path distance of 3), and 3 randomly selected
candidates from the full tree. In total, the anno-
tated dataset consists of 200 child instances. The
instances selected were evenly split between pro
relations with its parent and con. The nodes were
sampled from small and large-scale maps (90 to
2500 nodes). The topics of the maps are environ-
ment, economy, gender, politics and immigration.

To better understand the annotators’ approach to
the task, we asked them to provide their confidence
scores for each annotation, as well as short-answer
motivation for a subset of 100 annotations.
Annotation Results: We measure the annotator
agreement using weighted Kappa (κw) (Cohen,
1960) as we would like to account for the serious-
ness of the disagreements, i.e. disagreeing about
BEST and SUITABLE should be penalized less than
BEST and LESS SUITABLE. The annotators have
a fair to moderate agreement of 0.387. While we
can conclude that the participants generally agreed,
κw in the lower range of agreement is an indication
of the difficult and subjective nature of this task,
despite the clear guidelines and training.

4The topic of the discussion was also provided to the anno-
tators for context in each instance.
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Figure 2: A snippet of an argument tree discussing the claim “Video game storytelling should portray gender
equality.” which corresponds to the root node.

To calculate the performance, we convert the hu-
man annotated labels for each child into a score and
thus obtain a ranked list of all candidates5. Table 1
shows the aggregated performance of the annota-
tors in being able to select the best parents for each
child (metrics in Section A.3). The average top1
is just under 50%, meaning the participants were
not necessarily able to select the best parent among
the 10 candidates with ease. On the other hand, the
average top5 is quite high. This contrast suggests
that the best parent is often ambiguous; while dis-
tinguishing between a set of those that might be the
best parent (conflating BEST and SUITABLE) and
those that are certainly not (LESS SUITABLE) is less
ambiguous and easier to define for the participants.

top1 top5 MRR
all 0.480 0.935 0.664
pro 0.436 0.941 0.640
con 0.525 0.929 0.688

Table 1: Average performance of human annotators for
the full annotated sample (all), for all nodes with a pro
relation, and for all with a con relation. Performance is
computed based on the actual parent of the child node.

We find that for the participants it was easier to
determine the best parent in cases of a con relation-
ship between parent and child. Contributions to
a discussion of this class are generally presented
as negations to specific points in the parent com-
ment, and most likely contain high lexical overlap.
For example, the child The boys referred to appear

5Each label corresponds to a number (BEST:1, SUIT-
ABLE:2, LESS SUITABLE:3) and the score for a candidate
is the average of all three numbers. The lower the score, the
higher the candidate will be ranked.

to be having fun, rather than trying to hurt each
other, in response to the parent It shows the harm
boys can do when people allow bad behaviour be-
cause “boys will be boys.” Contributions that are
instead of a pro relationship to the parent are more
often an elaboration or extension of the argument
made in the parent comment, likely resulting in less
pronounced links between parent and child. For ex-
ample, the child There is poor cooperation between
the Commission and national financial regulators,
in response to the parent The Emissions Trading
System is susceptible to fraud.

Our analysis of the motivation behind the an-
notators’ choice shows it can be divided into 3
categories, in decreasing frequency: (1) Process
of elimination, described often as “most obvious”,
“best fit”, or “makes most sense”; (2) Linguistic
overlap, reported as similar use of terminology or
structure; and (3) Logical connection, in which par-
ticipants found a direct child/parent relationship,
such as an elaboration or offering examples.

Note that the task given to the annotators is rather
simple in comparison to a real-world application
where dozens, if not hundreds, of options across
the full argument map would need to be considered.
That said, the three annotators averaged a total of
31 hours to complete the 200 annotations. Clearly,
this cost can be greatly reduced for users or moder-
ators of the argument maps with a filtered shortlist
of candidates provided by a model trained on our
proposed task: node placement.
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5 Main Modeling Experiments

The task can be formulated as a ranking problem
where a score is predicted for each candidate node
and used to rank all candidate nodes. We use a bi-
encoder to scale to the huge number of nodes that
each map might contain (up to 6k nodes, c.f. Sec-
tion 3). Using a cross-encoder that scores each
pair of nodes is not feasible to apply on all nodes,
but could still be used to refine the ranking of the
top-n candidates based on the scores from the bi-
encoder. This re-ranking step is out-of-scope given
the noisy data available and the ambiguous nature
of the task, as seen in the annotation study, which
makes judging the final ranking not feasible.
Unidirectional Relation Between Nodes
Common sentence or document embedding meth-
ods assume a bi-directional relation. For example,
in the case of semantic similarity: if sentence1 x1
is similar to sentence2 x2 then sentence2 is also
similar to sentence1 so:
F (x1, x2) = y ↔ F (x2, x1) = y

This is clearly not the case when representing
parent/child relation so:
F (x1, x2) = y ↛ F (x2, x1) = y

This makes encoding the tree nodes into an em-
bedding space challenging since the training should
make the child nodes (c1,...,cn) closer to their par-
ent node (p), but when p is considered as a child
node with the aim of predicting its parent, it should
still be closer to its parent (g) than to (c1,..,cn). The
latter should be in this case regarded as negative
training examples. The recursive structure of the
tree might increase the effect of this issue since all
nodes are eventually connected to the root.

5.1 Templates

Motivated by the successful use of prompts in re-
lated work, we use templates to better represent the
unidirectional relation, exploit the stance label and
utilize the knowledge encoded in the model. By
encoding those signals textually through templates,
they are passed through the model which allows
for effective interaction with other features while
keeping the approach simple. Our templates are:
parent/child: differentiate the parent vs. child
by using parent:"text" when considering the
node as a candidate parent for another node
vs. child:"text" when considering the node as
the child. This allows us to have two different em-
beddings for each node. The resulting training data
has the same size as the original.

pro/con: represents pro & con child nodes using
pro:"text" & contra:"text" which we add to
parent/child template samples for training, and use
parent/child template (main template) for evalua-
tion. Using only pro/con templates would other-
wise complicate evaluation since it results in two
different rankings of the candidates: one when con-
sidering the node as pro for a candidate and one for
con. The resulting training data is 2x the original
size.
all: includes pro/con templates and 3 templates that
use similar keywords while combining child & par-
ent text during training e.g. pro:"text" parent:
"text" (see Appendix Table A.2 for all templates).
The resulting training data is 5x the original size.

5.2 Experimental Setup

Each argument in a map is encoded into an embed-
ding using sentence-transformers6 (Reimers and
Gurevych, 2019). Cosine similarity is used be-
tween the embeddings of a node and all possible
candidates to calculate the scores. Experiments
use models with varying size and intermediate-
task training (Pruksachatkun et al., 2020) based
on a large model, MPNet (Song et al., 2020) and a
smaller one, MiniLM (Wang et al., 2020)7: mpnet
without intermediate training, nli-mpnet with inter-
mediate training on MNLI and SNLI, paraphrase-
mpnet with additional paraphrase data, all-mpnet
with additional QA and other data, and finally all-
mini with similar training but based on MiniLM
(models overview in Appendix Table A.1).

The argument maps in the dataset are split into
80% train, 20% test (1102 and 276 maps each).
No hyperparameter search was done and no valida-
tion set was used to avoid influencing the few-shot
performance by knowing hyperparameter values
based on extra validation data that isn’t available in
few-shot (see Section 6.1). The maps from which
the items of the annotation studies were sampled
are part of the test set. 5 different train/test ran-
dom splits are used and the average performance
on the various test sets is reported in the main re-
sults. Each node with its actual parent constitute a
training sample resulting in ∼211k training pairs.
The models are trained using a batch contrastive
loss where the actual parent of a node is considered
a positive sample and all other parents in a random

6https://github.com/UKPLab/
sentence-transformers

7https://www.sbert.net/docs/pretrained_models.
html
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batch are considered negatives8. The models are
trained for 1 epoch and then evaluated on the test
set by calculating the metrics for each leaf child
node and averaging over all those nodes in the map.
We report the average for all maps. Evaluation is
also done on the annotated samples to compare to
human performance. We do not attempt to optimize
hyperparameters to avoid influencing our few-shot
experiments (Section 6.1). To have a more detailed
estimation of the task difficulty and modeling per-
formance, we report the average of a variety of
metrics: top1, top5 accuracy and MRR (metrics
description in Section A.3).

5.3 Results & Analysis

model top1 top5 MRR
mpnet .2859 .5884 .4259
nli-mpnet .2864 .5935 .4277
paraphrase-mpnet .2955 .5993 .4372
all-mpnet .3064 .6239 .4525

Table 2: Results with varying intermediate-task training

Table 2 shows the results for MNPet without the
use of any templates. The performance improves
with more intermediate-task training for all met-
rics. Best performance is achieved using all-mpnet
(more generic and larger training data), which we
use in all following experiments.

Table 3 shows that training improves on the zero-
shot performance and performs comparable to or
better than the human performance on the 200 an-
notated samples. The task, however, remains chal-
lenging in general mostly because of its inherent
ambiguity (as was shown in the annotation study)
and because of the noisy data that is available. Us-
ing the parent/child template further boosts the per-
formance by ∼4, 3 points for top1, top5 respec-
tively. Adding pro/con templates improves the per-
formance only slightly. This might be because the
signal about the type of relation is not as important
in solving the task or that this signal is not utilized
properly. Using more templates in all also does
not improve the performance. It is hard to estimate
how much more improvement is still possible since
the human performance is estimated in a controlled
setup and the highest performance here is already
on bar with it or exceeds it. Similar observations
can be made for the smaller model all-mini in Ap-
pendix Table A.4, except that the boost from using
parent/child is smaller and the best performance

8MultipleNegativesRankingLoss in sentence-transformers

still lags behind that of humans especially for top1.
Based on those findings, we focus on parent/child
template in the following analysis of the results.

Agreement between model predictions and
human annotations is moderate (κw=0.459) for
zero-shot and is somewhat increased with training
(0.491) meaning the model has a general agreement
with humans about the ranking independent of what
the actual parent is in the original Kialo data.
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Figure 3: Embedding space of nodes in a sample map
(lighter color for deeper nodes). Using templates allows
for a variation of the same node for child (blue) vs. par-
ent (orange). The variation is higher for nodes closer
to the root (darker blue and orange) as opposed to the
overlapping visualization of deeper nodes (light gray).
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Figure 4: Cosine similarity between parent and child
embeddings of the same node when parent/child tem-
plate is used. The top nodes have a slightly lower simi-
larity and more distinct embeddings for parent vs. child.

Embedding Space (Parent vs. Child)
To analyse the effect of parent/child templates on
the embedding space, we visualize in Figure 3 the
embedding space for the nodes when using par-
ent/child template. The visualization of the parent
(orange) vs. child (blue) is more distinct for the
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model
test (20%)

all possible candidates
200 samples
10 candidates

top1 top5 MRR top1 top5 MRR
zero-shot .2491 .5467 .3897 .430 .900 .628
no template .3017±.0063 .6178±.0120 .4472±.0083 .4770±.0076 .9220±.0057 .6640±.0040

parent/child (*) .3366±.0073 .6467±.0119 .4786±.0087 .5180±.0091 .9410±.0042 .6906±.0069

pro/con (*) .3376±.0073 .6457±.0100 .4793±.0086 .5210±.0156 .9380±.0045 .6934±.0105

all (*) .3357±.0067 .6439±.0099 .4771±.0083 .5190±.0152 .9340±.0089 .6915±.0093

human .480 .935 .664

Table 3: Performance after high-resource is competitive with humans. parent/child template boosts the performance,
whereas more templates are not as beneficial. (*) uses templates.

nodes that are closer to the root (darker color) in
contrast to the deeper nodes which their parent &
child visualizations are overlapping (light gray).
This shows that representations for child vs. parent
is more distinct for the more generic nodes at the
top of the tree. This difference is not that significant
as shown in Figure 4, where we visualize cosine
similarity between the parent and child embedding
of the same node averaged over all nodes in maps
from the test set. As expected, the similarity is still
high in general at ∼0.9 and the top nodes in the tree
have slightly lower similarity (0.01) which might
still be important in improving the performance.

model cosine similarity
zero-shot 0.3210
no template 0.2738
parent/child
(child, child) 0.2962
(child, parent) 0.0321
(parent, parent) 0.0462

Table 4: Average cosine similarity between embed-
dings for all nodes in each map.

Table 4 shows the average cosine similarity be-
tween all nodes for zero-shot and no template
where we can see that the training decreases the
similarity on average. When the similarity is cal-
culated for the various combination in the case of
training using parent/child templates, the training
seems to have a different effect: the similarity stays
higher when comparing arguments using only child
template (child, child), but the parent embeddings
are more distinct and less similar to each other (par-
ent, parent) and to child embeddings (child, parent)
of all other nodes (not specifically actual children).

Finally, we compute cosine similarity between
the embeddings of each child c and its actual par-
ent p using (child:"c", parent:"p") getting an
average of .5496, whereas that of (child:"p",
parent:"c") is much lower at .4951. This shows
that using parent/child template indeed leads to a
better representation of the unidirectional relation

c → p and p ↛ c .

model
test samples

all pro con all pro con
zero-shot .5467 .5587 .5398 .900 .921 .879
no template .6239 .6089 .6462 .930 .941 .919
parent/child .6539 .6373 .6749 .940 .950 .929
human .935 .941 .929

Table 5: top5 according to relation type (pro/con) is
better for pro compared to con for zero-shot. The per-
formance of con is noticeably improved with training.

Pro vs. Con Performance: Table 5 shows the
detailed results of one train/test split according the
type of relation between the argument its parent.
As expected, zero-shot performance is better for
pro compared to con since the pro relation is similar
to entailment and other relations used to construct
positive samples in tasks the model was trained
on. This changes after training (no template) where
con performance improves more than pro (+.11
vs. +.05), which can be partially due to more data
available for con vs. pro (≈ 162k vs. 120k or 57%
vs. 43%). Using templates gives a similar small
boost for both. We see a similar pattern for top1
(Appendix Table A.5) except here con performance
is similar to pro for zero-shot but after training, the
performance of con is again better than pro. The
pattern is similar after training to that of human
performance on pro and con for both top1 and top5.

6 Few-shot Experiments

Our approach could be used for similar tasks, for
which obtaining the scale of data that we used here
is not feasible. Motivated by this, we investigate
the data efficiency of our approach, analyze the
results, and where to better invest resources.

6.1 Few-shot Experimental Setup

Random samples from the training set are used with
varying numbers of maps (#maps) and numbers of
nodes used from each map (#nodes) in (8, 16, 32,
64) where the final number of samples used for
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test samples
#nodes #maps template top1 top5 MRR top1 top5 MRR

zero-shot .2491 .5467 .3897 .430 .900 .628

8 8 no template .2540±.0017 .5507±.0022 .3939±.0013 .4310±.0065 .9100±.0050 .6309±.0032

parent/child .2595±.0091 .5537±.0123 .3980±.0105 .4230±.0239 .9140±.0096 .6201±.0142

pro/con .2709±.0051 .5655±.0057 .4103±.0054 .4420±.0315 .9190±.0022 .6331±.0172

all .2802±.0061 .5845±.0106 .4218±.0084 .4640±.0139 .9280±.0076 .6510±.0095

16 16 no template .2680±.0052 .5727±.0065 .4100±.0057 .4470±.0045 .9130±.0057 .6405±.0043

parent/child .2815±.0063 .5853±.0140 .4233±.0083 .4670±.0301 .9280±.0027 .6545±.0168

pro/con .2859±.0054 .5948±.0106 .4293±.0068 .4780±.0186 .9390±.0102 .6605±.0112

all .2890±.0015 .6027±.0049 .4339±.0016 .4730±.0091 .9320±.0027 .6590±.0068

32 32 no template .2838±.0040 .5932±.0058 .4266±.0041 .4600±.0094 .9250±.0094 .6524±.0069

parent/child .2882±.0037 .5985±.0050 .4320±.0037 .4710±.0082 .9220±.0045 .6563±.0033

pro/con .2858±.0033 .5972±.0030 .4293±.0028 .4830±.0104 .9230±.0084 .6626±.0045

all .2923±.0059 .6018±.0068 .4347±.0060 .4680±.0202 .9280±.0084 .6551±.0125

64 64 no template .2892±.0030 .5974±.0042 .4317±.0036 .4890±.0089 .9220±.0057 .6651±.0032

parent/child .2925±.0044 .5999±.0052 .4348±.0041 .4800±.0079 .9200±.0106 .6624±.0050

pro/con .2906±.0047 .5969±.0054 .4319±.0037 .4820±.0045 .9170±.0135 .6629±.0037

all .3018±.0025 .6025±.0035 .4416±.0020 .4650±.0106 .9160±.0171 .6495±.0122

full dataset none .3064 .6239 .4525 .485 .930 .669
human performance .480 .935 .664

Table 6: Few-shot Results. Few-shot improves over zero-shot in all cases. Using templates helps narrow the gap
between low-resource and training on the full dataset with a boost that is larger for smaller #samples

training (#samples=#node×#maps) varies between
64 to 4096. 5 random samples for each combina-
tion of (#nodes×#maps) are used and the average
performance is reported. Various templates are
again investigated as their effect is expected to be
different for low-resource.

True Few-shot

We refrain from using extra unlabeled data or extra
samples as dev set to report true few-shot perfor-
mance (Perez et al., 2021). We use default hyperpa-
rameters (Appendix section A.4) and batch size=8
(smallest number of nodes available for training
per map).

6.2 Few-shot Results & Analysis

We see in Table 6 that using the same training
paradigm proves to be effective for low-resource.
Few-shot training improves on zero-shot in all
cases with and without templates and no degrada-
tion in performance is observed due to overfitting
even with a small number of samples (where few-
shot is more prone to overfitting). Training with
parent/child template improves the performance,
especially for a lower number of #samples. For
64x64 the templates still improve the performance
on the test but don’t improve on the annotated sam-
ples, however, the performance there is already
close to human performance. The pro/contra tem-
plate also helps boost the performance and the best
performance is achieved when using a combina-
tion of various templates (all). When comparing
for each #samples the performance when trained
with no templates vs. all, we see that using tem-

plates helps narrow the gap between low-resource
and high-resource (full dataset) with a boost that
is larger for smaller #samples. Similar findings
can be seen for the smaller model (Appendix Ta-
ble A.11) except using more templates is not as
effective there, especially with larger #samples.

The pro/con and all templates are more helpful
here than when training on the full dataset (Table 3).
This might be due to an augmentation effect since
each sample is used in a parent/child template as
well as other templates resulting in a training size
that is 2x and 5x the original size (for pro/con,
all respectively). Such augmentation would be
more beneficial in more low-resource cases. To
verify how this compares to the model seeing the
samples more often, we train the model for dou-
ble the amount (2 instead of 1 epoch) without any
templates and those results (Appendix Table A.6)
are comparable to no template with 1 epoch and
worse than pro/con. The same is seen for all vs. 5
epochs which also holds when training with a par-
ent/child template for 5 epochs in which case the
performance of all is still better although to a lesser
degree (Appendix Table A.7, A.8). Those initial re-
sults demonstrate the usefulness of templates with
the potential to further improve the performance
with template engineering or template search which
were out of scope here.

This shows that the use of templates with con-
trastive learning is an effective approach in low-
resource: the parent/child signal can be effectively
exploited even at a low #samples and incorporat-
ing more templates in the training is a promising
direction to bridge the low to high-resource gap.
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#nodes #maps top1 top5 MRR

8 8 .2611±.0099 .5535±.0153 .3992±.0116

16 16 .2803±.0066 .5840±.0167 .4220±.0090

32 32 .2875±.0035 .5994±.0057 .4318±.0043

64 64 .2946±.0017 .6048±.0040 .4381±.0016

Table 7: foo/bar template is comparable to parent/child.

Template Semantics: Motivated by research done
on the effect of prompt semantics (Le Scao and
Rush, 2021; Webson and Pavlick, 2022), we em-
ploy templates with no semantic meaning (foo/bar)
using foo:"text" for child and bar:"text" for
parent. Table 7 shows comparable results for
foo/bar vs. parent/child (the same is seen when
training with the full dataset Appendix Table A.9),
and a similar effect is seen when using various tem-
plates in Appendix Table A.10. This is in line with
findings about prompt-based fine-tuning (Webson
and Pavlick, 2022) that is shown to yield good per-
formance with irrelevant and misleading prompts.
Number of Maps vs. Number of Nodes
We investigate here where resources are more use-
ful either when annotating and creating a dataset
or when limiting training size and computing re-
sources. For the same #samples (e.g. 128), different
#maps and #nodes per map can be used (e.g. 16×8
or 8×16). We show in Table 8 a comparable com-
bination of #node×#maps to investigate the effect
each has on the performance and whether it is more
beneficial to have few big maps or many small
maps for training. We see better performance with
more #nodes per map compared to more #maps
with fewer nodes. This is probably because the
more #nodes are available, the better negative sam-
ples are possible for better training.

#nodes #maps top1 top5 MRR

8 16 .2556±.0056 .5570±.0089 .3967±.0065

16 8 .2601±.0030 .5622±.0026 .4017±.0027

8 32 .2688±.0039 .5725±.0032 .4108±.0033

32 8 .2689±.0056 .5714±.0066 .4103±.0055

8 64 .2711±.0061 .5731±.0085 .4122±.0061

64 8 .2803±.0017 .5876±.0042 .4227±.0014

16 32 .2759±.0041 .5809±.0047 .4177±.0042

32 16 .2761±.0034 .5821±.0016 .4186±.0021

16 64 .2798±.0035 .5865±.0049 .4218±.0043

64 16 .2885±.0051 .5970±.0074 .4308±.0057

32 64 .2851±.0041 .5934±.0051 .4274±.0042

64 32 .2881±.0024 .5983±.0051 .4312±.0037

Table 8: Few-shot of comparable #maps vs. #nodes.
Slightly favorable outcome for more #nodes (16x8) over
more #maps (8x16) especially for low #samples (128).

7 Conclusion & Contributions

We propose and evaluate a solution to support in
creating argument maps, contributing: 1) At the
methodological level, we define the new task of
node placement in argument maps, and conduct
an annotation study to establish the human perfor-
mance on the task gaining insights about factors
that affect the choice of suitable parents for a node.
2) At the experimental level, we present modeling
results with different training setups and base mod-
els, showing that templates can be used to improve
the representations and are beneficial in high and
low-resource scenarios. 3) At the level of applica-
tion potential, the task could be adapted using top-n
candidates by highlighting the nodes based on their
predicted score similar to Figure 1. This allows for
a more intuitive user interaction and loosens the
effect of the ambiguity inherent in the task.

8 Limitations

• Our work focuses on data from one platform,
Kialo, which contains cleaner and higher qual-
ity arguments from a diverse range of topics
and domains. How our approach performs on
data from other platforms or more specialized
domains (e.g. deliberations about policy) has
to be investigated in the future.

• The vast majority of data available is English
which makes conducting and evaluating mul-
tilingual experiments not feasible even with
language transfer (see Appendix Section A.1).

• The dataset used in the training and evaluation
has only one correct position although there
might be multiple suitable parents. Given the
large scale of the data and the huge number of
nodes per tree, annotating all suitable parents
would’ve require a very-large-scale unfeasi-
ble annotation. This could be investigated in
future-work with the support of our models.

• The design of our annotation study does not
take into consideration the structure of the
tree. This might have made the task more
challenging for the annotators. Reconstruct-
ing or representing the tree structure without
revealing the actual parent (since the majority
of the candidates are close relatives) is chal-
lenging when limiting the candidate parents to
10. Further refinement of the annotation study
is left for future work along with the inclusion
of the structure in the modeling.
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• Although small models are shown to perform
relatively well and are recommended to use
when computation resources are limited, the
models that perform, in our experiments, on
par with humans are large models that are
costly to train. Employing parameter efficient
fine-tuning methods might be of interest here.

• We use only manually designed templates
as a simple approach that required no extra
training or engineering. How the results com-
pare to using automated template/prompt en-
gineering methods is also left for future work.
Including prompt-based fine-tuning might be
also of interest to investigate in combination
with contrastive training although language
modeling training would require more compu-
tational resources.

• Our task definition excludes the prediction
of pro/con relation as less important, but the
pro/con template information might be use-
ful for this. More evaluation and analysis is
needed to verify that.

• Extra analysis that was out-of-scope to in-
clude in this paper might be of interest:
e.g. the effect of topic, the degree of a node,
and semantic similarity to siblings on model
or human performance.

9 Ethics Statement

We use available data from previous research. Au-
tomated tools to support in the exploration and
creation of argument maps might be biased to favor
arguments that are explored more often or that have
more prominent styles as they are seen more often
in the data as parents. This might lead to decreased
suggestions as parents of those arguments that have
underrepresented styles or using jargon/slang. This
in turn leads to those arguments being less dis-
cussed and explored as they have less number of
contribution. It’s important to take this into consid-
eration and investigate any such effects before and
after employing such models in real-world applica-
tions.
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A Appendix

A.1 Data Details
The following section gives more details about the argument maps we use in this work.

The snapshot from Agarwal et al. (2022) contains a total of 1,560 argument maps. Using an automatic
language-detection tool on a sample of the content of the map we assign a language to each map. The vast
majority is English with very few other languages: 21 German, 6 Spanish, 5 French and 4 Italian. This
makes conducting multilingual experiments even for mere evaluation challenging. As a result, we filter
out all maps that are not-English and all with less than 19 nodes. Figure A.1 shows the distribution of
maps with different amounts of nodes, the smallest having 19 nodes and the largest 6,252 nodes. Most

Figure A.1: Distribution of maps with different bin ranges of number of nodes per map.

argument maps is associated with a number of topic tags, which can be selected by the user creating a new
argument tree on a specific thesis. We merge similar tags into more coarse-grained topics such that every
map can be associated with one specific topic. Figure A.2 depicts the number of maps per general topic,
showing that the data covers a variety of different domains but also that more specific topics occur less
frequent (e.g. animals).

Figure A.2: Number of maps per coarse-grained topic.

Figure A.3 gives an idea about how many actual parent nodes are available. Most parent nodes have
between 1 and 3 children with some exceptions having a very large amount of children (e.g. one node has
411 direct children).

Figure A.4 compares the distribution of nodes that act as a pro vs. nodes that act as a con. The
distributions do not completely overlap as the majority of the data is slightly biased towards con.
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Figure A.3: Distribution of nodes with different bin ranges of number of children.

Figure A.4: Comparison between relative amount of pros vs. cons. Distribution of maps with a certain percentage
of pro/con.
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Figure A.5: Discussion Topology of Universal Basic Income (UBI)9. Users are advised to explore the map first
which could be made easier by allowing the user to enter a short keyword-argument and then highlighting possible
parents for this argument. Varying color intensity could be used to visualize multiple arguments that are relevant at
varying degrees. After the user is finished with exploration, the final argument could possibly be moved to more
suitable parents that are automatically suggested to keep the discussion well structured.
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A.2 Annotation Study
The 4 authors annotated 20 samples while developing the guideline. We further recruited 3 student
assistant as annotators, who have been paid 12,87 Euro per hour. The student assistants were Master
Students of Computational Linguistics and Digital Humanities and have all participated in an Argument
Mining course. Two annotators were female, one male. All have a very high level of English proficiency
(one native speaker). Countries of origin: Canada, Pakistan, Germany. The annotators were aware that the
data from the annotation study was used for the research purposes of our project.

Kialo Argumentation Annotation Task 

 
Task Overview 

The goal of this task is to find comment pairs that are most likely to have the relationship “parent-child” 

in an argument setting. More specifically, given a target comment (child), you must select the most 

likely parent of this comment from a list of candidates, aka, what the given comment is in response to. 

 

It is important to note that the comments are from a debate/deliberation forum, and so the child can 

either be in support of the parent statement, pro, or contrary to the parent, con. It is not necessary to 

annotate that relation, however it is important to keep in mind when annotating. 

 

Data 

The forum in consideration is here: https://www.kialo.com/ 

Please go through a few examples and familiarize yourself with the structure of the argument maps. 

 

Annotation Guidelines 

1. You will be given a target comment (aka the child). E.g., “Censorship leads to narrow 

mindedness by preventing sincere and open discussion.” 

2. You will then be presented X candidates for the parent comment, i.e., the comment to which 

the child is in response to. 

3. You will have to annotate each candidate with one of three categories: 

a. Best parent (count 1): This is the candidate that you believe is the most likely parent 

to the target comment, e.g., “There should be no limits on freedom of speech.” (Note, 

the parent-child relationship here is that of support, so pro). 

b. Other suitable parent (max count 4): These are those that you consider alternatives to 

the best parent, runners-up in other words. 

c. Less suitable parent (no max count): These are those in which you do not see a 

connection with the target comment in an argument setting. The motives could vary, 

such as different topics, no logical connection between the two, etc. 

 

Strategy: we suggest you first split all candidates into categories (b) and (c) in the first sweep, then 

rank those in (b) to select (a). 

 

 

Figure A.6: Annotation guidelines provided to the annotators. The participants were additionally trained with a
small pilot study, assisted by one of the authors, to familiarize themselves better with the task.
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Figure A.7: Sample of an annotation instance as presented to annotators. The first sentence is the child, the topic of
the discussion is presented immediately below the child, and the candidates are then listed. The annotators can
select 1 BEST PARENT, a maximum of 4 SUITABLE PARENTs, and the rest are LESS SUITABLE PARENTs.

5870



A.3 Metrics

For one sample:
top1: accuracy at rank 1. 1 if actual answer is at rank 1, 0 otherwise
top5: accuracy at rank 5. 1 if actual answer is in the top-5 ranked, 0 otherwise
MRR: the mathematical inverse of the rank of the actual answer in the ranked predictions
The metrics are averaged for all samples so MRR for Q samples:

MRR =
1

Q

∑

i=1

1

ranki

A.4 Models & Training Details

base model size name in experiments intermediate-task training name in huggingface
MPNet 110M mpnet none microsoft/mpnet-base

nli-mpnet MNLI + SNLI sentence-transformers/nli-mpnet-base-v2
paraphrase-mpnet (above) + paraphrase sentence-transformers/paraphrase-mpnet-base-v2
all-mpnet (above) + QA & more sentence-transformers/all-mpnet-base-v2

MiniLM 33M mini (above) sentence-transformers/all-MiniLM-L6-v2

Table A.1: Models used in the experiments 10

Software: We use sentence-transformers11 for our experiments. Our code is made publicly available12.
Hardware: NVIDIA RTX A6000 with 48G memory is used for training and inference.
Average runtime: training for 1 epoch using the full training dataset takes around (in minutes):

for MPNet
0:22 with no template or parent/child template
0:44 with pro/con template (double data size)
1:44 with all templates

for MiniLM
0:08 with no template or parent/child template
0:14 with pro/con template (double data size)
0:34 with all templates
Hyperparameters: Default hyperparameters are used to avoid influencing few-shot results which also
kept computational cost minimal. The hyperparameters used are following:
batch size = 64, learning rate = 2e-5 with 10% of training steps as warm-up steps.

A.5 Templates

name #templates template
parent/child 1 parent: "parent text"
(main template) child: "child text"

pro/con 2 above +
pro: "child text" or
contra: "child text"

all 5 above +
"child text" parent: "parent text"
child: "child text" parent: "parent text"
pro: "child text" parent: "parent text" or
contra: "child text" parent: "parent text"

Table A.2: Templates used in the experiments. #templates is the number of possible templates to apply per sample.

Other templates with a more expressive form yielded similar results:
This sentence: "child text" is child

11https://github.com/UKPLab/sentence-transformers
12https://github.com/imanjundi/argument-relations
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name #templates template
foo/bar 1 foo: "parent text"
(main template) bar: "child text"

pro/con 2 above +
baz: "child text" or
qux: "child text"

all 5 above +
"child text" bar: "parent text"
foo: "child text" bar: "parent text"
baz: "child text" bar: "parent text" or
qux: "child text" bar: "parent text"

Table A.3: Templates used to analyse the effect of template semantic.

"child text" is a child of "parent text"
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A.6 Supplementary Results

model
test (20%)

all possible candidates
200 samples
10 candidates

top1 top5 MRR top1 top5 MRR
zero-shot .2519 .5448 .3917 .400 .900 .611
no template .2806±.0082 .5737±.0123 .4183±.0095 .4180±.0144 .9070±.0057 .6207±.0077

parent/child (*) .2900±.0081 .5876±.0125 .4285±.0098 .4190±.0082 .9100±.0061 .6214±.0041

pro/con (*) .2917±.0078 .5898±.0114 .4301±.0093 .4340±.0082 .9210±.0089 .6322±.0058

all (*) .2932±.0076 .5897±.0128 .4316±.0096 .4280±.0144 .9180±.0097 .6281±.0068

human .480 .935 .664

Table A.4: Results after high-resource training of all-mini model. Training improves the performance, but it
still lags behind human performance. Using parent/child template boosts the performance although not much as
with MPNet (Table 3), and adding more templates slightly improves the performance. (*) denotes training with
templates.

model
test samples

all pro con all pro con
zero-shot .2491 .2446 .2482 .430 .426 .434
no template .3064 .2793 .3277 .485 .465 .505
parent/child .3441 .3068 .3689 .515 .455 .576
human .480 .436 .525

Table A.5: top1 according to relation type (pro/con). Comparable performance for pro and con for zero-shot. Those
could be the more straightforward cases where there is a higher similarity between the parent & child as compared
to other nodes in the tree (fewer other good potential parents), so p@1 would be similar for both pro & con. The
performance of con is noticeably improved with training and is better overall than pro.

#nodes #maps top1 top5 mrr

8 8 .2570±.0017 .5571±.0035 .3980±.0020

16 16 .2776±.0075 .5844±.0103 .4199±.0080

32 32 .2860±.0027 .5967±.0017 .4296±.0023

64 64 .2869±.0030 .5933±.0044 .4284±.0027

Table A.6: Longer few-shot training for 2 epochs without a template. Performance is still worse than pro/con with 1
epoch training.

#nodes #maps top1 top5 mrr

8 8 .2633±.0018 .5650±.0034 .4047±.0021

16 16 .2831±.0079 .5925±.0091 .4253±.0079

32 32 .2836±.0028 .5946±.0030 .4272±.0029

64 64 .2828±.0031 .5906±.0027 .4242±.0027

Table A.7: Longer few-shot training for 5 epochs without a template. Performance is still worse than all template
with 1 epoch training.

#nodes #maps top1 top5 mrr

8 8 .2788±.0057 .5825±.0059 .4206±.0054

16 16 .2860±.0053 .5984±.0091 .4299±.0065

32 32 .2855±.0026 .5964±.0019 .4293±.0021

64 64 .2976±.0039 .6014±.0022 .4383±.0035

Table A.8: Longer few-shot training for 5 epochs with parent/child template. Performance is still worse than all
template with 1 epoch training.
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model
test samples

top1 top5 MRR top1 top5 MRR
parent/child .3441 .6539 .4853 .54 .94 .70
foo/bar .3432 .6529 .4856 .52 .94 .69

Table A.9: Full training results using a meaningless template (foo/bar) are similar to that of a meaningful one
(parent/child).

#nodes #maps template top1 top5 MRR

8 8 all .2802±.0061 .5845±.0106 .4218±.0084

all meaningless .2797±.0088 .5827±.0127 .4214±.0103

16 16 all .2890±.0015 .6027±.0049 .4339±.0016

all meaningless .2904±.0030 .6051±.0034 .4356±.0026

32 32 all .2923±.0059 .6018±.0068 .4347±.0060

all meaningless .2901±.0045 .6011±.0035 .4337±.0038

64 64 all .3018±.0025 .6025±.0035 .4416±.0020

all meaningless .3018±.0035 .6045±.0047 .4421±.0039

Table A.10: Few-shot results using multiple meaningless templates. The results are similar to that of meaningful
templates.

test samples
#nodes #maps template top1 top5 MRR top1 top5 MRR

zero-shot .2519 .5448 .3917 .400 .900 .611

8 8 none .2531±.0009 .5473±.0017 .3929±.0009 .4020±.0084 .8990±.0042 .6117±.0047

parent/child .2513±.0051 .5305±.0058 .3846±.0059 .3900±.0094 .8730±.0045 .5943±.0053

pro/con .2564±.0049 .5390±.0063 .3904±.0050 .3870±.0076 .8820±.0110 .5932±.0054

all .2647±.0060 .5498±.0081 .3996±.0062 .3950±.0106 .9010±.0042 .5994±.0055

16 16 none .2586±.0024 .5536±.0039 .3983±.0027 .4100±.0061 .9020±.0045 .6146±.0034

parent/child .2668±.0031 .5537±.0039 .4026±.0034 .3850±.0158 .8950±.0071 .5952±.0064

pro/con .2674±.0048 .5580±.0072 .4040±.0052 .3950±.0187 .8990±.0055 .6018±.0064

all .2704±.0033 .5627±.0045 .4077±.0038 .3880±.0241 .8970±.0076 .6012±.0111

32 32 none .2651±.0014 .5590±.0047 .4040±.0023 .4070±.0104 .9010±.0042 .6114±.0055

parent/child .2690±.0020 .5604±.0020 .4054±.0017 .3950±.0094 .8990±.0042 .6044±.0045

pro/con .2703±.0034 .5611±.0015 .4074±.0023 .3920±.0125 .9010±.0055 .6046±.0089

all .2672±.0021 .5571±.0025 .4039±.0013 .3790±.0108 .8980±.0097 .5953±.0073

64 64 none .2663±.0025 .5601±.0011 .4054±.0020 .4030±.0057 .9130±.0045 .6132±.0046

parent/child .2675±.0015 .5624±.0019 .4068±.0010 .3990±.0185 .9100±.0100 .6109±.0120

pro/con .2673±.0034 .5599±.0035 .4055±.0032 .3940±.0108 .9100±.0117 .6070±.0074

all .2612±.0024 .5520±.0018 .3990±.0024 .3750±.0154 .8960±.0164 .5925±.0108

full dataset none .2860 .5824 .4256 .430 .905 .625

Table A.11: Few-shot Results of all-mini model. Few-shot improves over zero-shot in all cases. Using templates is
not as effective for smaller models especially for larger #samples
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