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Abstract

The pretrained language model (PLM) based
metrics have been successfully used in
evaluating language generation tasks. Recent
studies of the human evaluation community
show that considering both major errors
(e.g. mistranslated tokens) and minor errors
(e.g. imperfections in fluency) can produce
high-quality judgments. This inspires us to
approach the final goal of the automatic metrics
(human-like evaluations) by fine-grained error
analysis. In this paper, we argue that the
ability to estimate sentence confidence is the
tip of the iceberg for PLM-based metrics.
And it can be used to refine the generated
sentence toward higher confidence and more
reference-grounded, where the costs of refining
and approaching reference are used to deter-
mine the major and minor errors, respectively.
To this end, we take BARTScore as the
testbed and present an innovative solution
to marry the unexploited sentence refining
capacity of BARTScore and human-like error
analysis, where the final score consists of both
the evaluations of major and minor errors.
Experiments show that our solution consis-
tently improves BARTScore, outperforming
top-scoring metrics in 19/25 test settings.
Analyses demonstrate our method robustly and
efficiently approaches human-like evaluations,
enjoying better interpretability. Our code and
scripts will be publicly released in https:
//github.com/Coldmist-Lu/
ErrorAnalysis_NLGEvaluation.

1 Introduction

Leveraging the power of large pre-trained language
models (PLMs) has been proven effective in eval-
uating natural language generation (NLG) tasks
(Ma et al., 2019; Mathur et al., 2020b). Metrics
like BERTScore (Zhang et al., 2020b) and Mover-
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Source: 迈克去书店。

Reference: Mike goes to the bookstore.
Hypothesis: Jerry goes to bookstore happily.

Iteration Refined Sentence BARTScore (↑)

0 Jerry
-15.16

goes
-1.64

to
-0.48

bookstore
-5.30

happily
-14.51

.
-0.02

-3.89

1 Mike
-4.06

goes
-1.56

to
-0.54

bookstore
-5.50

happily
-14.42

.
-0.03

-2.59

2 Mike
-4.06

goes
-1.56

to
-0.54

bookstore
-5.50

.
-0.06

-1.45

Table 1: An example of error analysis framework,
specifically, detect-correct algorithm in §3.2. Scores
under each token represent the log probability assigned
by BARTScore. Worse tokens detected by error analysis
in each iteration are highlighted in yellow, and their
corresponding scores are in red.

score (Zhao et al., 2019) leverage contextual em-
beddings provided by PLMs to evaluate the seman-
tic similarity of sentences. Regression-based met-
rics like COMET (Rei et al., 2020) and BLEURT
(Sellam et al., 2020) introduce a regression layer
following PLMs to learn a supervised prediction
using human evaluation. Recently, another line
of research focuses on generation probabilities of
seq2seq PLMs to measure the confidence of gen-
erated texts, such as PRISM (Thompson and Post,
2020) and BARTScore (Yuan et al., 2021), achiev-
ing the decent performance. It is commonly agreed
that the ultimate goal of automatic evaluation is to
achieve consistency with humans, namely human-
like evaluation.

Recent studies of the human evaluation commu-
nity show that the quality of human judgments can
be improved through fine-grained error analysis,
incorporated in an error-based framework Multidi-
mensional Quality Metric (MQM) (Freitag et al.,
2021a). MQM requires evaluators to identify errors
and categorize them into different levels accord-
ing to their severity. For instance, mistranslations
(Weng et al., 2020) and hallucinations (Zhou et al.,
2021) are mostly considered as Major errors, and
imperfections in fluency (Chow et al., 2019) are
often marked as Minor errors. Different weights
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are then assigned to Major/ Minor errors, resulting
in high-quality human evaluation scoring.

Analogous to Major/ Minor errors in MQM, we
take the first step to consider incorporating the
evaluation of Explicit/ Implicit errors into PLMs-
based metrics. Specifically, we use BARTScore,
a state-of-the-art metric for NLG by Yuan et al.
(2021) as the test bed, and propose a metric called
BARTScore++. We present an overview of our
proposed method in Figure 1. In particular, given
the hypothesis and reference, we propose an error
analysis framework to obtain a refined sentence
(see example in Table 1) using BARTScore, where
the costs of refining and approaching reference are
used to determine the explicit and implicit errors,
respectively. The weighted integration of these two
types of errors is the final score of BARTScore++,
which has better interpretability.

We experiment on machine translation (MT),
text summarization (SUM), and data-to-text (D2T),
and show that BARTScore++ consistently and sig-
nificantly improves the performance of vanilla
BARTScore, and surpasses existing top-scoring
metrics in 19 out of 25 test settings, even exceed-
ing human performance on summarization dataset
Rank19. We give further analyses to confirm that
the consistent improvements come from the human-
like (specifically, MQM-like) error judgment.

Our main contributions are as follows:

• To the best of our knowledge, we take the first
step toward human-like evaluation by incorpo-
rating error analysis mechanisms into existing
advanced automatic metrics, e.g. BARTScore.

• We propose an innovative automatic error
analysis framework to calculate the explicit er-
ror and implicit error-based scores, by refining
sentences using BARTScore.

• We validate the effectiveness and universality
of our method spanning 25 NLG evaluation
tasks, achieving the SOTA in 19 settings.

Besides taking BARTScore as the testbed to ver-
ify the effectiveness of our proposed error-analysis
evaluation strategy, we also show the universality in
the recently advanced language model ChatGPT1

by designing an error-analysis-based prompt (Lu
et al., 2023). We anticipate that our strategy will

1https://chat.openai.com/

shed new light on advancing the field of NLG eval-
uation with pretrained language models by enhanc-
ing both the accuracy and reliability of metrics.

2 Preliminaries

Problem Formulation The goal of NLG evalua-
tion is to acquire a score measuring the quality of
generated text y given a reference signal r. Unless
otherwise stated, r represents the sentence properly
created by human experts to assist in evaluation,
and y = (y1y2 . . . yN ), called hypothesis in this
paper, refers to the generated text to be evaluated2.

BARTScore BARTScore is a SOTA metric pro-
posed by Yuan et al. (2021) for universal NLG
evaluation. The idea of BARTScore is to utilize
the generation probabilities of a large pre-trained
model BART (Lewis et al., 2020) to measure the
quality of sentences. It autoregressively computes
the log probabilities of each token in the hypoth-
esis, and then averages them as the overall score.
This evaluation process can be formally written as:

BARTScore =
1

N

N∑

t=1

log pθ (yt|y<t, r)

Based on this formulation, BARTScore creates spe-
cific variants for different evaluation scenarios. We
summarize their usage in Appendix A. For simplifi-
cation, we use the notation of BARTS(y, r) when
vanilla BARTScore is further applied.

MQM MQM is an error-based human evalua-
tion framework, which is commonly agreed to be
more reliable than traditional human evaluation
techniques (Freitag et al., 2021b). In MQM frame-
work, each evaluator is asked to identify all errors
in a sentence and categorize them into Major and
Minor levels indicating their severities. Sentences
will be marked an Non-translation Error if they are
not possible to reliably identify errors. Major/ Mi-
nor errors are then assigned with different weights,
and the final MQM score is computed through the
weighted sum of errors (Freitag et al., 2021a). In-
spired by the mechanism of MQM, we take a step
toward human-like evaluation by incorporating er-
ror analysis into BARTScore.

3 Methodology

To better understand how BARTScore++ works, we
show a running example of our method in Figure 1.

2Note that in text summarization evaluations, BARTScore
may use the source sentence as the reference signal.
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Figure 1: An analogy between MQM and BARTScore++. We show an evaluation example from machine
translation (zh-en). Top: Source and reference sentence provided for evaluation. Medium: An annotation example
using MQM framework. Errors in the hypothesis are assigned with Major and Minor. The MQM score is computed
through the weighted sum of these errors. Bottom: BARTScore++. The hypothesis is first refined through an error
analysis framework. The refined sentence is then used to obtain the distance of explicit/ implicit errors through
vanilla BARTScore. Different weights are finally assigned to these errors to get a more accurate score.

3.1 Explicit/ Implicit Error Distance
Analogous to major errors in MQM, we define Ex-
plicit Errors to refer to errors that can be easily
identified. In our example, mistranslations of name
("Mike" → "Jerry") and addition of "happily" are
considered as explicit errors. Analogous to minor
errors, we define Implicit Errors to indicate the
semantic imperfections (e.g. disfluency, awkward-
ness) that may not influence the overall meanings.
In our example, the missing article "the" is con-
sidered as an implicit error because it is a smaller
imperfection in grammar.

To measure the influence of Explicit/ Implicit
errors in the hypothesis y, we define Refined Sen-
tence y∗ as a better hypothesis, where explicit er-
rors are corrected. In this way, distances of explicit/
implicit error can be computed by:

Distexp = BARTS(y∗, r)− BARTS(y, r)

Distimp = BARTS(r, r)− BARTS(y∗, r)

We then focus on how to 1) obtain the refined sen-
tence y∗ and 2) take both explicit/ implicit errors
into consideration and obtain the final score.

3.2 Error Analysis Framework
We introduce an automatic error analysis frame-
work to generate the refined sentence y∗ by cor-

recting explicit errors in the hypothesis y. We
first adopt a simple non-translation test to decide
whether y will be refined or not. Then, a detect-
correct algorithm is performed iteratively, in each
round one token is detected and then corrected. An
example of this is shown in Table 1. This algorithm
repeats for a determined number of iterations T ,
where at the end of each round the refined sentence
y∗ is updated and becomes a new refining target.
In our example, the hypothesis y is refined twice,
where the mistranslated token "Jerry" is detected
in Round 1 and corrected as "Mike", and the addi-
tion of "happily" is detected and deleted in Round
2. Afterwards, an extra round will run (omitted in
table) to ensure that none of the tokens needs to be
corrected. Finally, the hypothesis "Mike goes to
bookstore." is taken as the refined sentence y∗.

Test Non-Translation Error Non-Translation
Error is used in MQM (Freitag et al., 2021a) to
refer to the translation which is too badly garbled
or is unrelated to the source. If the hypotheses
contain severe problems such as off-target issues
(Zhang et al., 2020a), directly refining them will
consume excessive computational cost. To avoid
this problem, we run a test beforehand as a rough
measure to filter out these hypotheses with low
quality. We consider two strategies:
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1. Token-level overlap ratio w.r.t the reference.
Inspired by string-based metrics like BLEU
(Papineni et al., 2002) or TER (Snover et al.,
2006), the hypothesis with a non-translation
error may be quite different from its refer-
ence, resulting in a low overlap ratio. Since
good translations like paraphrased sentences
(Freitag et al., 2020) may not have significant
overlap with the reference, we adopt the other
strategy as a double-check.

2. Percentage of tokens with low generation
probability. Token-level log generation prob-
ability can be directly obtained from vanilla
BARTScore as log pθ (yt|y<t, r). If most to-
kens’ generation probabilities are lower than
the average score (vanilla BARTScore), we
mark this sentence as non-translation. This
strategy is more stable but less efficient.

Detect In this step, we choose one token ŷt with
the lowest generation probability as the token to be
corrected. This procedure can be denoted as:

ŷt = argmin
yt

{
pθ (yt|y<t, r)

}

Correct In this step, we leverage the distribution
of generation pθ (·|y<t, r) to propose several re-
fining options from vocabulary V . We apply the
top-k sampling method (Fan et al., 2018) to ob-
tain a set of candidate tokens (W) with the highest
generation probability:

W = argmax
w∈V

{
pθ (w|y<t, r) , k

}

Then, a set of refined sentences S is proposed.
Following Snover et al. (2006), we apply three
types of editing strategies, including insertion of a
candidate token w ∈ W , deletion of token ŷt, and
substitution of ŷt for a candidate token w ∈ W .
Finally, we use vanilla BARTScore to select the
best sentence ŷ∗ as the refining strategy:

ŷ∗ = argmax
ŷ∈S

BARTS (ŷ, r) ,

where the hypothesis y will be temporarily re-
placed by ŷ∗ and as the input for the next iteration.

This detect-correct algorithm repeatedly detects
the worst token ŷt and corrects it. It starts with
the original hypothesis y and ends after a constant
number of edits. We set an early-stop mechanism
once the BARTScore performance stops improv-
ing.

In this way, we obtain the refined sentence y∗,
which is also a by-product of our method.

3.3 Assigning Error Weights
With the help of the error analysis framework, ex-
plicit errors in the hypothesis are refined, resulting
in a refined sentence y∗. We simply use a weighted
sum method to achieve the final score:

BARTScore++ = −(Distexpωexp + Distimpωimp),

where ωexp + ωimp = 1, 0 ≤ ωexp, ωimp ≤ 1

ωexp and ωimp weigh the importance of explicit
and implicit errors respectively.3 For easy to use,
we define λ = ωexp/ωimp as the only parameter,
indicating the ratio of weights assigned to Explicit/
Implicit errors, where ωexp = λ

1+λ , ωimp = 1
1+λ

respectively. Since λ may be different from task to
task, we perform specific analysis in §6, confirming
the stability when adjusting this parameter. We also
provide guidance on selecting λ in Appendix B to
help researchers use BARTScore++ for different
tasks.

4 Experiment Setup

4.1 Tasks and Datasets
Tasks We follow Yuan et al. (2021) to consider
three different tasks: summarization (SUM), ma-
chine translation (MT), and data-to-text (D2T).

Datasets for Translation We obtain the machine-
translated texts and reference texts from the WMT20
metrics shared task (Mathur et al., 2020b). We
use the DARR corpus and consider 10 language
pairs, which are cs-en, de-en, ja-en, ru-en,
zh-en, iu-en, km-en, pl-en, ps-en, and
ta-en. We also consider Multidimensional Qual-
ity Metric (MQM) for zh-en provided by Freitag
et al. (2021a) in §6, comprising judgments of 8
best-performing translation systems in WMT20, an-
notated by professional translators.

Datasets for Summarization (1) REALSumm
(Bhandari et al., 2020) is a meta-evaluation dataset
for text summarization which measures pyramid-
recall of each system-generated summary. (2)
SummEval (Fabbri et al., 2021) is a collection of
human judgments of model-generated summaries
on the CNNDM dataset annotated by both expert
judges and crowd-source workers. Each system-
generated summary is gauged through the lens of
coherence, factuality, fluency, and informativeness.

3Following the same pattern as in Yuan et al. (2021), we
reverse the score to ensure BARTScore++ ranging from −∞
to 0, with a higher score being a better quality of the sentence.
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Metrics High-Resource Low-Resource

cs de ja ru zh Avg. iu km pl ps ta Avg.

Supervised Baselines
BLEURT 12.97 6.61 12.82 6.55 11.62 10.12 26.78 31.09 2.76 18.05 16.88 19.11
COMET 11.02 9.04 12.47 12.07 14.50 11.82 27.19 29.84 9.90 15.71 15.81 19.69

Unsupervised Baselines
BLEU 3.90 -2.93 7.00 -3.47 6.39 2.18 15.41 22.72 -5.25 10.47 7.19 10.11
BERTScore 11.60 4.03 12.85 5.21 10.58 8.85 24.74 30.01 2.78 14.29 13.41 17.04
PRISM 12.42 2.67 13.46 7.22 11.65 9.48 25.37 30.44 5.70 16.51 14.78 18.56

BARTScore
Vanilla BARTScore 11.81 5.55 13.62 9.22 13.12 10.66 26.93 32.27 7.64 15.54 16.63 19.80
+ Prompt 12.31 7.26 14.16 11.13 13.13 11.60 27.11 32.16 9.44 16.05 16.84 20.32

Ours - BARTScore++
+ Error Analysis 12.06 7.23‡ 15.08‡ 9.98‡ 13.32‡ 11.54 27.37† 32.38† 8.44‡ 15.94 17.09‡ 20.24
+ Prompt + Error Analysis 12.65† 8.75‡ 15.40‡ 11.76‡ 13.35‡ 12.38 27.60‡ 32.33† 10.14‡ 16.40 17.39‡ 20.77

Table 2: Segment-level Kendall’s τ correlation (%) results on English-targeted language pairs of WMT20 Metrics
Shared Task test set. Bold and Underlined values refer to the best result among unsupervised metrics and all
metrics, respectively. † indicates BARTScore++ significantly outperforms BARTScore without error analysis, and ‡
indicates BARTScore++ further significantly outperform other unsupervised baselines.

(3) NeR18 The NEWSROOM dataset (Grusky et al.,
2018) contains 60 articles with summaries gen-
erated by 7 different methods are annotated with
human scores in terms of coherence, fluency, infor-
mativeness, relevance.

Datasets for Factuality (1) Rank19 (Falke
et al., 2019) is used to meta-evaluate factuality met-
rics. It is a collection of 373 triples of a source
sentence with two summary sentences, one correct
and one incorrect. (2) QAGS20 (Wang et al., 2020)
collected 235 test outputs on CNNDM dataset from
Gehrmann et al. (2018) and 239 test outputs on
XSUM dataset (Narayan et al., 2018) from BART
fine-tuned on XSUM. Each summary sentence is
annotated with correctness scores w.r.t. factuality.

Datasets for Data-to-Text We consider the fol-
lowing datasets which target utterance generation
for spoken dialogue systems. (1) BAGEL (Mairesse
et al., 2010) provides information about restaurants.
(2) SFHOT (Wen et al., 2015) provides information
about hotels in San Francisco. (3) SFRES (Wen
et al., 2015) provides information about restaurants
in San Francisco. They contain 202, 398, and 581
samples respectively, each sample consists of one
meaning representation, multiple references, and
utterances generated by different systems.

4.2 Baselines and Meta-evaluation
Baselines We compare our method with several
commonly used baseline metrics for evaluating text

generation, including BLEU (Papineni et al., 2002),
BERTScore (Zhang et al., 2020b), MoverScore
(Zhao et al., 2019) and PRISM (Thompson and
Post, 2020). For MT tasks, we also consider su-
pervised metrics that leverage human judgments
to train, including COMET (Rei et al., 2020) and
BLEURT (Sellam et al., 2020). For factuality
evaluation on summarization tasks, we compare
BARTScore++ with the best-performing factuality
metrics FactCC (Kryscinski et al., 2020) and QAGS
(Wang et al., 2020). We reproduce BARTScore and
its variants using their official codes4.

Meta-evaluation We follow Yuan et al. (2021) to
conduct the meta-evaluation. Specifically, we apply
Kendall’s τ for MT tasks to measure the correlation
of metrics with human evaluation5. For SUM and
D2T tasks, we use Spearman correlation except
for the Rank19 dataset, where Accuracy is used to
measure the percentage of correct ranking between
factual texts and non-factual texts. We adopt the
paired bootstrap resampling method (Koehn, 2004)
(p-value < 0.05) for significance tests.

4.3 Setup

As for the backbone BART, we use the same set-
tings in BARTScore (Yuan et al., 2021) for specific

4https://github.com/neulab/BARTScore
5Since the meta-evaluation method is very sensitive to

outliers (systems whose scores are far away from the rest of
the systems) (Mathur et al., 2020a), we remove these outlier
systems when computing correlations.
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Metrics REALSumm SummEval NeR18

COV COH FAC FLU INFO COH FLU INFO REL Avg.

Baselines
ROUGE 49.75 16.68 15.96 11.50 32.64 9.46 10.36 13.04 14.73 19.35
BERTScore 44.04 28.38 10.97 19.26 31.20 14.75 17.03 13.09 16.34 21.67
MoverScore 37.24 15.91 15.71 12.86 31.77 16.15 11.97 18.80 19.54 19.99
PRISM 41.10 24.88 34.52 25.36 21.16 57.28 53.20 56.13 55.34 41.00

BARTScore
Vanilla BARTScore 47.42 44.67 38.11 35.64 35.53 67.89 67.00 64.67 60.51 51.27
+ Prompt 48.71 40.75 37.76 33.74 36.89 70.14 67.89 68.60 62.04 51.83

Ours - BARTScore++
+ Error Analysis 47.76 44.67† 38.48† 35.66† 35.53† 68.62‡ 67.79† 68.60‡ 61.15‡ 51.73
+ Prompt + Error Analysis 49.00 40.83† 38.08† 33.88† 37.01† 70.44‡ 68.75‡ 69.66‡ 63.04‡ 52.30

Table 3: Spearman correlation (%) results on three text summarization datasets. The best results are Bold.
† and ‡ indicate BARTScore++ significantly outperforms all baselines and BARTScore without error analysis,
respectively.

tasks, including BART-large, BART-CNN (fine-
tuned on CNNDM) and BART-CNN-PARA (further
fine-tuned on ParaBank2). We perform the same
prompting strategy as in BARTScore (Yuan et al.,
2021). Detailed settings are in Appendix A. In cor-
rect stage of error analysis, we set k = 10 when
applying the top-k sampling, namely, a total of 10
tokens are obtained in W during each iteration.

5 Experimental Results

Metrics Rank19 Q-CNN Q-XSUM

Acc.(%) Pearson(%)

Baselines
ROUGE 63.00 45.91 9.70
BERTScore 71.31 57.60 2.38
MoverScore 71.31 41.41 5.41
PRISM 78.02 47.87 2.50

Factuality Metrics
FactCC 70.00 - -
QAGS 71.20 54.50 17.50
Human 83.90 - -

BARTScore
Vanilla BARTScore 83.65 73.47 18.38
+ Prompt 79.62 71.85 9.40

Ours - BARTScore++
+ Error Analysis 84.18† 73.97‡ 19.33‡
+ Prompt + Error Analysis 80.70‡ 72.60‡ 10.55

Table 4: Results on Factuality Datasets, where "Q" is
short for QAGS.

Machine Translation Table 2 shows segment-
level Kendall τ correlation of metrics on WMT20.
We can observe that BARTScore++ can achieve
state-of-the-art performance on all language pairs
(most significantly outperform vanilla BARTScore
except ps-en). The average correlation of
BARTScore++ can surpass all supervised and
unsupervised metrics by a large margin in both
high-resource and low-resource scenarios (except
ps-en). This confirms our intuition that with anal-
ysis of explicit/ implicit errors, BARTScore++ will
agree more with human evaluations compared with
vanilla BARTScore.

Regarding the prompting strategy, we also ob-
serve that 1) our proposed error analysis mech-
anism in BARTScore++ can achieve a similar
amount of correlation improvement as that of
prompting, and 2) incorporating both prompting
and error analysis can further push SOTA results,
confirming the orthogonality of error analysis and
prompting strategies upon BARTScore.

Text Summarization Results on REALSumm,
SummEval and NeR18 are showed in Table 3.
We observe that: 1) BARTScore++ surpasses all
other metrics including BARTScore variants for
all test settings except REALSumm. In most as-
pects, our purposed method can significantly out-
perform baseline metrics, and especially in NeR18,
BARTScore++ can even significantly improve the
performance of vanilla BARTScore. This further
confirms the robustness (Rony et al., 2022) of our
proposed metric. 2) Compared with prompting, er-
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Metrics BAGEL SFRES SFHOT Avg.

Baselines
ROUGE 23.43 11.57 11.75 15.58
BERTScore 28.91 15.64 13.54 19.36
MoverScore 28.37 15.27 17.23 20.29
PRISM 30.49 15.47 19.64 21.87

BARTScore
Vanilla BARTScore 31.89 19.52 21.65 24.35
+ Prompt 33.28 23.74 23.81 26.94

Ours - BARTScore++
+ Error Analysis 32.67† 19.74† 25.63‡ 26.00
+ Prompt + Error Analysis 34.12‡ 23.99‡ 26.04‡ 28.02

Table 5: Spearman correlation (%) of different metrics
over three Data-to-Text datasets.

ror analysis mechanism in BARTScore++ on sum-
marization tasks can also achieve a similar amount
of correlation improvement, which again testify the
importance of considering errors in summarization
evaluation.

Analysis on factuality datasets As shown in
Table 4, we also observe that BARTScore++ sig-
nificantly outperforms other metrics on all three
datasets. Strikingly, BARTScore++ can even sur-
pass human baseline on Rank19. While prompt-
ing is not working in these tasks, error analysis
mechanism corporated in BARTScore++ can also
show significant improvement. This suggests that
BARTScore++ is more effective in detecting the
hallucination content and yielding more distin-
guishable scores in factuality summaries, which
further confirms the universality of our proposed
method.

Data-to-Text Results on data-to-text are shown
in Table 5. We see that BARTScore++ can again
surpass existing methods and significantly outper-
form vanilla BARTScore. We further find weights
on explicit errors are consistently larger than im-
plicit errors, interestingly suggesting we should
focus more on explicit errors for data-to-text tasks.

6 Analysis

To better understand the mechanism by which
BARTScore++ achieves promising results, we take
a closer look and answer four questions:

Q1: How reliable is our BARTScore++ when eval-
uating top-performing systems?

Q2: How do explicit/ implicit error weights influ-
ence the accuracy of BARTScore++?
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Figure 2: Kendall correlation (%) of BARTScore++
with MQM human evaluation dataset on top-k MT sys-
tems ranging Error Weights Ratio λ from 0.5-1.7.
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Figure 3: Kendall correlation (%) of different metrics
on Top-K MT systems according to MQM human
evaluation dataset.

Q3: How does error analysis make BARTScore++
more human-like?

Q4: Does error analysis framework introduce sig-
nificant latency?

For MT evaluation in this section, we use MQM,
an error-based evaluation framework annotated by
human experts (Freitag et al., 2021a). For a fair
comparison, the error weight ratio λ for WMT20
zh-en test set is fixed to 1.7.

BARTScore++ is Reliable When Evaluating Top-
K Systems Previous studies have shown that
most metrics are unreliable for evaluating best-
performing systems, showing a sharp degradation
of correlation with human evaluation (Mathur et al.,
2020a). To answer Q1, we assess our method
shown in Figure 3 with several baseline metrics on
Top-K MT systems by computing Kendall’s τ re-
spectively. As seen, BARTScore++ can further im-
prove BARTScore’s performance, especially when
evaluating top-performing systems (K < 6). This
verifies the reliability of our purposed method.
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Figure 5: Time Efficiency Analysis on Summarization
task (REALSumm). We report the average latency for
evaluation and the average number of iterations w.r.t.
top-k sampling in CORRECT stage in §3.2.

BARTScore++ is Stable When Adjusting Error
Weights To answer Q2, we present an analysis on
adjusting the error weight ratio λ in BARTScore++,
which is the only parameter that needs to consider
before evaluation. In Figure 2, as the number of
systems K decreases, the ratio of error weights ac-
cording to the best-performing BARTScore++ is
fluctuating from 1 to 1.7. This suggests that differ-
ent weights of importance should be given to ex-
plicit errors according to the overall qualities of MT
systems. We also provide guidance on selecting
this parameter in Appendix B to help researchers
apply BARTScore++ to different task settings.

BARTScore++ is More Human-Like on Discrim-
inating Errors To answer Q3, we perform a hu-
man analysis and show some cases in Appendix C
to further show the advantage of our error analysis
strategies incorporated in BARTScore++. In Ta-

ble 9, we can see that human evaluators consistently
assign low MQM scores to explicit errors (e.g. mis-
translation of "delivery" in WeChat AI in example
1, mistranslation of "disc" in Tencent Translation
in example 3), but BARTScore produces contrary
judgments, ignoring these errors that should be pun-
ished strictly. Through our proposed error analysis,
BARTScore++ becomes more discriminative on ex-
plicit errors and reaches an agreement with human
judgments, while BARTScore fails to such errors.
To better quantify such discriminative property, we
report the sensitivity of our method on major er-
rors using a perturbation dataset DEMETR6 (Karpin-
ska et al., 2022) in Figure 4, where BARTScore++
shows consistent boosts, confirming our claim.

BARTScore++ Brings Acceptable Latency A
possible concern is the evaluation efficiency for
BARTScore++, since top-k sampling and iterative
inferences in error analysis inevitably introduce
more complexity. We compare the latency between
vanilla and ours on Nvidia A100 GPU with iden-
tical batchsize. As seen in Figure 5, 1) although
increasing the k in sampling brings better perfor-
mance, it inevitably increases the iterations and
inference cost, and 2) well-performed BARTScore
is used combining the Prompt strategy, which nat-
urally owns high latency, i.e. 0.91 seconds per
sentence, which is actually on the same order of
magnitude as ours, i.e. 1.33∼2.17. Considering
both the significant performance boosts and com-
parable latency, we believe the increased costs are
totally acceptable.

7 Related Work

Automatic Metrics Automatic Evaluation Met-
rics are of crucial importance to the development
of NLG systems, including translation (Koehn and
Knowles, 2017; Ding et al., 2021; Zan et al., 2022b;
Peng et al., 2023; He et al., 2023), summariza-
tion (Zhong et al., 2022b; Zan et al., 2022a), gram-
mar error correction (Wu et al., 2023; Liu et al.,
2021), dialogue generation (Li et al., 2017; Cao
et al., 2021). Recent research has shown great suc-
cess in language model-based metrics (Zhang et al.,
2020b; Marie et al., 2021; Zhou et al., 2020; Rei
et al., 2020; Sellam et al., 2020), which can signifi-
cantly outperform traditional string-based metrics
such as BLEU (Papineni et al., 2002). For example,
BERTScore (Zhang et al., 2020b) and MoverScore

6Details of DEMETR analysis are shown in Appendix D.
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(Zhao et al., 2019) leverage contextual embeddings
to measure semantic distance between reference
and hypothesis. COMET (Rei et al., 2020) and
BLEURT (Sellam et al., 2020) rely on human eval-
uations to train. UniEval (Zhong et al., 2022a) re-
frames NLG evlauation into a Question Answering
task and allows the metric to focus on different as-
pects. In this paper, we choose BARTScore (Yuan
et al., 2021) as the testbed because of its SOTA per-
formance and universality on NLG tasks. Note that
our error analysis strategies can also be extended
to other metrics, such as PRISM (Thompson and
Post, 2020).

Human Evaluation Human evaluation, such as
Direct Assessment (Graham et al., 2017), are of-
ten served as "golden standard". However, there
is increasing evidence that inadequate evaluation
will lead to wrong decisions (Toral, 2020). This
motivates elaborate evaluation proposals (Popović,
2020; Gladkoff and Han, 2021) and MQM is one
of these methodologies, grounded in explicit er-
ror analysis (Freitag et al., 2021a). In this work,
We extend error analysis strategies to BARTScore,
making it trigger more human-like judgments.

Error Analysis Existing automatic metrics tend
to simplify the error detection procedure, such as
edit distance in TER (Snover et al., 2006) and mis-
match in BERTScore (Zhang et al., 2020b). To
incorporate errors into automatic evaluation, re-
cent research (Xu et al., 2022) simulates different
errors and assigns scores like MQM as the train-
ing data to finetune a model-based metric. How-
ever, it does not address the issue of metrics lack-
ing interpretability. In this work, we leverage the
token-level judgments in BARTScore and analyze
explicit errors through error analysis, making met-
rics more human-like, and providing more accurate
evaluations. Our error analysis framework function-
alizes like token-level quality estimation (Specia
et al., 2021) or automatic post-editing (Freitag et al.,
2019). With the reference signal provided, our pro-
posed method is more accurate and universal for
NLG evaluation.

8 Conclusion

We present an automatic metric BARTScore++
for NLG evaluation. Inspired by the advanced
human evaluation MQM, BARTScore++ incorpo-
rates error analysis strategies to give a compre-
hensive score considering explicit and implicit

errors. Experimental results show our approach
achieves competitive results on a broad range of
tasks. Our work is an early step toward human-
like evaluation for automatic metrics, and we hope
our BARTScore++ can motivate researchers work-
ing on NLG evaluation to focus more on human
evaluation procedures such as error analysis.

Limitations

Limitations of BARTScore++ are three-fold:

• In §3.1, we propose Explicit/ Implicit errors to
better distinguish different types of errors in
generated texts. However, explicit errors only
contain token-level errors that can be detected
and corrected by error analysis, not involving
all error types mentioned in MQM (e.g. severe
fluency errors). We hope future studies can
take these situations into account.

• In §3.2 we can see that our proposed error
analysis framework fully relies on the genera-
tion probabilities of BART to decide how to
refine the hypothesis. Still, we see that this
framework may lead to false judgments due
to unfaithful content. Further research can ex-
plore how to calibrate the pre-trained models
during error analysis.

• In §3.3 we integrate the distance of explicit
and implicit errors by simply computing their
weighted sum. This can be improved by con-
sidering more factors, e.g. the overall quality
of the generated text, refining iterations, and
external signals. We will leave the exploration
of combining these factors and designing bet-
ter weighting schemes as future work.

Ethics Statement

We take ethical considerations very seriously, and
strictly adhere to the ACL Ethics Policy. All pro-
cedures performed in this study are in accordance
with the ethical standards. This paper focuses on
improving automatic NLG evaluations with an er-
ror analysis framework. Our proposed metric relies
on reference translations as signals and produces
scores for translations indicating their quality. Both
the datasets and models used in this paper are pub-
licly available and have been widely adopted by
researchers. Our model will not learn from user
inputs or cause potential risks to the NLP commu-
nity. We ensure that the findings and conclusions of
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A Variants of Vanilla BARTScore

BARTScore Variants We summarize variants
of BARTScore in Table 6. F score is applied
for Machine Translation and Data-to-Text tasks;
recall-based BARTScore is applied in REALSumm
due to recall-based pyramid human evaluation;
BARTScore on faithfulness is applied to other sum-
marization tasks. In our experiments, we follow the
same settings as in BARTScore (Yuan et al., 2021).

Variants Computation using BARTScore

F score (BARTScorer→h + BARTScoreh→r) /2

Recall BARTScoreh→r

Faithfulness BARTScores→h

Table 6: BARTScore variants and their computation
methods. The source, reference sentence and hypothesis
are denoted as s, r, h respectively.

Prompt Design Prompting is a parameter-free
method to elicit more accurate results by combin-
ing texts with a set of short phrases (prompts).
BARTScore applies this method through two basic
approaches: suffixing prompts on the encoder or
prefixing prompts on the decoder of BART (Lewis
et al., 2020). If multiple prompts are provided, the
final BARTScore of a hypothesis is computed by
averaging the score of all its generation scores us-
ing different prompts. When vanilla BARTScore is
used in our method, we perform the same prompt-
ing strategy as in BARTScore (Yuan et al., 2021).

B Guidance on Selecting Error Weights
Ratio λ

Since error weights ratio λ is the only parameter
that may differ from task to task, so we provide
two suggestions on selecting it:

• Inspired by the idea of the Calibration Set
from Licht et al. (2022), we suggest creating
a relatively smaller test set and then collect-
ing human evaluations on them. The test size
should include over 100 samples covering var-
ious ranges of translation quality. To ensure
the reliability of human evaluations, we rec-
ommended recruiting 2 to 3 professional eval-
uators to label the Calibration Set according
to the MQM annotating procedure (Freitag
et al., 2021a). Choose the error weights ratio
relating to the highest consistency with human
judgments.

• When evaluating the datasets mentioned in
this paper, we provide settings of λ in Table 7
in BARTScore++ for researchers to apply di-
rectly.

C Case Study

We show four evaluation examples of machine
translation in Table 9 to further explain how er-
ror analysis makes BARTScore++ more human-
like. These examples are from WMT20 test set on
three best-performing systems, Huoshan Transla-
tion, WeChat AI, and Tencent Translation. For all
examples, judgments of BARTScore++ are agree
with MQM (marked in Better and Worse), but
contrary to vanilla BARTScore.

Example 1 The worse hypothesis generated by
WeChat AI translates "投运" into "delivery" (high-
lighted in yellow). However, vanilla BARTScore
seems to "ignore" this error and give a higher score
than the better translation from Huoshan Transla-
tion. BARTScore++ applies an error analysis and
gives a more discriminative evaluation by revising
this word to "opening". In this way, Distexp are
enlarged by a larger error weight (0.000 -> 0.348),
resulting in an agreement with human judgment.

Example 2 WeChat AI produces a major er-
ror when translating "更缺" into "even more".
This error is detected through the error analysis
mechanism and the mistranslation word "more" is
deleted for its awkward style. Such deletion helps
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Task Dataset Language Pair / Aspect λ

MT WMT20

cs-en 0.80
de-en 0.40
ja-en 0.50
ru-en 1.70
zh-en 1.10
iu-en 0.95

km-en 1.30
pl-en 0.85
ps-en 1.10
ta-en 0.60

SUM

REALSumm COV 0.95

SummEval

COH 1.00
FAC 0.75
FLU 1.40
INFO 0.95

NeR18

COH 1.10
FLU 0.75
INFO 0.70
REL 0.70

Rank19 FAC 0.85

QAGS-CNN FAC 1.00

QAGS-XSUM FAC 0.90

D2T
BAGEL - 2.00

SFRES - 1.40

SFHOT - 4.90

Table 7: Selection of Error Weight Ratio λ for all test
settings in BARTScore++.

BARTScore++ to better distinguish the quality be-
tween these two sentence.

Example 3 Although vanilla BARTScore gives
similar scores to both translations, their MQM
scores are significantly different (11.333 vs 6.333),
mainly because of the translation on "umbilical
cord tray". Tencent Translation mistranslates it into
"disc", which is detected and corrected through er-
ror analysis, leading to a relatively low score for
BARTScore++. This example also shows that er-
ror analysis can help metrics better evaluate long
sentences.

Example 4 Huoshan Translate produces a mis-
translation error "recognized" when translating the
verb "承认". We can see that such error is de-
tected and revised to "admitted", resulting in a rela-
tively large explicit distance (0.000 compared with
0.258), confirming that BARTScore++ can better
distinguish major errors and become more human-

like.

D Sensitivity analysis on BARTScore++
using DEMETR

To better quantify the sensitivity of BARTScore++
on different kinds of explicit errors, we utilize a
metric diagnosing dataset, DEMETR (Karpinska
et al., 2022), perturbing on 1000 test samples with
different types of errors. We use the ratio proposed
in DEMETR to measure the sensitivity of a metric,
denoted as:

z =
SCORE(r,h)− SCORE(r,h′)

SCORE(r,h)− SCORE(r, [empty])

where r,h,h′ and [empty] represent the reference,
hypothesis, the perturbed hypothesis and empty
string respectively. We calculate this ratio for each
test sample and average them as the sensitivity for
each error type. Figure 4 shows the sensitivity of
BARTScore++ and BARTScore on different types
of errors. We can see that: Compared with vanilla
BARTScore, BARTScore++ is consistently more
sensitive to major errors, confirming our claim.

E Influence of Different References when
using BARTScore++

One potential concern is that the evaluation of
BARTScore++ may heavily rely on the reference,
which could make this metric less robust compared
to the original BARTScore when switching to a
different reference. We compare the performance
of BARTScore and BARTScore++ on the top-5
systems from WMT20 zh-en, using two different
references labeled as Ref.A and Ref.B. The results
are presented in Table 8.

Reference BARTScore BARTScore++ ∆

Ref.A 31.06 31.27 +0.21
Ref.B 31.66 31.83 +0.17

Table 8: Kendall’s τ correlation (%) on two different
references (Ref.A and Ref.B) from top-5 MT systems
in WMT20 zh-en.

As seen, BARTScore++ is not significantly af-
fected by the choice of reference, as consistent
improvements observed (+0.21/+0.17). However,
the performance of vanilla BARTScore appears
to be less robust than BARTScore++ (-0.60 from
Ref.B to Ref.A). This further validates the effec-
tiveness and robustness of our method on different
references.

5904



Example 1: #239

Source 9月25日，北京大兴国际机场投运仪式隆重举行。
Reference On September 25th, a grand opening ceremony was held for the Beijing Daxing International Airport.

Huoshan Translation (Better) WeChat AI (Worse)

Translation On September 25, the commissioning ceremony
of Beijing Daxing International Airport was held
ceremoniously.

On September 25, the delivery ceremony of Beijing
Daxing International Airport was held.

Refined Sentence On September 25, the commissioning ceremony
of Beijing Daxing International Airport was held
ceremoniously.

On September 25, the opening ceremony of Beijing
Daxing International Airport was held.

Scores &
Error Distance

BARTScore++ (BARTScore)
-0.306 (-1.543)

Distexp / Distimp
0.000 / 0.827

BARTScore++ (BARTScore)
-0.334 (-1.374)

Distexp / Distimp
0.348 / 0.310

Example 2: #284

Source 寿光缺企业，更缺企业家。

Reference Shouguang lacked enterprises, and even lacked entrepreneurs.

Huoshan Translation (Better) WeChat AI (Worse)

Translation Shouguang lacks enterprises and entrepreneurs. Shouguang lacks enterprises and even more en-
trepreneurs.

Refined Sentence Shouguang lacks enterprises and entrepreneurs. Shouguang lacks enterprises and even en-
trepreneurs.

Scores &
Error Distance

BARTScore++ (BARTScore)
-0.245 (-1.887)

Distexp / Distimp
0.000 / 0.662

BARTScore++ (BARTScore)
-0.281 (-1.821)

Distexp / Distimp
0.231 / 0.365

Example 3: #319

Source ... 刘艳艳拿着产包和脐带盘就往楼下冲。
Reference ... Liu Yanyan grabbed the maternity package and umbilical cord tray rushed downstairs to them.

WeChat AI (Better) Tencent Translation (Worse)

Translation ... Liu Yanyan rushed downstairs with the delivery
bag and umbilical cord plate.

... Liu Yanyan rushed downstairs with the delivery
bag and umbilical cord disc.

Refined Sentence ... Liu Yanyan rushed downstairs with the delivery
bag and umbilical cord plate.

... Liu Yanyan rushed downstairs with the delivery
bag and umbilical cord tray.

Scores &
Error Distance

BARTScore++ (BARTScore)
-0.412 (-2.024)

Distexp / Distimp
0.000 / 1.112

BARTScore++ (BARTScore)
-0.437 (-1.998)

Distexp / Distimp
0.133 / 0.953

Example 4: #750

Source ... 任何正派的雇主，都不会以本案中承认的极其不公平和敷衍的方式来解雇员工。

Reference ... no employer with any sense of common decency, would have effected a dismissal in the hopelessly
unfair and perfunctory manner admitted to in this case.

Tencent Translation (Better) Huoshan Translate (Worse)

Translation ... no decent employer will fire employees in the
extremely unfair and perfunctory manner admitted
in this case.

... no decent employer will dismiss an employee in
the extremely unfair and perfunctory manner rec-
ognized in this case.

Refined Sentence ... no decent employer will fire employees in the
extremely unfair and perfunctory manner admitted
in this case.

... no employer would dismiss an employee in the
hopelessly unfair and perfunctory manner admitted
in this case.

Scores &
Error Distance

BARTScore++ (BARTScore)
-0.351 (-2.087)

Distexp / Distimp
0.000 / 0.947

BARTScore++ (BARTScore)
-0.415 (-2.079)

Distexp / Distimp
0.258 / 0.681

Table 9: Four examples from WMT20 zh-en test dataset with a disagreement between BARTScore and
BARTScore++. Words detected and corrected by BARTScore++ are highlighted. We can see that BARTScore++
can benefit from the distances of explicit error and implicit error, achieving more reliable evaluations.
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