
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 5908–5923

July 9-14, 2023 ©2023 Association for Computational Linguistics

Connective Prediction for Implicit Discourse Relation Recognition via
Knowledge Distillation

Hongyi Wu1, Hao Zhou1, Man Lan1,2,3,∗, Yuanbin Wu1 and Yadong Zhang1

1School of Computer Science and Technology, East China Normal University, Shanghai, China
2Shanghai Institute of AI for Education, East China Normal University, Shanghai, China

3Lingang Laboratory, Shanghai, China
{hongyiwu,hzhou,yadongzhang}@stu.ecnu.edu.cn

{mlan,ybwu}@cs.ecnu.edu.cn

Abstract
Implicit discourse relation recognition (IDRR)
remains a challenging task in discourse anal-
ysis due to the absence of connectives. Most
existing methods utilize one-hot labels as the
sole optimization target, ignoring the internal
association among connectives. Besides, these
approaches spend lots of effort on template
construction, negatively affecting the general-
ization capability. To address these problems,
we propose a novel Connective Prediction
via Knowledge Distillation (CP-KD) approach
to instruct large-scale pre-trained language
models (PLMs) mining the latent correlations
between connectives and discourse relations,
which is meaningful for IDRR. Experimen-
tal results on the PDTB 2.0/3.0 and CoNLL
2016 datasets show that our method signifi-
cantly outperforms the state-of-the-art models
on coarse-grained and fine-grained discourse
relations. Moreover, our approach can be trans-
ferred to explicit discourse relation recognition
(EDRR) and achieve acceptable performance.
Our code is released in https://github.
com/cubenlp/CP_KD-for-IDRR.

1 Introduction

Discourse relation recognition (DRR) aims at de-
tecting semantic relations between two arguments
(sentences or clauses, they are denoted as Arg1
and Arg2, respectively). As illustrated in Figure 1,
the discourse relation Contingency (denoted as
sense) is held between Arg1 and Arg2, and the
explicit connective so is drawn from the raw text
while the implicit connective because is manually
inserted by annotators. DRR is significant to many
natural language processing (NLP) downstream
tasks such as causal reasoning (Staliunaite et al.,
2021) and question answering (Huang et al., 2021).
However, compared with explicit discourse relation
recognition (EDRR), implicit discourse relation
recognition (IDRR) is still less accurate and practi-
cal due to the lack of connectives, which is a major
challenge in current discourse analysis research.

Public preference is important, product names should match up.

Arg1 Arg2connective
(Explicit)

It could be a long wait. [[ ]]  Some investors will tiptoe back in.

Arg1 Arg2connective
(Implicit)

Sense:
Contingency.Cause.Reason

Sense:
Contingency.Cause.Result

Figure 1: Examples of discourse annotation with ex-
plicit and implicit connectives in the PDTB 3.0 corpus.

The connectives (e.g., because, so, etc.) are crit-
ical linguistic cues for identifying discourse rela-
tions. On the one hand, with the aid of explicit con-
nectives, a simple frequency-based mapping is suf-
ficient to achieve over 85% classification accuracy
on EDRR (Xue et al., 2016). On the other hand, hu-
man annotators utilized connectives to aid relation
annotation in the most popular PDTB benchmark
datasets (Prasad et al., 2008; Webber et al., 2019).
For instance, annotators first manually inserted a
connective expression, and then determined the ab-
stract relation in consideration of both the implicit
connective and argument pairs. Therefore, several
studies recognize implicit discourse relations by
incorporating connective information.

Several studies incorporate connective informa-
tion to recognize implicit discourse relations. One
method uses the probability distribution of connec-
tives among sense labels in the corpus (Asr and
Demberg, 2020), but this requires a consistent la-
bel distribution, which is not always the case. For
instance, the connective since is more likely to rep-
resent the relation contingency in the training
data but temporal in the test data. Other meth-
ods predict implicit connectives before recognizing
relations (Zhou et al., 2010), or project connectives
and relations into the same latent space and transfer
knowledge (Nguyen et al., 2019). However, these
methods perform poorly because of introducing ad-
ditional parameters that require training with large
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amounts of labeled data.
Inspired by Schick and Schütze (2021), several

studies exploited the advantage of prompt learning
(Liu et al., 2023) to guide PLMs to predict connec-
tives between argument pairs and then map them
to corresponding discourse relations (Xiang et al.,
2022; Zhou et al., 2022). However, this paradigm
predicted connectives by fitting the outputs of mod-
els to one-hot hard labels, regardless of the internal
association among connectives. As we all know, a
discourse relation corresponds to multiple connec-
tives, but previous studies only selected one of them
as the positive sample, while other connectives with
similar meanings under the same sense labels were
treated as negative samples. Besides, the correla-
tion between connectives and discourse relations
utilized in these studies is a direct mapping, which
is vulnerable and inaccurate. Finally, both of them
spend lots of effort on template construction, which
negatively affects the generalization capability.

To address above-mentioned problems, we pro-
pose a novel Connective Prediction via Knowledge
Distillation (CP-KD) approach for identifying im-
plicit discourse relations. As suggested in Hinton
et al. (2015), knowledge distillation is a popular
technique for training the student model to emulate
the well-informed teacher model. Specifically, we
first design a knowledgeable teacher model to gen-
erate meaningful soft labels that capture more as-
sociations among connectives than one-hot hard la-
bels to guide the optimization of the student model.
Secondly, we add answer hints representing the re-
lations of arguments as input to the teacher model,
which exploits the implicit knowledge between con-
nectives and sense labels, rather than using the
direct mapping relationships in the previous stud-
ies. This approach mitigates issues of connective
ambiguity and the possibility of multiple similar
connectives mapping to the same discourse rela-
tion. Finally, we design a simple but effective
template matching the pattern of implicit discourse
data, and demonstrate that simple templates can
achieve acceptable performance as well. In ad-
dition, the method we propose alleviates the de-
pendence of prompt learning on templates and has
good generalization across different templates. Ex-
tensive experiments show that our proposed model
outperforms prior state-of-the-art systems on the
PDTB dataset by around 3%.

Our contributions are summarized as follows:

• We propose a novel Connective Prediction via

Knowledge Distillation (CP-KD) approach for
the IDRR task, which achieves the SOTA per-
formance on the PDTB 2.0/3.0 datasets and
CoNLL-2016 Shared Task as well.

• Our proposed method performs label soften-
ing via knowledge distillation to capture the
implicit correlations between connectives and
sense labels, which previous methods ignored.

• Our method can be easily transferred from
IDRR to EDRR, and experiments demonstrate
that our method still performs well for EDRR.

2 Related work

2.1 Implicit Discourse Relation Recognition
Previous studies focused on the feature engineering
of linear classifiers to classify implicit discourse re-
lations. For example, Lin et al. (2009) was the first
to consider fine-grained classification, and they fur-
ther used four different feature types to characterize
context and component resolution trees.

Along with the booming development of deep
learning, most work designs neural networks for
IDRR. For instance, Liu et al. (2021) proposed
combining the context representation module and
bilateral multi-perspective matching module to un-
derstand different relational semantics deeply. In
addition, Wu et al. (2022) designed a label-focused
encoder to learn a global representation of input
instances and their level-specific context. It also
uses a label-sequence decoder to output predicted
labels in a top-down manner. Moreover, several
methods have recognized implicit discourse rela-
tions with the aid of annotated connectives. Specifi-
cally, Kishimoto et al. (2020) proposed to introduce
the auxiliary task of connectives prediction in the
pre-training process and use explicit discourse re-
lationship data for data enhancement. Kurfalı and
Östling (2021) performed implicit discourse rela-
tion classification without relying on any labeled
implicit relation and sidestepped the lack of data
through the explicitation of implicit relations. How-
ever, these methods contradicted the original pre-
training task and performed poorly on fine-grained
discourse relations.

Inspired by Schick and Schütze (2021), several
studies exploited the advantage of prompt learning
(Liu et al., 2023) to predict connectives between ar-
gument pairs to better utilize the knowledge embed-
ded in the PLMs. Specifically, Zhou et al. (2022)
manually designed different templates that meet
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the task goal and follow natural language patterns.
However, this method requires a lot of effort to find
a suitable template to achieve better performance.
Xiang et al. (2022) developed a multi-prompt en-
semble to fuse predictions from different prompt-
ing results. However, both of them predict the
connective by fitting the outputs of models to hard
labels (i.e., one-hot vectors), regardless of the rich
semantic correlations among relations.

Another related work is Jiang et al. (2022),
which uses a multi-data multi-task teacher model
with explicit and implicit discourse data to optimize
a single-data single-task student model. Unlike
their work, which leverages knowledge distillation
to transfer explicit discourse data to the student
model, our work captures the intrinsic association
of discourse connectives through softened category
label distributions from the teacher model, thus
guiding the student model.

2.2 Knowledge Distillation

Knowledge distillation has three prominent roles
in conventional tasks: model compression, label
softening, and domain migration. The principle
of model compression is to transfer knowledge
from one large-scale model to another lightweight
model, thus enabling the model lighter without los-
ing performance. For example, Yang et al. (2019)
combined the knowledge of multiple teachers to
perform question-and-answer matching. Li et al.
(2020) proposed an idea to speed up Transformer
model training and reasoning: training a larger
model first and then compressing the model.

In knowledge distillation, the predictions from
the teacher model are called soft labels, and the
student model improves performance through dark
knowledge, including inter-class similarity carried
by the soft labels. For instance, Tang et al. (2016)
found that soft labels from teacher models provide
significant regularization for student models. And
Cheng et al. (2020) verified mathematically that the
soft label gives the student model higher learning
speed and better performance than the optimization
learning from the original data.

The principle of domain migration is to trans-
fer knowledge from the teacher model to the stu-
dent model in different domains. Specifically, Fang
et al. (2021) found that samples from various fields
shared a typical local pattern and obtained this
local information for domain migration through
knowledge distillation. Choi et al. (2022) extracted

domain knowledge from the existing domain pre-
trained models and transferred it to other PLMs
through knowledge distillation.

3 Method

In this section, we introduce our proposed Con-
nective Prediction via Knowledge Distillation (CP-
KD) method in detail. We first present the prompt-
guided connective prediction model in Section 3.1
and then describe the overall framework of our
CP-KD approach in Section 3.2.

but however because since ... and first ... then
2% 1% 75% 6% ... 2% 1% ... 1%

MLMHead Classifier

RoBERTa Model

It could be a long wait. [MASK] Some investors will tiptoe back in.Template
Construction

Connective
Prediction

Answer
Mapping

Answer: contingency

Arg1 Arg2 hint (optional)

Comp. Cont. Exp. Temp.

Softmax

Figure 2: Illustration of Connective Prediction model.

3.1 Prompt-Guided Connective Prediction
The prompt-guided connective prediction method
aims to predict the most probable connective be-
tween arguments and then map it to the correspond-
ing sense label. As illustrated in Figure 2, it has
three main processes, including template construc-
tion, connective prediction, and answer mapping.

Template Construction: In this module, we
give different inputs for the teacher and student
models. For the student model, given a pair of
arguments, we transfer them to xprompt−s with the
template:

xprompt−s = T(xArg1,xArg2), (1)

where xArg1 and xArg2 correspond to two argu-
ments, respectively (as shown in Figure 1) and T
represents template function. In the PDTB corpus,
almost all implicit discourse data satisfy the "Arg1
connective Arg2" sequence order, where the con-
nective is manually inserted by annotators. There-
fore, we design a simple but effective template
"Arg1 [MASK] Arg2" for our main experiment,
where the symbol [MASK] represents the masked
token in place of the predictable connective.

For the teacher model, we add the answer hint
as input and combine it with the given argument
pairs to xprompt−t with a new template:

xprompt−t = T(xArg1,xArg2,xhint), (2)
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Figure 3: Illustration of our proposed Connective Prediction via Knowledge Distillation(CP-KD) framework.
Among them, (a) and (b) represent training and testing framework for our approach respectively, and (c) and (d)
indicate the illustration of predictions and labels respectively.

where xhint represents the specific sense label, such
as Contingency. For simplicity and clarity, we
use "Arg1 [MASK] Arg2 Answer: sense" as the
teacher template.

Connective Prediction: Then we feed xprompt

to the RoBERTa (Liu et al., 2019) model to obtain
the representation of [MASK] token hmask, and
input the token into MLMHead model to acquire
scores emask of each word in its vocabulary V .

emask = MLMHead(hmask). (3)

According to the hierarchy sense labels and im-
plicit connectives, we manually select a discrete
answer space V a, which is a subset of PLM’s vo-
cabulary V . During the training, a softmax layer is
applied on emask to normalize it into probabilities:

Pi =
exp (ei)∑|V a|

k=1 exp (ek)
, vi ∈ V a, (4)

where |V a| is the size of vocabulary V a. After-
wards we use cross-entropy to calculate the loss be-
tween the model prediction and the selected golden
connective:

LMLM(x) = − 1

|M|
∑

i∈M
yi logPi, (5)

where M denotes the set of masked tokens and yi
represents the golden label.

Answer Mapping: Finally, we map the pre-
dicted connective (e.g., because) to the correspond-
ing sense label (e.g., Cause). For implicit dis-
course relation data, each sample has been anno-
tated with the connective appropriate to it on PDTB
and CoNLL16 datasets (detailed in Section 4.1).
However, the number of connectives marked in
the original samples is large, and the ambiguity is
high. As a result, we select the most frequent and
less ambiguous connectives as the answer words.
At the same time, we only select those tokenized
connectives with a single token as answer words
since most masked PLMs predict a single word. We
present the final answer sets we select on the PDTB
2.0/3.0 and CoNLL16 datasets in Appendix B.

3.2 Overall Framework of CP-KD

As illustrated in Figure 3, our proposed CP-KD ap-
proach consists of two branches: a teacher model
T , which aims to combine soft type constraints
between connectives and sense labels with prompt-
guided connective prediction model to instruct
the optimization of the student model, and a stu-
dent(distilled) model S, which is forced to produce
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vectorized outputs that are similar to the results of
the teacher model.

In the training stage, the optimization goal of the
teacher model is to correctly predict the golden con-
nective when adding sense words as answer hints.
To enable the teacher model to predict connectives
without relying on "reciting answers," we select a
fraction of the random samples to add sense words
as hints (detailed in Section 4.6.1).

Meanwhile, the student model requires to serve
testing scenarios where extra sense labels are miss-
ing. Therefore, the student is expected to tap the
deep semantic relationships of argument pairs with
the guidance of a knowledgeable teacher. As shown
in Figure 3(a), in the training stage, the student
model S is required to match not only the ground-
truth one-hot labels but also the probability outputs
of the teacher model T :

Ls = αLS
GT + (1− α)τ2LKD, (6)

where α is the coefficient to trade off such two
terms and τ is the temperature rate parameter used
to alleviate category imbalance. In addition, LS

GT

is the ground-truth loss using one-hot labels to pre-
dict connectives, and LKD is the knowledge dis-
tillation loss utilizing the Kullback-Leibler diver-
gence(Hershey and Olsen, 2007) to quantify the
difference of output distribution from student’s soft
predictions to teacher’s soft labels:

LS
GT = − 1

|K|
K∑

i=1

yi log
exp (ei)∑|Va|

k=1 exp (ek)
, (7)

LKD =
K∑

i=1

P̃T (i) log
(
P̃T (i)/P̃S(i)

)
, (8)

where yi is the golden label, K is the size of in-
stance, P̃ = softmax

(
Z̃/τ

)
, and Z̃ is the pre-

softmax logits output by the model.
As shown in Figure 3(b), in the inference stage,

the well-trained student model aims to predict con-
nectives between a pair of arguments and then map
it to corresponding discourse relations.

It is worth mentioning that the inclusion of tem-
perature rate τ in the softmax layer contributes
to flattening the distribution, narrowing the gap
between two models and making the distillation
focus on whole logits, as illustrated in Figure 3(c).
Furthermore, as seen in Figure 3(d), soft labels out-
put by the teacher model carry more information

Dataset Top-level Senses Train Dev. Test

PDTB 2.0

Comparison (Comp.) 1,894 191 146
Contingency (Cont.) 3,281 287 276
Expansion (Exp.) 6,792 651 556
Temporal (Temp.) 665 54 68

Total 12,632 1,183 1,046

PDTB 3.0

Comparison (Comp.) 1,937 190 154
Contingency (Cont.) 5,916 579 529
Expansion (Exp.) 8,645 748 643
Temporal (Temp.) 1,447 136 148

Total 17,945 1,653 1,474

Table 1: Statistics of top-level senses in PDTB datasets.

among connectives than one-hot labels. For exam-
ple, the connective so is semantically similar to
thus, yet hard labels do not carry such information.

4 Experiment

4.1 Dataset

The Penn Discourse Treebank (PDTB 2.0/3.0)
PDTB corpora are annotated with information re-
lated to discourse semantic relation. Among them,
PDTB 2.0 (Prasad et al., 2008) contains 2312 Wall
Street Journal (WSJ) articles, while PDTB 3.0
(Webber et al., 2019) has made a series of mod-
ifications based on Version 2, including annotation
of 13,000 additional tokens and incorporation of
new senses. We follow (Ji and Eisenstein, 2015)
to take the sections 2-20 as the training set, 0-1 as
the development set, and 21-22 as the testing set.
We evaluate our model on both coarse-grained and
fine-grained discourse relations. Table 1 shows the
statistics of the top-level senses. We introduce the
CoNLL16 dataset in Appendix A.

4.2 Baselines

To validate the effectiveness of our method, we
compare our approach with the advanced models
in recent years. First of all, we select some strong
baselines based on the neural network, including
ESDP (Wang and Lan, 2016), MANN (Lan et al.,
2017), and RWP-CNN (Varia et al., 2019). Their
work mainly focused on the top-level senses of
PDTB 2.0 and CoNLL16 cross-level senses. Sec-
ondly, we compare our method with competitive
baselines based on PLMs, such as HierMTN-CRF
(Wu et al., 2020), BERT-FT (Kishimoto et al.,
2020), BMGF-RoBERTa (Liu et al., 2021) and
LDSGM (Wu et al., 2022). These methods achieve
impressive performance at the fine-grained second-
level senses with the help of large-scale PLMs. Fi-
nally, we compare our approach with the latest
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Model PDTB2-Top PDTB2-Second CoNLL Blind PDTB3-Top PDTB3-Second
F1 Acc. F1 Acc. Acc. Acc. F1 Acc. F1 Acc.

ESDP - - - - 40.91 34.20 - - - -
MANN 47.80 57.39 - - 39.40 40.12 - - - -
RWP-CNN 50.20 59.13 - - 39.39 39.36 - - - -

HierMTN-CRF 55.72 65.26 33.91 52.34 - - - - - -
BERT-FT 58.48 65.26 - 54.32 - - - - - -
BMGF-RoBERTa 63.39 69.06 37.95 58.13 57.26 55.19 66.92* 71.98* 41.28* 61.87*

LDSGM 63.73 71.18 40.49 60.33 - - 68.89* 73.47* 37.44* 60.06*

PCPbase 64.95 70.84 41.55 60.54 60.98 57.31 69.82* 73.81* 49.87* 63.36*

ConnPrompt 64.26* 71.61* 39.16* 61.02* 59.14* 53.44* 69.92 74.36 41.88* 57.19*

Our CP-KDbase 68.86 75.43 44.77 64.00 62.79 57.24 72.07 77.00 50.12 66.21

PCPlarge 67.79 73.80 44.04 61.41 63.36 58.51 71.95* 75.17* 49.00* 66.42*

Our CP-KDlarge 71.88 76.77 47.78 66.41 67.23 59.86 75.52 78.56 52.16 67.84

Table 2: Experimental results on PDTB 2.0/3.0 and CoNLL16 datasets. The best results of each part are underlined.
Models in the third part of the table use RoBERTa-base as PLMs, while the last part uses RoBERTa-large as PLMs.

work PCP (Zhou et al., 2022) and ConnPrompt (Xi-
ang et al., 2022). Both utilize the strategy of prompt
learning to predict connectives and achieve state-
of-the-art performance on PDTB 2.0 and PDTB
3.0 datasets, respectively. Since almost all previous
methods were not experimented on PDTB 2.0/3.0
and CoNLL16 datasets at the same time, to com-
prehensively evaluate the performance, we choose
several competitive models in the last three years
(including BMGF-RoBERTa, LDSGM, PCP, and
ConnPrompt) to re-implement on three datasets.1

4.3 Implementation Details

In this work, we use RobertaForMaskedLM 2 as
the backbone of our method, where RobertaEn-
coder is to obtain context representation of inputs
and RobertaLMHead is to acquire each vocabulary
token prediction score for [MASK] token position.

We adopt AdamW optimizer (Loshchilov and
Hutter, 2017) with the learning rate of 1e−5 to
update the model parameters and set batch size
as 16 and accumulated gradients as 2 for training
and validation. Since the knowledge distillation
method is sensitive to hyperparameters, we use the
optimization algorithm of grid search to explore the
practical effect under different parameters, where
α takes value from 0.3 to 0.7 and τ from 1 to 5. All
our experiments are performed on one RTX 3090.

1Since the LDSGM model utilizes the hierarchical rela-
tionship between top-label and second-level, it does not apply
to the cross-level recognition of CoNLL16. We mark the data
we re-implement with a superscript.

2https://huggingface.co/docs/
transformers/model_doc/roberta

All other parameters are initialized with the default
values in PyTorch Lightning3, and our model is all
implemented by Transformers4.

4.4 Experimental Results and Analysis
We first evaluate our model on the coarse-grained
top-level and fine-grained second-level senses of
PDTB 2.0/3.0 (denoted as PDTB2-Top, PDTB2-
Second, PDTB3-Top, and PDTB3-Second, respec-
tively) with Macro F1 score and accuracy value.
Then we conduct cross-level classification on the
CoNLL16 dataset and consider accuracy as the pri-
mary metric, denoted as CoNLL and Blind for the
test and blind-test set.

Table 2 shows the main results, from which we
can reach the following conclusions. First, our
method achieves the new SOTA performance with
substantial improvements on almost all implicit
discourse recognitions, which proves the superi-
ority and generalization of our approach. Specifi-
cally, when considering accuracy, it obtains 3.82%,
2.98%, 1.81%, 2.64% and 2.85% improvements
over the best results of previous baselines (Part 3)
on PDTB2-Top, PDTB2-Second, CoNLL, PDTB3-
Top, and PDTB3-second classifications, respec-
tively. In terms of F1, it also performs consistently
better than previous models. Second, compared
with the latest work PCP and ConnPrompt, the
most significant improvement of our approach is
utilizing knowledge distillation to obtain implicit

3https://github.com/Lightning-AI/
lightning

4https://github.com/huggingface/
transformers
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Model PDTB2-Top PDTB2-Second CoNLL Blind PDTB3-Top PDTB3-Second
F1 Acc. F1 Acc. Acc. Acc. F1 Acc. F1 Acc.

CP-KDbase 68.86 75.43 44.77 64.00 62.79 57.24 72.07 77.00 50.12 66.21
w/o KD 63.78 70.55 39.14 61.31 58.62 53.44 70.00 74.36 46.29 61.74
w/o MLM 66.48 73.42 43.16 62.46 60.97 54.93 70.44 75.10 48.65 63.98
w/o hint 68.49 74.76 43.84 62.75 61.62 54.39 71.64 76.46 49.86 65.67

Table 3: Architecture ablation analysis on PDTB 2.0/3.0 and CoNLL16 dataset.

relationships between connectives and sense labels
instead of using direct mapping relationships. The
experimental results prove the meaningful soft la-
bels generated by the teacher model contribute
to recognizing the implicit relations between ar-
gument pairs. Third, it can be observed that
our CP-KDbase approach outperforms the PCPlarge

method on almost all datasets, which proves that
knowledge distillation supports the student models
to obtain significant performance gains, even over
larger models. (See Appendix C for more analysis.)

4.5 Ablation Study

To evaluate the effects of different components,
we compare CP-KD with its variants: 1) w/o KD.
In this variant, we remove the teacher model and
only remain the student model for connective pre-
diction; 2) w/o MLM. In this variant, the teacher
model predicts connectives through [CLS] of the
PLMs. 3) w/o hint. In this variant, we remove
answer hints of the teacher model. We intend to ex-
plore whether adding answer hints for the teacher
model contributes to learning the deep correlations
between connectives and sense labels and thus help
implicit discourse relation recognition.

From Part 1 of Table 3, we can observe that
our CP-KD model consistently exhibits better per-
formance than their corresponding variants across
both coarse-grained and fine-grained labels. Specif-
ically, the knowledge distillation module brings the
most significant performance improvements, with
about 5% gains in F1 and Acc. metrics on almost
all datasets. Moreover, the performance decreases
by about 2% when CP-KD w/o MLM as the ref-
erence, which proves the prompt-guided method
outperforms the conventional pre-train and fine-
tuning paradigm model. Finally, the performance
improvement on fine-grained classification is more
significant than coarse-grained when the teacher
model adds answer hints, which demonstrates that
answer hints can guide the teacher model to explore
the implicit relationships between connectives and

sense labels accurately.

4.6 Hyperparameter Tuning

4.6.1 Proportion of Answer Hints
In this section, we explore the appropriate ratio for
introducing answer hints. As shown in Table 4, the
optimal balance of selected answer hints is 10% for
the PDTB 2.0/3.0 datasets. When the ratio is lower,
it is difficult for the teacher model to discover the
relationship between connectives and sense labels.
The teacher model is more inclined to recite the
answers when the proportion is higher. We can
imagine the teacher model as an experienced pro-
fessor who teaches the best students when it has
seen some samples instead of remembering all the
answers. Moreover, the optimal proportion for the
CoNLL16 datasets is 40%, which indicates that
fine-grained classification requires more cues than
coarse-grained to uncover the implicit relationship
between connectives and sense labels.

Proportion PDTB2-Top PDTB3-Top CoNLL
F1 Acc. F1 Acc. Acc.

0 68.49 74.76 71.64 76.46 61.62
10% 68.86 75.43 72.07 77.00 62.14
40% 68.13 74.57 72.35 76.46 62.79
70% 68.06 74.38 72.29 76.59 61.88
100% 67.91 74.38 71.34 76.05 61.88

Table 4: Results of different proportion of answer hints.

4.6.2 Influence of Hyperparameter in KD
As we all know, the knowledge distillation algo-
rithm is sensitive to hyperparameters and random
seeds. To explore the effect of hyperparameters,
we experiment with ten consecutive random seeds
varying α from 0.3 to 0.7 and τ from 1 to 5 on the
PDTB 2.0 top-level senses.

As we can observe from Figure 4, the aver-
age performance is significantly better when α is
smaller, demonstrating that the teacher model’s
soft labels can carry more information than one-hot
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Figure 4: Mean Acc./F1 scores of different hyparame-
ters over 10 seeds on PDTB 2.0 top-level senses.

hard labels. In addition, the average Acc. and F1
scores reach their highest values when both α and
τ are small, which proves that when the student
model prefers the knowledge of the teacher model,
τ needs to be tuned down to prevent the effect of
negative labels.5

4.7 Case Study

Figure 5 showcases the confusion matrices of both
the ConnPrompt (Xiang et al., 2022) and the CP-
KD models, tested on the PDTB 2.0 second-level
senses. The matrices highlight ConnPrompt’s
challenge in differentiating between closely re-
lated categories, namely Comp.Contrast and
Exp.Conjunction, as well as Cont.Cause
and Exp.Restatement. This confusion em-
phasizes the criticality of profound semantic com-
prehension for precise implicit discourse relation
recognition.

Contrarily, CP-KD, leveraging the benefits of
knowledge distillation, displays superior capabili-
ties in discerning these nuanced differences. This
demonstrates that a simplistic reliance on surface-
level lexical or syntactic features is inadequate, and
a deeper understanding of semantics is necessary.
We present this through the following examples:

• Example 1: ConnPrompt confuses
Cont.Cause with Exp.Restatement.

Arg1: He was right.

Arg2: By midday, the London market was in
full retreat.

• Example 2: ConnPrompt erro-
neously identifies Comp.Contrast
as Exp.Conjunction.

Arg1: Amcore, also a bank holding company,
has assets of $1.06 billion.

Arg2: Central’s assets are $240 million.

5See the appendix D for details about the results.

Figure 5: Confusion Matrix for the ConnPrompt and
our CP-KD Model on PDTB 2.0 Second-Level Senses

The examples provided above underscore CP-
KD’s enhanced capability to comprehend the se-
mantic relationships between pairs of arguments.
This enhancement can largely be attributed to
the integration of knowledge distillation within
CP-KD, which fosters a deeper understanding
of discourse relations and connectives. Despite
the model’s praiseworthy performance, we rec-
ognize the potential for further optimization and
exploration. Specifically, the model requires im-
provement in handling few-shot categories such
as Exp.List and Temp.Synchrony. To bol-
ster the model’s overall predictive precision and
robustness, we propose increasing its competency
in managing underrepresented senses. This can
be achieved by enriching the training set with ad-
ditional instances of these categories, enhancing
the model’s familiarity with these senses, thereby
augmenting its predictive capabilities.

5 Discussion

5.1 Generalization to Other Prompt Template

Previous studies proved that templates have differ-
ent impacts on the prediction results of connectives
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(Xiang et al., 2022; Zhou et al., 2022). Therefore,
in this section, we are tempted to verify the gen-
eralization of our method on different templates.
Specifically, Zhou et al. (2022) found a relatively
best template for connective prediction after abun-
dant experiments. Xiang et al. (2022) designed
three prompt templates and made a decision fusion
of majority voting as multi-prompt ensembling for
final relation sense prediction. For a fair compar-
ison, we replace the templates of our approach to
verify the effectiveness of knowledge distillation.

As shown in Table 5 and 6, our method has
successfully generalized different templates. It is
worth mentioning that the general template used in
this paper is precisely the same as the first template
in ConnPrompt (Xiang et al., 2022). When we use
multi-template fusion like it, our method achieves
better performance on the PDTB 3.0 dataset.

template method
PDTB2-Top
F1 Acc.

Arg1: Arg1. Arg2: Arg2.</s>
</s>The conjunction between
Arg1 and Arg2 is [MASK].

PCP-base 64.95 70.84
CP-KD-base 67.52 74.76
PCP-large 67.79 73.80
CP-KD-large 71.37 76.58

Table 5: Results of CP-KD method on the template on
PDTB 2.0 top-level senses.

5.2 Generalization to Explicit Discourse
Relation Recognition

Inspired by the attempt of section 5.1, we trans-
fer our method to the EDRR task. Similarly, we
design a simple template in line for the explicit dis-
course relation recognition via knowledge distilla-
tion (KD-EDRR). The new template is as follows:

• <start> Connective <end> Arg1 [MASK] Arg2

where the Connective represent connectives that ap-
pear in the original text but not in Arg1 or Arg2. In
addition, <start> and <end> are marker tokens used
to guide the position of connective. Meanwhile, we
use the [CLS] token of the masked language model
to predict the sense directly, and we introduce the
symbol [MASK] to predict connective, which is re-
garded as an auxiliary task for mining the implicit
relationships between connectives and sense labels.

As shown in Table 7, the variant of our method
KD-EDRR achieves the new state-of-the-art per-
formance on the top-level senses of PDTB 2.0 for
the EDRR task, which effectively demonstrates the
generalizability of our approach.

template
ConnPrompt CP-KD-base
F1 Acc. F1 Acc.

Arg1 [MASK] Arg2 69.91 74.36 72.07 77.00
Arg1 </s> [MASK] Arg2 69.63 73.61 71.84 76.32
[MASK] Arg1 </s> Arg2 69.00 73.54 71.80 76.53
Multi-Prompt 70.88 75.17 72.89 77.54

Table 6: Results of CP-KD method on the single tem-
plate and multi-prompt ensembling on PDTB 3.0 top-
level senses.

Model Acc. F1

(1)Connective Only (Pitler and Nenkova, 2009) 93.67 -
(1)+Syntax+Conn-Syn (Pitler and Nenkova, 2009) 94.15 -
(2)ELMo-C&E (Dai and Huang, 2019) 95.39 94.84
(3)RWP-CNN (Varia et al., 2019) 96.20 95.48
(4)PEDRR (Zhou et al., 2022) 94.78 93.59

KD-EDRR (Ours) 96.39 95.59

Table 7: Experimental results of our KD-EDRR method
on PDTB 2.0 top-level senses for EDRR.

6 Conclusion

In this paper, we propose a novel connective predic-
tion via knowledge distillation approach for coarse-
grained and fine-grained implicit discourse relation
recognition. Experimental results demonstrate that
our method achieves state-of-the-art performance
on the PDTB 2.0/3.0 datasets and the CoNLL-2016
Shared Task. Furthermore, our proposed method
fully uses the correlation between connectives and
sense labels and achieves good generalization on
different templates. Finally, we experimentally
prove that our approach can be transferred from
IDRR to EDRR and still performs well for EDRR.
We will later explore the applicability of our ap-
proach to some Chinese discourse relations datasets
for coarse-grained and fine-grained DRR.

Limitations

In this section, we will point out the limitations of
our work, which can be summarized in the follow-
ing two aspects.

Firstly, in the step of answer mapping (Sec-
tion 3.1), we only select those connectives that
are tokenized with a single token as answer words,
since most masked PLMs predict only a single
word. Therefore, those connectives tokenized with
multiple tokens will be replaced by the most fre-
quent answer word with the same subtype-level
sense tags. We believe that this approach will fil-
ter out several meaningful connectives as answer
words. In the future, we will utilize the generative
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model to predict the connectives between argument
pairs, which can decode multiple tokens at a single
mask position.

Secondly, in section 5.1, we can observe that
multi-prompt ensembling is effective for fusing
multiple single-prompts for implicit discourse re-
lation recognition. In the future, we will explore
multi-teacher knowledge distillation method for the
IDRR task, here teacher models are trained with
different templates. In this way, we can take advan-
tage of the different prompt templates.
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A The CoNLL 2016 Shared Task
(CoNLL16)

The CoNLL 2016 shared task (Xue et al., 2016)
provides more abundant annotation than PDTB
for shallow discourse parsing. The PDTB section
23 and Wikinews texts following the PDTB anno-
tation guidelines were organized as the test sets.
CoNLL16 merges several labels of PDTB. For ex-
ample, Contingency.Pragmatic cause is
merged into Contingency.Cause.Reason
to remove the former type with very few sam-
ples. Finally, there is a flat list of 14 implicit sense
classes to be classified, detailed senses as shown in
the first column of Table 10.

B Answer Sets on Three Datasets

In this section, we present the answer sets we se-
lect on PDTB 2.0/3.0 and CoNLL16 datasets, as
illustrated in table 8, 9 and 10. In addition, we
found that there are several data samples with two
senses. In our data statistics and experiments pro-
cess, we uniformly considered the first sense of
these samples as their golden label for avoiding
ambiguity.

Top-level Second-level Answer Set

Comparison
Concession although, nevertheless
Contrast but, however

Contingency
Cause

because, so,
therefore, thus

Pragmatic cause since

Expansion

Alternative instead, or
Conjunction and, furthermore
Instantiation instance

List first
Restatement specifically

Temporal
Asynchronous previously, then
Synchrony simultaneously

Table 8: Mapping between implicit discourse relation
labels and connectives on PDTB 2.0 dataset, which has
four top-level and 11 second-level senses. The answer
set of top-level senses is a union set of second-level.

C Performance on Fine-grained IDRR

To better evaluate the performance of our method
on fine-grained implicit discourse relation recog-
nition, we compare it with three previous compet-
itive models at each second-level sense of PDTB
datasets 6. As exhibited in Table 11 and 12, our

6Given the test set of PDTB 2.0 only covers 11 types
of discourse relations, we restrict our results to a statistical
analysis of these 11 discourse relations in this study. The same
procedure was followed for the PDTB 3.0 dataset.

Top-level Second-level Answer Set

Comparison
Concession although, nevertheless
Contrast but, however

Similarity similarly

Contingency
Cause because, so

Condition if
Purpose for

Expansion
Substitution instead

Manner by, thereby
Level-of-detail specifically

Conjunction and
Instantiation instance
Equivalence namely

Temporal
Asynchronous previously, then
Synchrony simultaneously

Table 9: Mapping between implicit discourse relation
labels and connectives on PDTB 3.0 dataset, which has
four top-level and 14 second-level senses. The answer
set of top-level senses is a union set of second-level.

Cross-level Senses Answer Set
Comp.Concession although
Comp.Contrast but, however

Cont.Cause.Reason because, as

Cont.Cause.Result
so, thus,

consequently
Cont.Condition if
Exp.Alternative unless, or

Exp.Alternative.Chosen alternative instead, rather
Exp.Conjunction and, while
Exp.Exception rather

Exp.Instantiation instance, example
Exp.Restatement specifically

Temp.Asynchronous.Precedence then
Temp.Asynchronous.Succession previously

Temp.Synchrony meanwhile

Table 10: Mapping between implicit discourse relation
labels and connectives on CoNLL16 dataset which has
14 cross-level implicit senses.

Second-level
Senses

BMGF-
RoBERTa LDSGM PCP CP-KD

Comp.Concession 0.0 0.0 0.00 10.00
Comp.Contrast 59.75 63.52 62.50 67.44
Cont.Cause 59.60 64.36 66.78 67.66

Cont.Pragmatic cause 0.0 0.0 0.0 0.0
Exp.Alternative 60.0 63.46 60.00 66.67
Exp.Conjunction 60.17 57.91 54.16 60.14
Exp.Instantiation 67.96 72.60 70.29 77.06

Exp.List 0.0 8.98 27.03 15.38
Exp.Restatement 53.83 58.06 59.91 61.50
Temp.Asynchronous 56.18 56.47 56.47 66.67
Temp.Synchrony 0.0 0.0 0.0 0.0

Macro F1 37.95 40.49 41.55 44.77

Table 11: Macro F1 scores on PDTB2-second senses.
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Second-level
Senses

BMGF-
RoBERTa LDSGM PCP CP-KD

Comp.Concession 57.47 65.57 55.96 56.65
Comp.Contrast 55.10 44.44 50.88 52.86

Comp.Similarity 0.0 0.0 40.00 66.67
Cont.Cause 67.88 68.38 68.75 71.90

Cont.Cause+Belief 0.0 0.0 8.70 0.0
Cont.Cause+SpeechAct 0.0 64.36 0.0 0.0

Cont.Condition 64.00 11.11 70.97 85.71
Cont.Purpose 95.03 91.94 91.11 95.56

Exp.Conjunction 59.28 66.47 62.69 65.91
Exp.Disjunction 0.0 0.0 33.33 0.0
Exp.Equivalence 16.36 4.00 40.00 10.53

Exp.Instantiation 69.64 70.65 71.37 74.24
Exp.Level-of-detail 52.37 43.05 53.41 59.57

Exp.Manner 28.57 30.00 42.11 57.89
Exp.Substitution 42.11 70.00 52.83 64.29
Temp.Asynchronous 65.02 62.67 70.19 68.37
Temp.Synchronous 29.03 25.93 35.48 21.82

Macro F1 41.28 37.44 49.87 50.12

Table 12: Macro F1 scores on PDTB3-second senses.

CP-KD method supersedes the prior state-of-the-
art models in the majority of second-level senses,
barring a few exceptions such as Exp.List and
Exp.Conjunction.

Notably, our approach procures significant
enhancements in several categories already
demonstrating robust performance, such as
Comp.Contrast and Exp.Instantiation.
The improvements in these categories indicate that
the novel approach of transforming the implicit dis-
course relation recognition task into a connective
prediction task, followed by employing knowledge
distillation to capture intrinsic connective associa-
tions, is highly effective.

Furthermore, the CP-KD method demonstrates
an exceptional capacity to handle complex im-
plicit relations, as evidenced by its superior per-
formance in categories like Comp.Similarity
and Cont.Condition in the PDTB 3.0 dataset,
and Comp.Concession in the PDTB 2.0
dataset. This underlines the effectiveness of a com-
bined approach of Prompt Learning and knowledge
distillation in tackling intricate implicit discourse
relations.

Additionally, our CP-KD method maintains a
high degree of stability across various discourse
relations, as shown by its consistently competitive
performance across different relation types. This at-
tribute reaffirms the CP-KD method’s robust recog-
nition capability across a diverse range of implicit
discourse relations.

D Results of Different Hyperparameters

In deep learning models, particularly those employ-
ing techniques like knowledge distillation, perfor-

mance can be sensitive to the choice of hyperparam-
eters and random seed (Cho and Hariharan, 2019).
To scrutinize this effect, we conducted experiments
with ten consecutive random seeds, varying the hy-
perparameters α in the range of 0.3 to 0.7 and τ
from 1 to 5 on the PDTB 2.0 top-level senses. Ta-
ble 13 and table 14 show the average and overall
results, respectively, for different combinations of
hyperparameters and random seeds.

Variations in the results can be attributed to the
stochastic nature of deep learning model training
and the specific dynamics induced by knowledge
distillation. The balance between learning from
soft targets (teacher’s predictions) and hard targets
(original ground truth labels) - governed by the
hyperparameters - and the model weights initial-
ization (controlled by the random seed) can signif-
icantly influence the optimization trajectory and
final model performance.

While initial results were reported with a single
random seed, we believed it necessary to demon-
strate the effect of these variables on our CP-KD
method. Despite the observed fluctuations, our
model outperforms the state-of-the-art on average,
attesting to the robustness and superiority of our ap-
proach. This analysis underscores the importance
of thorough hyperparameter studies in future re-
search for ensuring reproducibility and robustness
of results in implicit discourse relation recognition.
Other than the results in this section, experiments
were performed with the first random seed.

α
τ=1 τ=2 τ=3 τ=4 τ=5

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

average
10 seeds

0.3 74.57 68.18 74.23 67.66 74.42 67.90 74.46 67.85 74.31 67.88
0.4 74.59 68.28 74.53 68.19 74.38 67.92 74.30 67.80 74.28 67.79
0.5 74.42 67.84 74.37 67.71 74.12 67.55 74.08 67.59 74.04 67.59
0.6 74.16 67.70 74.14 67.39 74.21 67.67 74.04 67.53 74.07 67.56
0.7 73.85 67.08 73.93 67.28 74.01 67.22 73.93 67.29 73.78 67.05

Table 13: Average results of different hyperparameters
over 10 seeds on PDTB 2.0 top-level senses.
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random
seed

α
τ=1 τ=2 τ=3 τ=4 τ=5

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

20221026

0.3 74.57 67.86 74.57 68.16 74.76 68.49 74.67 68.26 74.86 67.98
0.4 75.43 68.86 74.76 67.73 74.67 67.56 74.57 67.77 74.86 68.15
0.5 75.14 68.76 74.95 68.30 74.38 67.89 74.38 67.45 74.95 68.01
0.6 74.57 68.28 74.47 67.61 74.86 68.09 74.76 68.30 74.76 68.50
0.7 74.38 68.25 74.38 68.11 74.76 68.40 74.09 67.11 74.38 67.99

20221027

0.3 73.80 66.91 73.52 66.71 74.09 67.69 73.80 66.73 73.90 67.19
0.4 73.42 68.05 74.47 68.80 74.09 66.45 74.19 66.63 74.00 66.54
0.5 73.71 66.72 74.19 66.95 73.90 67.66 73.80 66.50 73.90 68.26
0.6 73.71 66.32 73.71 66.06 73.90 66.14 73.42 65.89 73.80 66.84
0.7 73.33 67.31 73.42 66.12 73.04 65.27 73.61 65.43 73.23 65.36

20221028

0.3 74.19 67.99 73.61 67.44 73.61 67.60 73.71 67.27 73.71 67.64
0.4 74.57 67.87 74.00 68.07 74.19 68.14 74.00 67.93 73.80 67.30
0.5 74.67 68.31 73.90 66.57 74.38 68.18 74.28 67.23 74.57 68.32
0.6 74.09 67.54 74.67 67.96 75.05 68.91 74.19 67.51 74.67 67.81
0.7 73.52 66.61 74.19 67.05 75.14 68.11 74.57 68.15 74.09 66.98

20221029

0.3 74.00 68.70 74.38 67.43 74.00 68.66 74.38 67.84 74.28 67.90
0.4 73.80 67.61 74.38 68.88 74.28 68.63 73.80 68.41 73.90 68.23
0.5 73.80 68.02 74.00 68.09 74.00 68.04 74.28 68.32 73.90 67.91
0.6 74.00 68.47 74.19 68.60 74.19 68.89 74.09 68.66 74.28 68.86
0.7 73.90 66.91 73.71 68.00 73.71 68.01 73.52 67.85 73.61 67.91

20221030

0.3 75.05 68.12 74.67 67.53 74.38 67.57 74.57 67.73 74.09 67.25
0.4 74.86 68.61 74.57 67.79 73.61 67.53 74.00 66.88 73.71 66.53
0.5 73.80 67.73 74.00 67.33 73.61 66.46 73.52 67.59 73.23 67.02
0.6 73.33 67.14 73.23 66.80 73.14 66.55 73.33 66.90 73.42 67.00
0.7 73.52 67.44 73.23 67.01 73.33 67.02 73.42 66.84 73.33 66.73

20221031

0.3 75.05 69.56 74.09 66.59 75.05 67.66 75.53 68.48 74.86 67.57
0.4 75.05 69.31 74.19 66.73 74.28 66.91 73.90 66.68 74.09 66.52
0.5 74.00 65.67 73.90 66.06 73.42 64.75 73.80 66.42 73.42 65.19
0.6 74.09 66.20 73.71 65.66 73.71 66.69 73.61 66.60 73.42 66.40
0.7 73.33 65.06 73.71 66.28 73.90 65.25 74.00 67.20 73.23 66.10

20221032

0.3 74.67 67.24 74.09 67.91 74.47 68.00 74.09 67.67 73.80 67.30
0.4 74.28 66.73 74.19 67.71 74.09 67.47 74.28 67.81 74.38 68.11
0.5 74.19 66.35 74.76 67.28 73.90 67.42 74.09 67.62 74.00 66.23
0.6 74.09 67.23 74.28 67.21 74.67 67.24 74.09 66.96 74.67 67.75
0.7 73.90 66.47 74.28 67.72 73.71 66.52 74.19 67.23 74.09 67.02

20221033

0.3 74.28 67.28 74.09 67.66 74.28 67.22 74.57 67.16 74.47 67.73
0.4 74.57 68.51 74.67 67.69 74.57 68.02 74.28 67.97 74.09 67.96
0.5 74.57 68.09 74.57 68.23 74.19 67.15 73.90 67.35 74.19 68.29
0.6 74.00 67.71 73.80 66.62 73.80 67.53 74.00 67.72 73.70 66.95
0.7 74.09 67.38 73.71 66.61 73.90 67.04 73.71 66.69 73.33 66.24

20221034

0.3 74.95 68.42 74.38 68.02 74.38 66.72 74.09 67.83 74.00 68.78
0.4 75.33 69.25 75.14 69.06 74.86 68.95 74.67 68.06 74.38 68.33
0.5 75.81 69.76 74.95 69.01 74.76 68.61 74.19 67.93 73.80 67.25
0.6 75.05 68.96 74.57 68.21 74.28 67.68 74.19 67.56 73.90 67.18
0.7 73.80 66.77 74.28 67.21 74.09 67.66 74.09 67.63 74.09 67.35

20221035

0.3 75.14 69.74 74.86 69.13 75.14 69.43 75.14 69.54 75.14 69.42
0.4 74.57 68.03 74.95 69.42 75.14 69.57 75.33 69.89 75.62 70.26
0.5 74.47 69.02 74.47 69.24 74.67 69.34 74.57 69.48 74.47 69.39
0.6 74.67 69.11 74.76 69.17 74.47 68.93 74.67 69.17 74.38 69.20
0.7 74.76 68.63 74.38 68.70 74.47 68.93 74.09 68.78 74.38 68.83

Table 14: Results of different hyperparameters and random seeds on PDTB 2.0 top-level senses.
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