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Abstract
Cross-lingual named entity recognition (NER)
aims to train an NER system that generalizes
well to a target language by leveraging labeled
data in a given source language. Previous work
alleviates the data scarcity problem by translat-
ing source-language labeled data or performing
knowledge distillation on target-language unla-
beled data. However, these methods may suffer
from label noise due to the automatic labeling
process. In this paper, we propose CoLaDa,
a Collaborative Label Denoising Framework,
to address this problem. Specifically, we first
explore a model-collaboration-based denoising
scheme that enables models trained on different
data sources to collaboratively denoise pseudo
labels used by each other. We then present
an instance-collaboration-based strategy that
considers the label consistency of each token’s
neighborhood in the representation space for
denoising. Experiments on different bench-
mark datasets show that the proposed CoLaDa
achieves superior results compared to previous
methods, especially when generalizing to dis-
tant languages.1

1 Introduction

The named entity recognition (NER) task aims to
locate and classify entity spans in a given text into
predefined entity types. It is widely used for many
downstream applications, such as relation extrac-
tion and question answering. Deep neural networks
have made significant progress on this task lever-
aging large-scale human-annotated data for train-
ing. However, fine-grained token-level annotation
makes it costly to collect enough high-quality la-
beled data, especially for low-resource languages.
Such scenarios motivate the research on zero-shot
cross-lingual NER, which attempts to leverage la-
beled data in a rich-resource source language to

*Work during internship at Microsoft.
†Corresponding author.
1Our code is available at https://github.com/

microsoft/vert-papers/tree/master/papers/CoLaDa.
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Figure 1: Comparison between previous methods (a/b/c)
and our CoLaDa at the i-th iteration (d) CoLaDa starts at
M0

tgt and performs denoising iteratively. Dsrc: Source-
language labeled data. Dtrans: Translation data. Dtgt:
Target-language unlabeled data with pseudo-labels gen-
erated by NER models. Msrc/trans/tgt: NER model
learned on Dsrc/trans/tgt.

solve the NER task in a target language without
annotated data.

Recent attempts at cross-lingual NER can be
roughly categorized from two aspects: learning
language-independent features via feature align-
ment (Huang et al., 2019; Keung et al., 2019)
and learning language-specific features from au-
tomatically labeled target-language data (Wu et al.,
2020c,b). Despite bringing great success to cross-
lingual NER, the former line of research misses ex-
ploiting language-specific features and thus shows
substandard performance, especially when trans-
ferring to distant languages, e.g., from English to
Arabic (Fu et al., 2023). Hence, a series of studies
focuses on the latter category, which typically cre-
ates pseudo-labeled target-language data and uses
it to perform conventional supervised learning or
teacher-student learning. For example, as shown in
Fig 1(a), earlier studies (Ehrmann et al., 2011; May-
hew et al., 2017; Xie et al., 2018; Jain et al., 2019),
such as TMP (Jain et al., 2019), first translate la-
beled data in the source language and then perform
label projection. Recently, several approaches have
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utilized a weak model, which could be an NER
model either trained on the source language’s la-
beled data as in TSL (Wu et al., 2020c), or further
finetuned on the generated translation data as in
UniTrans (Wu et al., 2020b), to annotate the un-
labeled target-language data for improvement, as
shown in Fig 1(b) and Fig 1(c).

Unfortunately, these methods inevitably suffer
from the label noise induced by inaccurate trans-
lation and label projection, or the weak model’s
limited capability. Although some methods are
proposed to mitigate the label noise problem by
additionally training an instance selector (Liang
et al., 2021; Chen et al., 2021) or designing heuris-
tic rules for data selection (Ni et al., 2017), they in-
dependently manipulate either the translation data
(Dtrans) (Ni et al., 2017) or the target-language
data (Dtgt) pseudo-labeled by NER models trained
in the source language (Liang et al., 2021; Chen
et al., 2021). Hence, all these methods ignore the
complementary characteristics between both for
denoising. Particularly, from the text view, Dtgt

is collected from a natural text distribution of the
target-language data, while Dtrans can be regarded
as a way of data augmentation to provide more
lexicon variants. From the labeling function view,
labels of Dtrans are obtained via the label projec-
tion algorithm, which have little association with
those of Dtgt generated by NER models.

With such consideration, we propose a model-
collaboration-based denoising scheme, which in-
corporates models trained on both data sources to
mutually denoise the pseudo-labels of both data
sources in an iterative way. As shown in Fig 1(d),
we first leverage Mtgt trained on the pseudo-
labeled target-language data Dtgt to denoise the
translation data annotated by label projection. In
this way, the learned model Mtrans will be less
affected by noise in the translation data. We then
employ the improvedMtrans to re-label the target-
language unlabeled data Dtgt. It is expected that
there is less noise in the relabeled data, and thus we
can produce a more powerfulMtgt. We perform
this procedure for several iterations, so that all the
involved data sources and models can be improved
in an upward spiral.

Moreover, borrowing the idea from anomaly de-
tection (Gu et al., 2019) that a given data point’s
neighborhood information can be used to measure
its anomalism, here we find that the similar tokens
in the feature space can also collaborate for denois-

/     Noisy Pseudo Label

Neighborhood

/     Clean Pseudo Label

Figure 2: Illustration of the instance collaboration for
denoising. Different colors depict different entity types.

ing. Previous studies (Zhai and Wu, 2019; Xu et al.,
2020) have shown that instances with the same la-
bel are more likely to locate close to each other in
the representation space. Our intuition is that, if a
token’s label conflicts a lot with labels of other to-
kens in its neighborhood, then this label is probably
noisy. Therefore, we further propose an instance-
collaboration-based denoising strategy to explore
the neighborhood structure of each token for de-
noising, as shown in Figure 2. Specifically, we
utilize the label consistency of each token’s neigh-
borhood in the representation space to re-weight
the soft-labeled examples in knowledge distillation.

We integrate the instance-collaboration-based de-
noising strategy into the model-collaboration-based
denoising scheme and propose a Collaborative
Label Denoising framework, i.e., CoLaDa, for
cross-lingual NER. We conduct extensive experi-
ments on two popular benchmarks covering six lan-
guages for evaluation. Experimental results show
that our method outperforms existing state-of-the-
art methods. Qualitative and quantitative analyses
further demonstrate the effectiveness of our frame-
work in reducing the data noise.

2 Problem Formulation

Here we take the typical sequence labeling formu-
lation for the named entity recognition task. Given
a sequence with L tokens x = (x1, . . . , xL) as the
input text, an NER system is excepted to assign
each token xi with a label yi.

In this paper, we assume to have the labeled train-
ing data Dsrc = {(xs,ys)} in the source language,
the unlabeled data Dtgt = {xu} from the target
language, and translation dataDtrans = {(xt,yt)}
obtained by data projection from Dsrc. Our goal is
to train an NER modelM that can generalize well
to the target language utilizing these resources.
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Figure 3: Framework of CoLaDa, which is an iterative model-collaboration process with two steps: 1) Step 1:
noise-robust training on translation data with the collaboratorM(i−1)

tgt , 2) Step 2: noise-robust training on unlabeled

target-language data with the collaboratorM(i)
trans. The instance-collaboration is used to re-weight the noisy

labels from a teacher model in both steps.M(i)
trans/M(i)

tgt: model trained on Dtrans/Dtgt at i-th iteration.

3 CoLaDa Framework

Figure 3 depicts an overview of the CoLaDa frame-
work. It is an iterative model-collaboration-based
denoising framework which consists of two steps:
noise-robust learning on translation data and noise-
robust learning on unlabeled target-language data.
An instance-collaboration-based denoising strat-
egy (Sec 3.1) is then integrated into the model-
collaboration-based denoising procedure (Sec 3.2).

3.1 Instance Collaboration for Denoising
Previous work (Zhai and Wu, 2019; Xu et al., 2020)
indicates that tokens with the same labels are more
likely to locate close to each other in the repre-
sentation space of a deep neural network. If the
label of a given token is inconsistent with lots of its
neighbors, this token would be isolated from other
tokens with the same label in the feature space, and
hence its label is more likely to be noisy. There-
fore, we propose instance-collaboration-based de-
noising, which evaluates the reliability of a given
token’s label by measuring the label consistency of
its neighborhood, and then uses the reliability score
to weight the noisy labels from a teacher model
M for knowledge distillation on data D = {x}.
Noisy labels are expected to have lower weights
than clean ones.

Create a memory bank. We leverage the feature
extractor F of the NER modelM to obtain the hid-
den representations h = {hi}Li=1 of each sentence
x = {xi}Li=1 ∈ D:

h = F(x). (1)

We then construct a memory bank BD = {h} to
store the hidden representations of all tokens in D.

Compute label consistency. Given a token xi,
we retrieve its K-nearest neighbors NK(xi) in BD
using cosine similarity. Let pi denote the soft la-
bel (i.e., the probability distribution over the entity
label set) assigned by the teacher model M for
xi. We measure the label consistency of xi, i.e.,
λ(pi;xi), by calculating the fraction of xi’s neigh-
bors that are assigned with the same labels as xi in
NK(xi):

λ(pi;xi) =
1

K

∑

xj∈Nk(xi)

I(ŷj = ŷi), (2)

where ŷi = arg max (pi) is the pseudo entity label
corresponding to the maximum probability in pi.
Similarly, ŷj is the pseudo entity label correspond-
ing to xj . I is the indicator function.

Produce a reliability score. We use the label
consistency λ(pi;xi) to compute the reliability
score of the soft label pi, which is further used
as the weight of pi during model learning (see 3.2).
Considering that different entity types may contain
different levels of label noise and show different
statistics on label consistency, here we present a
class-adaptive reliability score for weighting:

w(pi;xi) = Sigmoid (α (λ(pi;xi)− µ(ŷi))) ,
(3)
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where µ(ŷi) denote the mean of all λ(pj ;xj) where
arg max (pj) = ŷi and xj ∈ D. α > 0 is a
hyper-parameter that controls the sharpness of the
weighting strategy. If α→ 0, all tokens have equal
weights. If α → ∞, tokens whose label consis-
tency is larger than the average label consistency
w.r.t. its pseudo label will be weighted with 1 and
those with smaller consistency will be dropped.

3.2 Model Collaboration for Denoising
Here we elaborate on the details of the two noise-
robust training processes. Algorithm 1 depicts the
overall training procedure of CoLaDa.

Noise-robust training on translation data. As-
suming the availability of a collaborator Mtgt

2

trained on pseudo-labeled target-language data
Dtgt, here we focus on leveragingMtgt to reduce
the label noise in the translation data Dtrans =
{(xt,yt)}, with which we further deliver a more
powerful modelMtrans.

Specifically, given a sentence (xt,yt) ∈ Dtrans,
we first obtain the soft label pui of each xti ∈ xt

from the collaboratorMtgt. Then, we take both
the one hot label yti and the soft label pui as the
supervision to train the model Mtrans.3 Denote
the output probability distribution ofMtrans for
xti as p̂ti. The loss function w.r.t. xt is defined as:

Lxt
=

1

L

L∑

i=1

(
β1CE(p̂ti, p

u
i ) + β2CE(p̂ti, y

t
i)
)
,

(4)
where CE(·, ·) denotes the cross-entropy loss, L
is the sentence length, β1 and β2 are weighting
scalars. Here we further incorporate the instance-
collaboration-based denoising strategy (3.1) to pro-
vide a token-level reliability evaluation to the su-
pervision from the collaboratorMtgt via:

β1(x
t
i)← β1 ∗ w(pui , xti), (5)

where w(pui , x
t
i) is calculated by Eq. (3).

Noise-robust training on target-language unla-
beled data. Here we leverageMtrans obtained
via the above noise-robust training on transla-
tion data to provide high-quality supervision for

2For the first iteration, we use an NER model trained on
the source language labeled data Dsrc. For the later iterations
(i > 1), we use the model from the noise-robust-training on
target-language unlabeled data in the previous iteration (i−1).

3The student modelMtrans is initialized fromMtgt to
equip the knowledge of real target-language text distribution
for better generalization during test.

Algorithm 1 Pseudo code of CoLaDa.
Input: an NER modelMsrc trained onDsrc, translation data
Dtrans, the unlabeled data Dtgt, the maximum iteration T.

1: M(0)
tgt ←Msrc ▷ Initialization

2: for i = 1, 2, . . ., T do
3: # Step 1: Noise-robust training on Dtrans

4: InferenceM(i−1)
tgt onDtrans = {(xt,yt)} to get the

predictions D̂trans = {(xt,pu)}
5: Get w for (xt,pu) ∈ D̂trans withM(i−1)

tgt , Eq.(3)
6: TrainM(i)

trans with loss on (xt,yt,pu,w), Eq.(4)
7: # Step 2: Noise-robust training on Dtgt

8: InferenceM(i)
trans on Dtgt = {xu} to get the predic-

tions D̂tgt = {(xu,pt)}
9: Get w′ for (xu,pt) ∈ D̂tgt withM(i)

trans, Eq.(3)
10: TrainM(i)

tgt with loss on (xu,pt,w′), Eq.(6)
11: end for
Output: an NER modelM(T )

tgt .

Dtgt = {xu}. By performing knowledge distilla-
tion on Dtgt, the student modelMtgt is supposed
to benefit from the unlabeled data drawn from the
real text distribution in the target language with the
knowledge from the teacher modelMtrans.

Specifically, given a sentence xu ∈ Dtgt, we
first utilizeMtrans to predict soft label pti for each
token xui ∈ xu. Then, we integrate the instance-
collaboration-based denoising technique into the
learning process. The loss function w.r.t. xu to
train the student modelMtgt can be formulated as:

Lxu
=

1

L

L∑

i=1

w(pti, x
u
i ) · CE(p̂ui , p

t
i), (6)

where p̂ui denotes the output probability distribu-
tion ofMtgt for the i-th token xui and w(pti, x

u
i ) is

calculated by Eq. (3).

4 Experiments

4.1 Experiment Settings

Datasets We conduct experiments on two
standard cross-lingual NER benchmarks:
CoNLL (Tjong Kim Sang, 2002; Tjong Kim Sang
and De Meulder, 2003) and WikiAnn (Pan et al.,
2017). CoNLL contains four languages: English
(en) and German (de) from the CoNLL-20034 NER
shared task (Tjong Kim Sang and De Meulder,
2003), and Spanish (es) and Dutch (nl) from the
CoNLL-20025 NER shared task (Tjong Kim Sang,
2002). This dataset is annotated with four entity
types: PER, LOC, ORG, and MISC. WikiAnn

4https://www.clips.uantwerpen.be/conll2003/ner/
5https://www.clips.uantwerpen.be/conll2002/ner/
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contains an English dataset and datasets in three
non-western languages: Arabic (ar), Hindi (hi),
and Chinese (zh). Each dataset is annotated with 3
entity types: PER, LOC, and ORG. All datasets are
annotated with the BIO tagging scheme. We use
the train, development, and test splits as previous
work (Wu and Dredze, 2019; Wu et al., 2020b).

We take English as the source language and other
languages as the target language, respectively. We
remove the labels of the training data for the tar-
get language and take it as the unlabeled target
language data. For the CoNLL benchmark, we
use the word-to-word translation data provided in
UniTrans (Wu et al., 2020b) for a fair compari-
son. For the WikiAnn benchmark, we translate the
source data to the target language with the pub-
lic M2M100 (Fan et al., 2020) translation system
and conduct label projection with the marker-based
alignment algorithm as Yang et al. (2022).

Evaluation The entity-level micro-F1 on test set
of the target language is used as the evaluation
metric. We report the mean value of 5 runs with
different seeds for all the experiments.

Implementation Details For the base NER
model, we stack a linear classifier with softmax
over a base encoder such as mBERT. We implement
our framework with Pytorch 1.7.16, the Hugging-
Face transformer library (Wolf et al., 2020), and
use FAISS (Johnson et al., 2019) for embedding
retrieval. Following Wu and Dredze (2019) and
Zhou et al. (2022), we use the multilingual BERT
base model (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) large model as our base encoders.
Most of our hyper-parameters are set following Wu
et al. (2020b). We use AdamW (Loshchilov and
Hutter, 2019) as optimizer and train the model on
source NER data with the learning rate of 5e-5 for 3
epochs. The dropout rate is 0.1. For teacher-student
learning, we train the model with a learning rate
of 2e-5 for 10 epochs. We freeze the bottom three
layers as Wu and Dredze (2019). Following Keung
et al. (2019), we choose other hyper-parameters
according to the target language dev set. We set K
in Eq. (2) to 500 and α in Eq. (3) to 6. For the first
iteration, we start with an NER model trained on
the source-language data to denoise the translation
data with β1 and β2 in Eq. (5) setting to 0.5. For
the following iterations, β1 is set to 0.9 and β2 is
set to 0.1. The maximum number of iterations is 8.

6https://pytorch.org/

Method de es nl avg

mBERT based methods:

mBERT (Wu and Dredze, 2019) 69.56 74.96 77.57 73.57
AdvCE (Keung et al., 2019) 71.90 74.3 77.60 74.60
TSL (Wu et al., 2020c) 73.16 76.75 80.44 76.78
UniTrans (Wu et al., 2020b) 74.82 79.31 82.90 79.01
TOF (Zhang et al., 2021) 76.57 80.35 82.79 79.90
AdvPicker (Chen et al., 2021) 75.01 79.00 82.90 78.97
RIKD (Liang et al., 2021) 75.48 77.84 82.46 78.59
MTMT (Li et al., 2022) 76.80 81.82 83.41 80.67

CoLaDa (ours) 77.30 80.43 85.09 80.94

XLM-R based methods:

MulDA (Liu et al., 2021) 74.55 78.14 80.22 77.64
xTune (Zheng et al., 2021) 74.78 80.03 81.76 78.85
ConNER (Zhou et al., 2022) 77.14 80.50 83.23 80.29

CoLaDa (ours) 81.12 82.70 85.15 82.99

Table 1: F1 scores on CoNLL.

Method ar hi zh avg

mBERT based methods:

BERT-align (Wu and Dredze, 2020) 42.30 67.60 52.90 54.26
TSL (Wu et al., 2020c) 43.12 69.54 48.12 53.59
RIKD (Liang et al., 2021) 45.96 70.28 50.40 55.55
MTMT (Li et al., 2022) 52.77 70.76 52.26 58.59
UniTrans† (Wu et al., 2020b) 42.90 68.76 56.08 55.91

CoLaDa (ours) 54.26 72.42 60.77 62.48

XLM-R based methods:

XLM-R (Conneau et al., 2020) 50.84 72.17 39.23 54.08
ConNER (Zhou et al., 2022) 59.62 74.49 39.17 57.76

CoLaDa (ours) 66.94 76.69 60.08 67.90

Table 2: F1 scores on WikiAnn. † denotes results ob-
tained by running their public code on our data.

4.2 Main Results

Baselines We compare our method to previous
start-of-the-art baselines as follows: i) feature align-
ment based methods: mBERT (Wu and Dredze,
2019), XLM-R (Conneau et al., 2020), BERT-
align (Wu and Dredze, 2020), AdvCE (Keung et al.,
2019), and AdvPicker (Chen et al., 2021); ii) trans-
lation based methods: MulDA (Liu et al., 2021),
UniTrans (Wu et al., 2020b), and TOF (Zhang et al.,
2021)); iii) knowledge distillation based methods:
TSL (Wu et al., 2020c), RIKD (Liang et al., 2021),
and MTMT (Li et al., 2022); iv) consistency based
methods: xTune (Zheng et al., 2021) and Con-
NER (Zhou et al., 2022).

Performance Comparison Tables 1 and 2 show
the performance comparison of the proposed Co-
LaDa and prior start-of-the-art baselines on CoNLL
and Wikiann, respectively. It can be seen that
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Method de es nl ar hi zh

CoLaDa 77.30 80.43 85.09 54.26 72.42 60.77

1) CoLaDa w/o instance collaboration 76.08 79.94 83.86 50.98 71.31 59.64

2) CoLaDa w/o translation data denoise 76.17 79.22 83.10 41.41 71.10 55.04
3) CoLaDa w/o iteratively denoise 75.77 79.64 83.50 47.82 71.31 57.64
4) CoLaDa w/o model collaboration 75.64 78.99 82.98 46.51 71.09 55.25

5) CoLaDa w/o instance & model collaboration 74.54 79.94 82.97 42.33 70.39 55.55

Table 3: Ablation study on CoNLL and WikiAnn.

CoLaDa outperforms prior methods with both en-
coders, achieving a significant improvement of 2.70
F1 scores on average for CoNLL and 10.14 F1
scores on average for WikiAnn with XLM-R as
the encoder. This well demonstrates the effective-
ness of our approach. Interestingly, CoLaDa shows
more significant superiority when transferring to
distant target languages in WikiAnn. The knowl-
edge distillation based baselines (i.e., TSL, RIKD,
MTMT) struggle on distant languages such as Chi-
nese (zh) due to the noisy predictions from the
weak teacher modelMsrc trained in the source lan-
guage. UniTrans, which is developed with the same
data sources as ours, shows poor performance, es-
pecially in distant languages such as Arabic (ar).
We conjecture that the problem of label noise is
even more critical in these distant languages. Our
CoLaDa can better handle noise in both transla-
tion data and unlabeled target-language data, thus
leading to significant performance gains.

5 Analysis

5.1 Ablation Study
To further validate the effectiveness of each mecha-
nism in the proposed framework, we introduce the
following variants of CoLaDa in an ablation study:
1) CoLaDa w/o instance collaboration, where we
directly set the reliability score in Eq. (3) to 1 for
all tokens. 2) CoLaDa w/o translation data de-
noise, where we set β1 in Eq. (4) to 0. 3) CoLaDa
w/o iteratively denoise, where we remove the itera-
tive enhancement and only conduct the denoising
process for one iteration. 4) CoLaDa w/o model
collaboration, where we set β1 in Eq. (4) to 0, re-
move the iteration mechanism, and directly take the
model finetuned on Dtrans as the teacher model to
train a student model with instance-collaboration-
based denoising on Dtgt. 5) CoLaDa w/o instance
& model collaboration, which further drops the
instance-collaboration-based denoising from 4).

Table 3 shows the ablation results. We can draw

some in-depth conclusions as follows.
1) CoLaDa outperforms CoLaDa w/o instance

collaboration, which highlights the effectiveness
of leveraging neighborhood information to reduce
label noise in knowledge distillation.

2) CoLaDa outperforms CoLaDa w/o transla-
tion data denoise, which emphasizes the impor-
tance of using the collaboratorMtgt to refine labels
of translation data, especially in distant languages
where the translation data is noisier (e.g., 12.8 F1
drop on Arabic and 5.7 F1 drop on Chinese).

3) CoLaDa outperforms CoLaDa w/o iteratively
denoise, which indicates the necessity of iterative
learning: models obtained from the previous itera-
tion should be re-used as the collaborator to further
improve label quality in the next iteration.

4) CoLaDa w/o instance & model collabora-
tion, which eliminates all denoising strategies from
CoLaDa, leads to a significant performance drop,
demonstrating the essentiality of label denoising
for cross-lingual NER.

5.2 Analysis of Model Collaboration

Here we attempt to understand how the two models,
i.e., Mtrans and Mtgt, collaboratively improve
each other.

0 2 4 6 8
i-th iteration

50

52

54

56

58

60

F1

(i)
trans on test data
(i)
tgt on test data
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trans and M(i)
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As shown in Figure 4, F1 scores ofMtrans and
Mtgt consistently improve as iterations go on, and
finally converge at the last iteration. This indicates
that both models benefit from the proposed model
collaboration scheme. Two reasons are speculated:
i) An improvedMtgt can provide more accurate
labels on the translation data, which further help
to improve Mtrans via noise-robust learning on
such translation data. For example, at the initial
step (i = 0), the F1 score of the model M0

trans

trained on the original translation labels is 50.0.
With the additional supervision from the collabora-
torM0

tgt,M1
trans achieves a performance gain of

5.7 F1. ii) An improvedMtrans predicts pseudo
labels with higher quality on the target-language un-
labeled data, which further benefits the learning of
Mtgt. As in Figure 4, the quality of pseudo-labeled
Dtgt (the green line) grows as Mtrans improves.
In this way, bothMtrans andMtgt are providing
more and more reliable labels for each other to
learn as the iterations progress.

5.3 Analysis of Instance Collaboration

This subsection dives into the working mechanism
of the instance-collaboration-based denoising.

Reliability scores v.s. label quality. To study
the relationship between reliability score and label
quality, we partition tokens in the target-language
unlabeled data, xi ∈ Dtgt into several bins ac-
cording to their reliability scores w(pti, xi) calcu-
lated via M(1)

trans. Then, we compute the token-
level F1 over each bin by comparing pseudo labels
ŷi = argmax(pti) to the ground-truth ones. As
shown in Figure 5, the label quality is proportional
to the reliability score, which well demonstrates the
effectiveness of our instance-collaboration-based
denoising strategy.
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Figure 5: Illustration of the relationship between relia-
bility score and label quality.

Analysis of Label Consistency. We also study
the characteristics of label consistency w.r.t. dif-
ferent entity types and representation spaces of the
memory bank. Figure 6 shows the results. We can
draw some in-depth observations as follows.
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Figure 6: Mean label consistency calculated from differ-
ent conditions (i.e., different entity types, representation
spaces of different layers, clean/noisy tokens) on the
German dataset.

i) Clean tokens show a larger average consis-
tency than noisy tokens w.r.t. all entity types,
demonstrating the effectiveness of our label consis-
tency based denoising strategy again.

ii) Different entity types lead to different distri-
butions of label consistency, which validates the
necessity of our design for class-adaptive reliabil-
ity score for weighting as Eq.(3).

iii) Label consistencies calculated with token
representations from the upper layers are gener-
ally larger than those corresponding to the bottom
layers. Also, the label consistency gap between
clean tokens and noisy tokens gets larger from the
bottom to the top (e.g., the gap between two or-
ange lines). This may be attributed to the fact that
representations from upper layers are more task-
specific (Muller et al., 2021), hence they can better
discriminate between noisy and clean tokens.
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Figure 7: F1 scores of CoLaDa with different K for
neighborhood information on German dataset.
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Original English: ** '' Duchy of Aquitaine[LOC] '' ' – William V[PER] ( 995–1030 ) Inaccurate translation
Translate “Duchy of Aquitaine” 
into “爱因公爵” (Duke of Ain) 
incorrectly.

Original Translation: ** “ 爱因公爵[LOC] ” – 威廉五世[PER] (995)

Translate-train: ** “ 爱因公爵[LOC] ” – 威廉五世[PER] (995)

Ours: ** “ 爱因公爵[PER] ” – 威廉五世[PER] (995)

Original English: There have been many tenants, including The Sunday Times[ORG] '' and The Daily News[ORG] ''. Inaccurate alignment boundary
The symbols《 and 》are 
corner brackets used to enclose 
the name of a newspaper, and 
other works.

Original Translation: 有许多租户，包括《星期日时报[ORG] 》和《每日新闻[ORG] 》。

Translate-train: 有许多租户，包括《星期日时报[ORG] 》和《每日新闻[ORG] 》。

Ours: 有许多租户，包括《星期日时报[ORG] 》和《每日新闻[ORG] 》。

Original English: It is found in Democratic Republic of Congo[ORG] , Kenya[LOC] , Tanzania[LOC] …. Label noise in English data
Wrong entity type in original 
English data for “Democratic 
Republic of China”.

Original Translation: 它位于刚果民主共和国[ORG] ，肯尼亚[LOC] ，坦桑尼亚[LOC] …

Translate-train: 它位于刚果民主共和国[ORG] ，肯尼亚[LOC] ，坦桑尼亚[LOC] …

Ours: 它位于刚果民主共和国[LOC] ，肯尼亚[LOC] ，坦桑尼亚[LOC] …

Figure 8: Case study on translation data in Chinese. The blue (red) texts denote the correct (incorrect) entity labels.
The original translation lines display the translation texts and labels obtained by data projection. Translate-train
and Ours illustrate the predictions from the translate-train method (M0

trans) and our CoLaDa, respectively.

Choice of K for neighborhood information.
Figure 7 shows the performance of CoLaDa us-
ing different K in Eq. (2). Generally speaking,
CoLaDa is robust to the choice of K. Any value
for K > 0 leads to a better performance compared
with removing the instance collaboration, i.e., K =
0. A smaller K may lead to a slight performance
drop due to limited neighborhood information.

5.4 Case Study

To better illustrate the kinds of label noise pre-
sented in the data and the capability of CoLaDa
to address such noise, we conduct a case study
on the Chinese translation data from the WikiAnn
English data. As shown in Figure 8, there are
three typical cases of noisy labels in the translation
data: noisy labels induced by inaccurate transla-
tions, alignment errors, and annotation errors in the
original source-language data.7 Figure 8 shows that
the translate-train model, finetuned on the original
translation data, overfits the noisy labels. However,
CoLaDa is less affected by such noise and makes
correct predictions.

6 Related Work

6.1 Cross-lingual NER

Prior work on cross-lingual NER mainly falls into
two major categories: feature-based and data-based
transfer.

Feature-based These methods learn language-
independent features so that the model trained on
the source language can directly adapt to the tar-

7Due to the short entity context information in many sen-
tences in WikiAnn, the translation quality of entity mentions
with M2M100 is less than satisfactory on the dataset.

get language. Earlier work exploits word clus-
ters (Täckström et al., 2012), gazetteers (Zirikly
and Hagiwara, 2015), Wikifier features (Tsai et al.,
2016), and cross-lingual word embedding (Ni
et al., 2017), etc. More recently, with the fast
growth of multilingual pre-trained language mod-
els (Devlin et al., 2019; Conneau et al., 2020)
and their promising results on cross-lingual trans-
fer (Wu and Dredze, 2019), lots of studies build
upon such pre-trained models and further pro-
mote the learning of language-independent fea-
tures via meta-learning (Wu et al., 2020d), con-
trastive alignment (Wu and Dredze, 2020), adver-
sarial learning (Keung et al., 2019; Chen et al.,
2021), and by integrating other resources (Fetahu
et al., 2022). Despite the great success, they mostly
ignore language-specific features, which are espe-
cially important when transferring to distant lan-
guages (Fu et al., 2023).

Data-based These approaches learn language-
specific features via automatically labeled target-
language data and can be further divided into
translation-based and knowledge distillation-based
methods.

Translation-based methods first translate the
source-language data to the target language, then
perform label projection from the source side to
the target side. Some prior studies have proposed
to use cheap translation such as word-to-word (Xie
et al., 2018) or phrase-to-phrase (Mayhew et al.,
2017) translation. Jain et al. (2019) propose an
entity projection algorithm to utilize the Google
translation system. Recently, Liu et al. (2021) and
Yang et al. (2022) propose to translate sentences
with pre-defined markers for label projection. And
Ni et al. (2017) design heuristic rules to select high-
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quality translation data. However, both data noise
and artifacts (Artetxe et al., 2020) in the transla-
tion data still limit the performance of such meth-
ods (García-Ferrero et al., 2022).

Knowledge distillation-based methods train a
student model on unlabeled target-language data
with the soft labels from a teacher model (Wu et al.,
2020c). Li et al. (2022) improve the single task
based teacher-student learning with entity similar-
ity as an auxiliary task. To mitigate the label noise
from the teacher model, Chen et al. (2021) propose
AdvPicker, which trains a language discriminator
to select the less language-dependent unlabeled
data for knowledge distillation; Liang et al. (2021)
design a reinforcement learning algorithm to train
an instance selector according to features such as
model confidence to select reliable pseudo labels
iteratively.

While most previous work leverages either trans-
lation data or unlabeled data, UniTrans (Wu et al.,
2020b) utilizes the model trained on translation
data to perform teacher-student learning on un-
labeled data. But it still suffers from the data
noise problem. More recently, consistency train-
ing (Zheng et al., 2021; Zhou et al., 2022) has also
been explored to leverage both unlabeled data and
translation data without explicit label annotation.

To the best of our knowledge, we are the first to
propose a unified denoising framework to handle
data noise in both translation and unlabeled data
collaboratively from the model and instance levels
for cross-lingual NER.

6.2 Learning with Label Noise

Previous studies mainly address the label noise via
re-weighting examples (Shu et al., 2019), designing
noise-robust loss functions (Ma et al., 2020), and
selecting clean instances (Bahri et al., 2020; Wu
et al., 2020a), etc. However, these methods only
consider the corrupted labels that naturally occur
in one data source. In this work, we consider the
complementary characteristics of translation and
unlabeled data, and design a model-collaboration-
based denoising scheme. While Xu et al. (2023)
target at the few-shot learning scenario and lever-
age the neighborhood information among the la-
beled examples to hard-select the reliable pseudo
labels in self-training, we focus on the zero-shot
cross-lingual setting and softly re-weight the noisy
pseudo-labels in knowledge distillation without any
clean labeled data in target language.

7 Conclusion

To address the problem of label noise in cross-
lingual NER, this paper presents CoLaDa, a col-
laborative label denoising framework. We propose
a model-collaboration-based denoising scheme to
make two models trained on different data sources
to denoise the labels of each other and hence pro-
mote each other’s learning. We further propose
an instance-collaboration-based strategy that col-
laboratively considers the label consistency among
similar tokens in the feature space to re-weight
the noisy labels assigned by a teacher model in
knowledge distillation. By integrating the instance-
collaboration strategy into the model-collaboration
denoising scheme, our final framework CoLada
achieves superior performance over prior start-of-
the-art methods by benefiting from better handling
the data noise.

Limitations

Our framework relies on the availability of transla-
tion system and unlabeled data in the target lan-
guage, which can not be applied to languages
without any unlabeled text or translation text.
The knowledge distillation step requires a certain
amount of unlabeled text, while it may struggle in
cases where only few hundreds of unlabeled sen-
tences are available. It would be interesting to com-
bine our label denoising framework with data aug-
mentation techniques in such scenarios. Besides,
the boarder application to other low-resource lan-
guages, such as MasakhaNER 2.0 (Adelani et al.,
2022), and other cross-lingual sequence labeling
tasks are left for exploration in future work.
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A Appendix

A.1 Dataset Statistics

Table A.1 reports the dataset statistics for CoNLL
and WikiAnn.

A.2 Other Implementation Details

All experiments are conducted on a Tesla V100
(32GB). The total of trainable parameters (Mtrans

andMtgt) for our model with mBERT-base-cased
as the encoder is 172M and the training time is
about 35 mins for one iteration. With XLM-R-
large as our base encoder, the total of trainable
parameters are 822M and the training takes about
90 mins for one iteration.

A.3 Baselines

We consider the following start-of-the-art base-
lines:
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Language Statistic Train Dev Test

English (en) NS 14,042 3,252 3,454
(CoNLL-2003) NE 23,499 5,942 5,648

German (de) NS 12,167 2,875 3,009
(CoNLL-2003) NE 11,851 4,833 3,673

Spanish (es) NS 8,405 1,926 1,524
(CoNLL-2002) NE 18,798 4,351 3,558

Dutch (nl) NS 15,836 2,895 5,202
(CoNLL-2002) NE 13,344 2,616 3,941

English (en) NS 20,000 10,000 10,000
(WikiAnn) NE 27,931 14,146 13,958
Arabic (ar) NS 20,000 10,000 10,000
(WikiAnn) NE 22,501 11,267 11,259
Hindi (hi) NS 5,000 1,000 1,000
(WikiAnn) NE 6,124 1,226 1,228

Chinese (zh) NS 20,000 10,000 10,000
(WikiAnn) NE 24,135 12,017 12,049

Table A.1: Dataset statistics. NS : the number of sen-
tences, NE : the number of entities.

mBERT (Wu and Dredze, 2019) and XLM-
R (Conneau et al., 2020) directly train an NER
model on the labeled data in the source language,
with mBERT and XLM-R as the basic encoder,
respectively.

BERT-align (Wu and Dredze, 2020) tries to ex-
plicitly add word-level contrastive alignment loss
to enhance the mBERT representation.

AdvCE (Keung et al., 2019) exploits adversar-
ial learning on source- and target-language text to
avoid learning language-specific information.

AdvPicker (Chen et al., 2021) leverages adver-
sarial learning to learn language-shared features
and then selects the less language-specific sen-
tences in target-language unlabeled text for knowl-
edge distillation.

MulDA (Liu et al., 2021) proposes the labeled
sequence translation method for data projection
from source-language NER data, a generative
model is further applied to augment more diverse
examples in the target language.

UniTrans (Wu et al., 2020b) unifies model- and
translation-data-based-transfer via knowledge dis-
tillation.

TOF (Zhang et al., 2021) leverages the labeled
data for machine reading comprehension task on
target language to help the NER task in cross-
lingual transfer.

TSL (Wu et al., 2020c) proposes knowledge dis-
tillation to use unlabeled target-language data for
cross-lingual NER.

RIKD (Liang et al., 2021) proposes a reinforce-
ment learning algorithm to iteratively select reliable
pseudo-labels for knowledge distillation.

MTMT (Li et al., 2022) proposes multi-task
multi-teacher knowledge distillation, which further
leverages the entity similarity task.

xTune (Zheng et al., 2021) leverages unlabeled
translation text and other word-level data augmen-
tation techniques for consistency training.

ConNER (Zhou et al., 2022) conducts span-
level consistency training on unlabeled target-
language data using translation and further applies
dropout-based consistency training on the source-
language data.
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