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Abstract

In this work, we study the robustness of two
typical terminology translation methods: Place-
holder (PH) and Code-Switch (CS), concern-
ing (1) the number of constraints and (2) the
target constraint length. We identify that ex-
isting terminology constraint test sets, such as
IATE, Wiktionary, and TICO, are blind to this
issue due to oversimplified constraint settings.
To solve it, we create a new challenging test
set of English-German, increasing the average
constraint count per sentence from 1.1∼1.7 to
6.1 and the length per target constraint from
1.1∼1.2 words to 3.4 words. Then we find that
PH and CS methods degrade as the number
of constraints increases, but they have comple-
mentary strengths. Specifically, PH is better
at retaining high constraint accuracy but lower
translation quality as measured by BLEU and
COMET scores. In contrast, CS has the oppo-
site results. Based on these observations, we
propose a simple but effective method com-
bining the advantages of PH and CS. This ap-
proach involves training a model like PH to pre-
dict the term labels, and then during inference
replacing those labels with target terminology
text like CS, so that the subsequent generation
is aware of the target term content. Extensive
experimental results show that this approach
can achieve high constraint accuracy and trans-
lation quality simultaneously, regardless of the
number or length of constraints.1

1 Introduction

Although Neural Machine Translation (NMT) has
achieved expressive performance improvement
with the increase of model and data scale, it still
struggles when involved in mismatched domains
and rare entities (Koehn and Knowles, 2017). Ter-
minology constraints (TC) is a popular solution
that requires the model to generate the translation
following the pre-provided terminology pairs and

∗Corresponding author.
1https://github.com/zhajiahe/RTT

has been widely applied in commercial translation
systems, such as Google, DeepL, etc.

Perhaps the most popular approach for TC is
learning the constraint-aware model through data
augmentation (Song et al., 2019; Dinu et al., 2019;
Ailem et al., 2021; Bergmanis and Pinnis, 2021).2

Early data augmentation is based on placeholder
(PH). During training, PH methods replace the
terminology terms in both source and target sen-
tences with ordered labels (e.g., “T1”, “T2”), while
the model predicts labels rather than the concrete
terms at inference (Crego et al., 2016; Michon et al.,
2020). The main drawback of PH methods is that
the term labels lose the original semantic informa-
tion, resulting in incoherent translation. Unlike
PH methods, Code-Switch (CS) methods follow
the standard model and generate term translations
word by word by injecting target constraints in the
source sequence (Song et al., 2019; Dinu et al.,
2019; Ailem et al., 2021).

In this work, we focus on understanding the ro-
bustness of existing terminology constraint meth-
ods in challenging constraint settings in practice.
Our contributions are four-fold:

• We point out that the widely used terminol-
ogy constraint test sets (IATE3, Wiktionary4,
TICO5) are too oversimplified to evaluate the
robustness. To address this, we have created
a new, challenging English-German terminol-
ogy constraint test set containing 500 sentence
pairs with multiple long constraints. This
proposed test set significantly increases the
average number of constraints from 1.1∼1.7
to 6.1, and the target constraint length from

2We notice that all participating systems in the WMT21
Terminology Translation Task adopt this kind of method (Bar-
rault et al., 2021).

3https://github.com/mtresearcher/terminology_
dataset/tree/master/iate

4https://github.com/mtresearcher/terminology_
dataset/tree/master/wiktionary

5https://tico-19.github.io/
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1.1∼1.2 words to 3.4 words. We will release
this benchmark to promote the development
of robust terminology translation.

• Through the proposed test set, we reveal
that the performance of both Placeholder and
Code-Switch degrades seriously with the in-
crease of constraint count/length. However,
it shows a strong complementarity in terms
of constraint accuracy and translation quality;
Placeholder is better at preserving accurate
constraint, while Code-Switch yields higher
translation quality as measured by COMET.

• Inspired by our findings, we propose a simple
yet effective method for robust terminology
translation (RTT), combining PH and CS’s ad-
vantages. RTT learns to predict the term label
and achieves a high constraint accuracy (like
PH). Once a term label is generated, RTT ap-
pends the constraint counterpart in the decod-
ing sequence to make the consequence gener-
ation aware of the semantic constraints (like
CS).

• The experimental results of IATE, Wiktionary,
and the proposed test set demonstrate that our
approach can attain higher constraint accuracy
and translation quality compared to using PH
or CS alone, regardless of the number and
length of the constraints. In addition, RTT
maintains a slightly faster inference speed
than the vanilla Transformer.

2 Background

Let x = {x1, . . . , xM} be the source sentence,
y = {y1, . . . , yN} be the target sentence, and
C = {⟨s1, t1⟩, . . . , ⟨sK , tK⟩} be the constraint set
about x and y, where si and ti are the i-th source
and target constraint respectively. Each constraint
could be multi-word, e.g., |si| >= 1, |ti| >= 1.
Then TC asks the system must translate si into ti.
In this section, we briefly introduce two typical TC
methods based on data augmentation: Placeholder
(PH) (Crego et al., 2016) and Code-Switch (CS)
(Song et al., 2019; Dinu et al., 2019). We also de-
scribe some variants of them. Figure 1 explains the
differences between these methods.

Placeholder. Placeholder is an early method for
incorporating terminology constraints into machine
translation. During training, the raw bitext is

Method Source Target

Raw A B C D E F a b c d e f
PH A B T1 E F a b T1 e f
PH+SE A B [s] C D T1 [e] E F a b T1 e f
PH+SE+TE A B [s] C D T1 c d [e] E F a b T1 e f
CS A B c d E F a b c d e f
CS+SE A B [s] C D [e] c d [s] E F a b c d e f
RTT A B T1 E F a b T1 c d e f
RTT+SE A B [s] C D T1 [e] E F a b T1 c d e f

Table 1: Examples of different data augmentation meth-
ods. The terminology constraint is CD → cd, T1 repre-
sents the term label, [s] and [e] are the start and end tag
for the constraint, respectively. Red denotes the newly
added token compared with the original text.

pre-processed by replacing source and target con-
straints with corresponding ordered labels Ti. At
inference time, source constraints are marked as
ordered labels, and the model predicts the labels au-
tonomously. The translation result is then obtained
by replacing the labels with their corresponding
target constraints in a post-processing step.

Code-Switch. Instead of using ordered labels,
Code-Switch directly substitutes the source con-
straints with the corresponding target constraints in
the input sentence. This allows the model to learn
to copy the pre-specified target constraints from
the input, so the decoder only needs to generate the
target token step-by-step, like a standard system.

Variants. Considering the source side, vanilla
PH and CS lose the source constraints’ semantics
due to direct replacement by labels or target con-
straints. A simple yet efficient solution is to retain
the source constraints but use a tag to distinguish
them from the replacement marks, as proposed
by Dinu et al. (2019). We refer to this variant as
the source-enhanced model (SE). For PH, we can
further additionally tag target constraint informa-
tion in the input sentence, denoted as the target-
enhanced model (TE). Since CS has already in-
jected target constraints into the input sentence, TE
is not available for it.

3 On the robustness of terminology
constraint

In this section, we explore the robustness of exist-
ing TC solutions from two aspects: (1) number of
constraints and (2) target constraint length. We first
point out the oversimplified problem in existing TC
test sets in Section 3.1. We describe our proposed
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Test Set #Sent #Term #Avg Term #Avg Word

IATE 414 452 1.1 1.2
Wiktionary 727 884 1.2 1.1

TICO 15676 26492 1.69 1.23
EFA - - <3 ∼ U(1, 3)†
Ours 500 3052 6.1 3.4

Table 2: Statistics on terminology constraint test sets.
Avg Word denotes the average number of words in a tar-
get constraint. U denotes uniform sampling. † indicates
the number of BPEs rather than words.

challenging TC test set in Section 3.2. Then we
conduct comprehensive experiments to analyze the
robustness of prior TC solutions in Section 3.3.

3.1 Oversimplified problem
As summarized in Table 2, oversimplified termi-
nology constraint setups are widely present in pub-
lished test sets, such as IATE, Wiktionary (Dinu
et al., 2019), and TICO (Barrault et al., 2021), as
well as extracted from alignment data (called EFA)
(Wang et al., 2022; Guanhua et al., 2021). Typ-
ically, most open-source test sets have only one
constraint per sentence, and the target constraint
is also short, usually consisting of a single word.
We suspect that this easy test set may lead to a
misunderstanding of the practical performance of
different methods. Intuitively, PH/PH+SE may suf-
fer from poor translation fluency due to more target
constraints, as the contents of these constraints are
invisible during the generation of the decoder. How-
ever, this is not a severe problem for CS/CS+SE.
On the other hand, PH should be insensitive to the
constraint length, as it uses a single label as an al-
ternative. In contrast, it is more difficult for CS to
generate a long constraint due to more decoding
steps required.

3.2 Proposed test set
To shed light on this issue, we made up a challeng-
ing TC test set. We notice that previous TC test
sets generally are made by matching pre-build term
database (e.g. IATE, Wiktionary) on existing bitext
data sets. Since the term set is not strongly related
to bitext, the number of matched constraints is not
controlled. Instead, we first decide on the bitext
data and then ask the linguistics expert to pick suit-
able sentence pairs to label constraints satisfying
the requirement.

Specifically, we first collect WMT 13-18 test
sets on English-German news translation task as
the bitext data (14585 sentence pairs); The linguis-

tic expert artificially hand-picks 500 sentence pairs
for the study. These pairs are designed to include a
minimum of 6 constraints each, drawn from a care-
fully curated set of noun phrases (such as the names
of organizations, persons, movies and brands) and
common expressions. By focusing on these types
of constraints, the expert aims to replicate the lin-
guistic conditions found in industrial systems as
closely as possible. Table 10 in Appendix shows
some samples in the proposed test set.

3.3 Experiments

Setup. We conduct experiments on the WMT16
En-De task (4.5M). We replicate the same data pro-
cessing as Vaswani et al. (2017) with 32k joined
BPE codes. We use the standard transformer-base
model setting: 6-layer encoder/decoder, 8 attention
heads, hidden size of 512, and FFN hidden size of
2048. We train all models with 65536 batch tokens
for 120k updates and use checkpoint average of the
last 5 checkpoints. To apply constraints on training
data, we extract terminologies from two publicly
available term databases, Wiktionary and IATE. In
order to avoid spurious matches, we filtered out
the top 10k frequent words in term databases. Ac-
cording to previous work (Dinu et al., 2019), the
augmented data size is about 10% of the original
data. We compare five TC models from two fami-
lies, including PH, PH+SE, PH+SE+TE, CS, and
CS+SE. The difference lies in augmented data is
shown in Figure 1.

Metrics. We use several metrics to study the per-
formance of different methods comprehensively.
Specifically, in addition to reporting detokenized
BLEU scores with sacrebleu6 (Post, 2018), we also
use COMET7 (Rei et al., 2020) to evaluate the trans-
lation quality, inspired by the inconsistent trend in
recent study (Helcl et al., 2022). Besides, we use
strict sentence-level constraint accuracy (SCA) as
the metric for terminology constraint. That is to say,
only translations that satisfy all constraints in the
sentence are considered correct. In contrast, most
previous studies consider term-level constraint ac-
curacy (TCA). Compared to TCA, SCA is more
desired in the practical system because the transla-
tion may be severely misunderstood even if only
one constraint is wrong.

6BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.5.1

7wmt20-comet-da
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Ti
PH PH+SE PH+SE+TE CS CS+SE

BLEU COMET SCA BLEU COMET SCA BLEU COMET SCA BLEU COMET SCA BLEU COMET SCA

1 35.2 0.4098 97.8 36.8 0.4340 98.6 35.7 0.3995 98.8 36.3 0.4423 89.8 36.9 0.4537 89.6
2 36.1 0.4172 96.8 38.2 0.4242 96.0 36.9 0.4079 97.4 37.0 0.4381 82.6 37.9 0.4547 84.8
3 36.4 0.4156 95.0 38.5 0.4294 93.4 38.0 0.4122 94.2 38.4 0.4538 76.2 39.2 0.4627 75.2
4 36.8 0.3934 92.6 40.2 0.4351 89.4 38.8 0.4094 91.2 38.6 0.4555 69.0 40.1 0.4754 69.9
5 37.2 0.3787 93.0 41.1 0.4315 87.8 39.6 0.3867 87.0 39.3 0.4568 62.3 40.6 0.4719 58.8
6 36.6 0.3327 91.0 41.9 0.4232 84.0 40.4 0.3803 83.2 40.1 0.4579 57.2 41.4 0.4735 52.8

avg 36.4 0.3912 94.4 39.5 0.4296 91.5 38.2 0.3993 92.0 38.3 0.4507 72.9 39.4 0.4651 71.9

Table 3: Results of BLEU, COMET, and SCA against the number of constraint counts. avg denotes the average
results of {T1, . . . , T6}. The results of baseline without any TC are 36.0/0.4356/{60.0, 39.2, 28.0, 17.0, 12.8, 8.8}
for BLEU, COMET and SCA in T1, . . . , T6.

Results on various constraint counts. To simu-
late the case of various constraint counts, suppose
there are N constraints for each sentence pair in
the proposed test set, we randomly pick up 1,. . . ,N
constraints. As a result, we conduct k TC test sets
with constraint count ranges from 1 to k, denoted
by T1, . . . , Tk, where every pair in Ti has exactly i
constraints. Table 3 shows the results of three met-
rics (BLEU, COMET, SCA) along with the number
of constraint counts (k = 6). We can see that:

(i) The SE variants based on either PH or CS sig-
nificantly improve translation quality in terms
of BLEU and COMET, which indicates that
it is necessary to make the model aware of
source terminology semantics. The excep-
tions are the SCA results when increasing Ti.
The possible reason is that injecting too much
non-source information (e.g., label, target con-
straints) in the input confuses the model, de-
creasing the copying success rate.

(ii) The PH family performs better in SCA than
the CS family, especially for larger Ti. For
example, the gap between PH and CS is 8.8%
in T1, extending to 26.8% in T6. To our best
knowledge, it is the first time to reveal that
dramatic SCA degradation in CS models.

(iii) According to COMET, the family of CS has
a superior translation quality compared to
the PH family. We contend that COMET
is a crucial supplement to BLEU for assess-
ing terminology constraints. We observe
that PH+SE and CS+SE have similar aver-
age BLEU scores, yet there is a substantial
performance gap in COMET. This is due
to BLEU’s insensitivity to syntactic errors,
whereas COMET imposes a hefty penalty,
which is in line with earlier finding (Helcl
et al., 2022).

L Count None PH PH+SE PH+SE+TE CS CS+SE

1 427 85.5 99.3 97.9 98.1 96.7 94.6
2 618 72.8 98.5 98.2 97.7 92.9 90.5
3 698 65.6 98.4 96.8 96.8 92.6 91.5
4 528 55.7 97.5 97.3 96.6 88.6 90.9
5 343 51.0 98.3 98.0 96.2 87.8 86.0
>6 386 40.9 96.4 94.0 93.5 84.0 81.6

avg - 63.3 98.1 97.1 96.7 90.9 89.7

Table 4: Results of term-level constraint accuracy (TCA)
against the BPE length of target constraints. None rep-
resents the baseline system without any terminology
constraint.

Results on various target constraint lengths.
To study the impact of target constraint lengths,
we report the TCA on different constraint length in
the proposed test set as shown in Table 4. Like the
trend of SCA in various constraint counts, we find
that the PH family is again significantly superior to
the CS family, especially when the length becomes
longer. This result also proves that the benefits
of label prediction in terms of constraint accuracy
exist widely in different situations.

4 Our approach

4.1 Basic idea

The above experiments empirically show the solid
complementarity between PH and CS, and here we
analyze the reason behind it (see Figure 1). We
suppose there are two sequences impacting the de-
coding process: prediction sequence and context
sequence, where the former is the realistic predic-
tion by the model, and the latter decides the target
context exposed to the model. For both PH-like and
CS-like methods, the common problem is that they
share the two sequences. Specifically, using place-
holders in PH simplifies the prediction sequence
but leads to the loss of constraint information (Fig-
ure 1a). In contrast, CS can observe the completed
context but is redundant in the prediction sequence

6032



Prediction

Context

y1 y2 T1 y5 T2 y7T1 T2

y1 y2 T1 y5 T2 y7T1 T2

(a) Placeholder (PH)

Prediction

Context

y1 y2 y3 y4 y5 y6 y7y3 y4 y6

y1 y2 y3 y4 y5 y6 y7y3 y4 y6

(b) Code-Switch (CS)

Prediction

Context

y1 y2 T1 y5 T2 y7T1 T2

y1 y2 y3 y4 y5 y6 y7y3 y4 y6

T1 → y3, y4 T2 → y6

(c) Our approach

Figure 1: Illustration of the difference between Placeholder (a), Code-Switch (b), and our approach (c). For the sake
of clarity, we omit the source sentence. The target sentence is y1, . . . , y7, which contains two constrains T1 → y3, y4
and T2 → y6. Blue squares and red squares represent unconstrained and constrained tokens, respectively. The
dotted rectangle represents the visible context of y5. Compared with PH and CS, our approach keeps the prediction
sequence simple and makes unconstrained tokens capture the semantics of constraints at the same time.

Input [B] a b T1 c d e T2 f g

Word Emb. W[B] Wa Wb WT1 Wc Wd We WT2 Wf Wg

Position Emb. P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Term Emb. C0 C0 C0 C1 C1 C1 C1 C2 C2 C2

Decoder

Self-Attention Layer

Cross-Attention LayerN ×

Feed-Forward Layer
[B]

a
b

T1
c
d
e

T2

f
g

[B] a b T1 c d e T2 f g

Output a b T1 c d e T2 f g [E]

Figure 2: The training framework of proposed Robust
Terminology Translation (RTT).

(Figure 1b). Thus, we propose to decouple the two
sequences, which is the basis of our approach, re-
ferred to as RTT. As illustrated in Figure 1c, we
still use placeholders to simplify the prediction se-
quence, but expose their semantics to future tokens
by replacing the placeholder with its text. We ex-
plain how to efficiently implement RTT in both
training and inference in the following section.

4.2 Training

RTT is agnostic to model architecture, and here we
use the vanilla Transformer due to its wide applica-
tion. Figure 2 illustrates the overall architecture.

Data augmentation. Since RTT behaves the
same as PH for the source side, we only describe
the data augmentation on the target side. Consider
the target sentence y = {y1, . . . , yN} and con-
straints C = {⟨s1, t1⟩, . . . , ⟨sK , tK⟩}, then we
construct a new target sequence y∗ by prepending
an ordered term label Ti before the beginning of
constraint ti. For instance, in Figure 2, we aug-

ment the original target input “a, b, c, d, e, f, g” by
“a, b, T1, c, d, e, T2, f, g”. We do not use any tags to
distinguish term labels from normal tokens further
to minimize the target sequence length.

Input embedding. In addition to the word em-
bedding and sinusoidal positional embedding uti-
lized in the standard Transformer, we introduce an
additional learnable term embedding at the input
layer. This term embedding provides information
to the model about the number of constraints gen-
erated up to position i, thereby reducing the likeli-
hood of generating repetitive constraints. Then the
three embeddings are element-wise added to serve
as the input to the Transformer layer. We note that
the increase in the parameter size, K × d, due to
the inclusion of the term embedding is negligible
compared to the overall network parameters. Here,
K represents the maximum number of constraints
in a sentence, and d corresponds to the hidden size.
In our work, we set K to be 64.

Control visible context. In the Code-Switch
method, term labels T are not present during the
translation generation. To replicate this behavior,
we suggest using a mask matrix in the self-attention
layer of the RTT’s decoder to make T invisible for
subsequent tokens. Let MN×N be the mask matrix
of the decoder self-attention layer, where Mij = 1
implies that the j-th target token is visible for the i-
th target token. In the standard Transformer, M is a
lower triangular matrix, which means that Mij = 1
if i ≤ j. However, RTT additionally requires that
yi ̸= T and yj ̸= T , thus preventing term labels
from being exposed to regular tokens.
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Loss masking. In the context of RTT, we aim
to encourage the model to focus more on learning
to predict the term label T rather than the corre-
sponding constraint tokens t. This is because once
T is predicted, the corresponding constraint to-
kens t will be automatically appended. To achieve
this goal, we propose "Loss Masking" to guide the
model’s attention. Specifically, for each token yi
in the target sequence, we introduce a weight wi

to modify the original log-likelihood log(P (yi))
by wi × log(P (yi)). Then, we assign wi = 1 to
normal tokens or term labels in the target sequence.
However, we set the weight wi to 0 for tokens that
correspond to the target constraint. This is also
equivalent to treating the target constraint tokens as
padding symbols. It is important to note that even
though the target constraint tokens are masked, they
can still be learned from the raw training data.

4.3 Inference

RTT follows the autoregressive translation
paradigm. At decoding step i, if the prediction ŷi
is a normal token, it is appended to the decoding
sequence and the next step is taken. However, if ŷi
is a term label, the sequence will also contain its
corresponding target constraint retrieved from the
input term base. The use of beam search in RTT
can complicate this process, as other translation
candidates must add several PADs (padding
symbols) to compensate for the increased sequence
length when a term label is generated. This can
lead to a larger footprint and higher computational
costs at inference, especially when the number of
constraints or beam size is larger. To address this
issue, we propose a dynamic padding strategy that
reduces the number of redundant PADs. As shown
in Figure 3, we append PADs at the beginning of
the sequence rather than the end of a term label.
This allows us to truncate the longest portion of
common PADs once all candidates have some
PADs at the beginning of the sequence, resulting
in a shorter sequence. The effectiveness of this
implementation trick is shown in Figure 5.

5 Experimental results

We first validate the effectiveness of proposed ap-
proach on the same setup as Section 3.3. Then, for
fair comparisons to existing work, we also conduct
experiments with WMT18 En-De training data (Eu-
roparl, News Commentary) and common test sets
(IATE, Wiktionary).

C1 · · · T1 X

step i

Y · · · Z P

step j

P · · ·
C2 · · · Z P P · · · T1 X Y · · ·

C1 P P · · · T1 X

step i

Y · · · Z P

step j

P · · ·

C2 P P · · · Z P P · · · T1 X Y · · ·

Figure 3: Illustration of naive padding (a) and proposed
dynamic padding (b) with a beam size of 2. Red blocks
represent term labels, respectively. The red, gray, and
blue blocks represent the term label, PAD, and normal
token, respectively. For naive padding, the sequence
length is 6 with two redundant PAD symbols. In con-
trast, dynamic padding reduces the sequence length to 4
by moving PADs at the beginning and then truncating.

5.1 Results on proposed test set

We compared the performance of our proposed
RTT model with two types of baseline methods:
Placeholder approaches (PH) and Code-Switch ap-
proaches (CS). We also included the Transformer
model as a baseline for comparison. Table 5 shows
the average results of BLEU, COMET and SCA on
our proposed test sets (T1, . . . , T6). Unlike the PH
family or CS family, which are either proficient in
BLEU/COMET or SCA, our proposed RTT model
achieves high translation quality and constraint ac-
curacy at the same time. Specifically, the proposed
RTT model with source enhancement (RTT+SE)
achieved the highest BLEU score, with an average
score of 40.2. It also achieved the highest COMET
score, with an average of 0.4866. In terms of SCA,
although RTT+SE slightly falls behind the best sys-
tem (PH), it outperforms CS+SE in a significant
performance gap (about 20%). Similar to PH, we
note that additionally applying TE to RTT+SE is
not consistently optimal. Therefore, unless other-
wise stated, we take RTT+SE as our primary model
in the following experiments. We note that the use
of source enhancement is critical. Otherwise, the
pure RTT model degrades severely due to asymmet-
ric constraint information between the source and
target side. That is, the constraints on the source
side are term labels, while those on the target side
are constraint text. To make the improvement of
RTT clear, we also draw performance curves along
with the change in the number of constraints, as
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Method BLEU COMET SCA

Transformer 36.0 0.4356 27.6

PH 36.4 0.3912 94.4
PH + SE 39.5 0.4296 91.5
PH + SE + TE 38.2 0.3993 92.0

CS 38.3 0.4507 72.9
CS + SE 39.4 0.4651 71.9

RTT 36.1 0.3943 91.0
RTT + SE 40.2 0.4866 91.9
RTT + SE + TE 40.1 0.4604 93.3

Table 5: Average BLEU, COMET and SCA scores on
proposed test sets (T1, . . . , T6).

illustrated in Figure 4.

5.2 Comparisons to existing methods

To compare RTT fairly with existing methods, we
perform additional experiments on WMT18 En-De
task and replicate Dinu et al. (2019)’s setup. We
use Europarl and News Commentary data as train-
ing data (2.2M), and report BLEU (sacrebleu) and
TERM accuracy (TCA) on two easy TC test sets
(IATE, Wiktionary). We consider several systems
as our baselines, such as Transformer (Vaswani
et al., 2017), Const. Dec. (Post and Vilar, 2018),
Source. Fact. (Dinu et al., 2019) and TADA (Ailem
et al., 2021). The results of our experiments are
shown in Table 6. Our proposed RTT model with
source enhancement (RTT + SE) achieved the high-
est BLEU score on both test sets, with 27.2 on
IATE and 27.8 on Wiktionary. It also achieved the
highest TCA on the IATE test set, with a score
of 99.6%. On the Wiktionary test set, the RTT
model achieved a TCA score of 98.3%, which was
slightly lower than the constraint decoding method
but still significantly higher than the other meth-
ods. Overall, the results indicate that our proposed
RTT model is not only capable of handling difficult
constraints, but also works well on such easy test
sets.

6 Analysis

6.1 Inference speed

As illustrated in Figure 5, we compared the de-
coding step size and inference speed between our
model and the vanilla Transformer. We also study
the effect when our model decodes with naive
padding (NP) and dynamic padding (DP). It is clear

Method IATE Wiktionary

TCA% BLEU TCA% BLEU

Previous works

Transformer 76.3 25.8 76.9 26.0
Const. Dec. 82.0 25.3 99.5 25.8

Source. Fact. 94.5 26.0 93.4 26.3
TADA. 98.0 27.1 96.8 26.7

Our work

RTT + SE 99.6 27.2 98.3 27.8

Table 6: BLEU and Term-level Constraint Accuracy
(TCA) on IATE and Wiktionary test sets.

that the decoding step of NP is linearly increasing
along with the number of constraints. Instead, the
DP strategy successfully reduces an average of 52%
decoding step and is very close to the baseline. As
a bonus, the shorter decoding step in DP leads to a
faster inference speed than NP. We note that RTT
with DP can also run faster than the Transformer
baseline when the constraint count is large because
the corresponding target constraints in RTT are di-
rectly substituted to avoid costly model generation.

6.2 RTT without training

Without training, RTT can also be regarded as a
modified Placeholder method. That is, the replace-
ment of term labels transformers from the end of
generation (as post-process) to the generation pe-
riod. We are interested in whether the performance
of Placeholder methods can be improved by plug-
and-play the inference part of RTT. To this end,
we tested it on two pre-trained models: PH and
PH+SE, and Table 7 listed the results. We can
see that the impact of RTT inference is different:
PH+SE benefits in COMET (+0.0061) and SCA
(+1.4%), while all metrics degrade in the vanilla
PH model. We attribute it to asymmetry constraint
information between the source and target like RTT
and RTT+SE. Specifically, RTT inference makes
the model aware of the semantics of constraint,
while the source side of PH loses information.
Even so, the improvement in PH+SE indicates that
RTT inference can be used directly on the existing
PH+SE model without further training.

6.3 Ablation study

In Table 8, we demonstrate the effects of two train-
ing components: term embedding (TermE) and loss
masking (LM). As expected, using TermE and LM
yields the best performance, as indicated by the
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Figure 4: Performance curves against the number of constraint (Ti) and the length of target constraints (L).
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Figure 5: Compare the decoding step size (left) and in-
ference speed (right) against varying constraint counts.

Model RTT Inference BLEU COMET SCA

PH w/o 36.5 0.3912 94.4
w/ 33.8↓ 0.3358↓ 79.1↓

PH + SE w/o 39.5 0.4296 91.5
w/ 39.4↓ 0.4357↑ 92.9↑

Table 7: Average results of applying RTT’s inference to
Placeholder methods on proposed test sets T1, . . . , T6.

highest scores on all three evaluation metrics. Not
utilizing either component leads to a decrease in
performance. Notably, LM has a greater effect than
TermE, suggesting that allowing the model to focus
on learning the desired targets is essential. The
model appears less sensitive to TermE, likely be-
cause the word embedding of the introduced term
label implicitly informs the model of the state of
constraints.

7 Related work

There have been several approaches to addressing
the issue of translating specialized terminology in
the field of machine translation. One branch of
approaches focuses on the decoding process, such
as extending the search space (Hokamp and Liu,
2017; Post and Vilar, 2018; Hu et al., 2019) or us-
ing a finite-state acceptor (Hasler et al., 2018), to
enforce terminology translation strictly. However,

TermE LM BLEU COMET SCA

✓ ✓ 40.2 0.4866 91.9
✓ ✗ 39.4 (-0.8) 0.4550 (-0.0316) 88.5 (-3.4)

✗ ✓ 40.1 (-0.1) 0.4671 (-0.0195) 91.0 (-0.9)

✗ ✗ 39.5 (-0.7) 0.4438 (-0.0428) 89.0 (-2.9)

Table 8: Ablation study on term embedding (TermE)
and loss masking (LM). The values in the parentheses
differ from the first row, which serves as a reference
point.

these methods can incur high calculation costs and
often result in poor translation quality (Guanhua
et al., 2021). Another branch of approaches aims
to modify the network architecture to better inte-
grate with external terminologies through the use of
alignment information (Song et al., 2020; Guanhua
et al., 2021), vectorized terminology representation
(Wang et al., 2022), or non-autoregressive trans-
lation (Susanto et al., 2020). These methods can
potentially improve the integration of terminolo-
gies, but the big changes in network architecture
greatly reduce their usability.

Data augmentation perhaps be the most widely
used approach for terminology translation in ma-
chine translation. The placeholder method is an
early solution for terminology translation by in-
troducing special term labels (Crego et al., 2016).
Michon et al. (2020) add linguistic information in
the label to compensate for the semantic loss. Al-
though effective, Placeholder techniques have dif-
ficulties producing smooth translations. Recently,
Code-Switch methods have become popular as it
overcomes this problem by allowing the model
to generate word-by-word constraint translation,
like standard neural machine translation. Song
et al. (2019) directly replaces the source constraint
with its translation in the input sequence; Dinu
et al. (2019) uses some tags to distinguish be-
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tween source constraints and target constraints;
Ailem et al. (2021) further improves performance
by masking the source constraints; Bergmanis and
Pinnis (2021) uses target lemma to make the model
learn morphology knowledge. As observed in our
experiments, Code-Switch methods are fluent in
translation but degrade in constraint accuracy. In
contrast, our approach attempts to combine the
strengths of Placeholder and Code-Switch, achiev-
ing high translation quality and constraint accuracy
simultaneously.

8 Conclusion

Our study has highlighted the importance of taking
robustness into account when comparing different
methods of terminology constraint translation. We
have found that the Placeholder and Code-Switch
families are superior in different metrics, and the
gap between them increases when dealing with
more and longer terms. Additionally, we have ob-
served that current TC test sets are inadequate for
testing the robustness of different methods. To ad-
dress this problem, we have created a new, more dif-
ficult terminology constraint test set. Moreover, we
have proposed the RTT model, which merges the
best features of the Placeholder and Code-Switch
approaches and is capable of delivering both high
translation quality and constraint accuracy regard-
less of the number of constraints and their length.

Limitations

While our proposed method demonstrates high
translation quality and constraint accuracy, it is
important to acknowledge that the hard copy mech-
anism may not be suitable for certain morphologi-
cally complex languages, such as Arabic. In Arabic,
phrases or terminologies often involve conjunctions
or prepositions and exhibit varying morphological
forms. Unfortunately, our proposed method is not
capable of effectively handling such cases, and ad-
dressing this challenge remains an open area for
future research.
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A Appendix

A.1 Samples of different terminology
constraint test sets

We pick samples from IATE, Wiktionary, and our
proposed test set randomly and show them in Ta-
ble 10.

A.2 Detailed settings
We take two different settings for proposed test set
and previous public test set, the detailed settings
are listed in Table 9.

A.3 Samples of translation results
Table 11 shows the translation result of different
systerms.
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Settings Transformer Base Transformer small
Encoder layers 6 3
Decoder layers 6 3
Hidden size 512 512
FFN hidden size 2048 2048
Dropout 0.1 0.1
Label smoothing 0.1 0.1
Adam(α, β) (0.9,0.98) (0.9,0.98)
Learning rate 5e-4 5e-4
Total parameters 58.1M 35.1M
GPU time (h) 12.5 11.3
Beam size 4 5

Table 9: Detailed settings. The transformer base model
is for proposed test set, the transformer small model is
for public test set in order to be par with Ailem et al.
(2021).
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Dataset Source Target

IATE
Donald Trump wouldn’t really mind if he lost the US presidential
election in November: "Either it’ll work out, or I’ll go on a long,
long holiday," the Republican candidate said in an telephone inter-
view1 with US television channel CNBC.

Verliert Donald Trump die US-Präsidentschaftswahlen im Novem-
ber, wäre ihm das relativ egal: "Letztlich wird es entweder klappen,
oder ich habe einen sehr, sehr schönen, langen Urlaub", sagte der
Kandidat der Republikaner in einem Telefon- Interview1 mit dem
US-Fernsehsenders CNBC.

Wiktion. In 2014, police1 raided the property and found more than 70g in
cannabis2 as well as scales, paraphernalia and £1,700 in cash.

2014 führte die Polizei1 eine Razzia in dem Haus durch und fand
über 70g Cannabis2 sowie Waagen, Paraphernalien und Bargeld
in Höhe von £1.700.

Ours
(1)

She pointed out some exceptional successes1 , including com-
missioning and opening the new spring2 (1994), purchasing land
near the new spring3 (1998), compensating farmers4 , renovating
the elevated tanks5 (1999), creating a new computer management
system6 (2004), and renewing some of the water pipes.

Als herausragende Ereignisse nannte1 sie die Inbetriebnahme
und Einweihung der neuen Brunnen2 (1994), Grundstückskäufe
im Bereich der neuen Brunnen3 (1998) und Entschädigung der
Landwirte4 , die Sanierung der Hochbehälter5 (1999), die Neuan-
schaffung einer zentralen Computer-Steuerung6 (2004) und die
Teilerneuerungen von Wasserleitungen.

(2)

The vice chairman1 of the Standing Committee’s2 Legislative
Affairs Commission, Zhang Rongshun, and the Deputy Director3
of the State Council’s Hong Kong4 and Macau Affairs Office5 ,
Feng Wei, were also due to speak in a series of briefings throughout
the day6 .

Der stellvertretende Vorsitzende1 der Rechtskommission des
ständigen Ausschusses2 , Zhang Rongshun sowie der Vizedirektor3
des Büros für Angelegenheiten Hongkongs4 und Macaus des
Staatsrates5 , Feng Wei, sollten im Verlauf des Tages6 befragt
werden.

Table 10: Samples of different terminology constraint test sets. The red text indicates the term, and the blue subscript
denotes the corresponding order.

Terminology Constraints: T1(EU transport commissioner→EU-Kommissarin für), T2(Hungarian
justice minister→Justizminister in Ungarn), T3(financial statements→Finanzberichten)

Source

The EU transport commissioner-designate, Romanian socialist politician Rovana Plumb, and the
proposed commissioner for EU enlargement, former Hungarian justice minister Laszlo Trocsanyi,
were told their confirmation hearings could not go ahead because of inconsistencies in their financial
statements, Reuters reported.

Transfor-
mer

Der designierte EU-Verkehrskommissar, der rumänische sozialistische Politiker Rovana Plumb, und der
vorgeschlagene Kommissar für die EU-Erweiterung, der ehemalige ungarische Justizminister Laszlo
Trocsanyi, wurden mitgeteilt, dass ihre Bestätigungsanhörungen aufgrund von Ungereimtheiten in
ihren Jahresabschlüssen nicht stattfinden könnten, so Reuters.

PH

Dem designierten rumänischen sozialistischen Politiker Rovana Plumb und dem vorgeschlagenen
Kommissar für die EU-Erweiterung, dem ehemaligen Justizminister in Ungarn Laszlo Trocsanyi,
wurde mitgeteilt, dass ihre Anhörungen aufgrund von Widersprüchen in ihrem Finanzberichten nicht
durchgeführt werden können. Reuters hat berichtet.

PH + SE

Dem designierten EU-Kommissarin für Verkehr, dem rumänischen sozialistischen Politiker Rovana
Plumb, und dem vorgeschlagenen Kommissar für die EU-Erweiterung, dem ehemaligen Justizminister
in Ungarn, Laszlo Trocsanyi, wurde mitgeteilt, dass ihre Bestätigungsanhörungen aufgrund von
Unstimmigkeiten in ihren Finanzberichten nicht durchgeführt werden können, berichtet Reuters.

CS

Der designierten EU-Kommissarin für Verkehr, der rumänischen sozialistischen Politikerin Rovana
Plumb, und dem vorgeschlagenen Kommissar für die EU-Erweiterung, dem ehemaligen Justizminister
in Ungarn Laszlo Trocsanyi, wurde mitgeteilt, dass ihre Bestätigungsanhörungen aufgrund von Un-
gereimtheiten in ihren Finanzberichten nicht durchgeführt werden können, berichtete Reuters.

CS + SE

Der designierte EU-Kommissarin für Verkehr, die rumänische sozialistische Politikerin Rovana Plumb
und der vorgeschlagene Kommissar für die EU-Erweiterung, der ehemalige Justizminister in Ungarn
Laszlo Trocsanyi, wurden aufgrund von Ungereimtheiten in ihren Finanzberichten mitgeteilt, dass ihre
Bestätigungsanhörungen nicht fortgesetzt werden könnten.

RTT +
SE

Der designierte EU-Kommissarin für Verkehr, die rumänische sozialistische Politikerin Rovana Plumb,
und der vorgeschlagene Kommissar für die EU-Erweiterung, der ehemalige Justizminister in Ungarn
Laszlo Trocsanyi, wurden aufgefordert, ihre Bestätigungsanhörungen wegen Ungereimtheiten in ihren
Finanzberichten nicht durchzuführen, berichtete Reuters.

Reference

Rovana Plum, angehende EU-Kommissarin für Verkehr und rumänische Sozialdemokratin, sowie
László Trócsányi, nominiert als EU-Kommissar für die Erweiterung und Europäische Nachbarschaft-
spolitik und ehemaliger Justizminister in Ungarn, wurden nach einem Hearing darüber informiert,
dass ihre Nominierungen aufgrund von Unstimmigkeiten in ihren Finanzberichten aufgehoben wurden,
berichtete die Nachrichtenagentur Reuters.

Table 11: Samples of different system’s results
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