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Abstract

This paper presents miCSE, a mutual
information-based contrastive learning
framework that significantly advances the state-
of-the-art in few-shot sentence embedding.
The proposed approach imposes alignment
between the attention pattern of different views
during contrastive learning. Learning sentence
embeddings with miCSE entails enforcing
the structural consistency across augmented
views for every sentence, making contrastive
self-supervised learning more sample efficient.
As a result, the proposed approach shows
strong performance in the few-shot learning
domain. While it achieves superior results
compared to state-of-the-art methods on
multiple benchmarks in few-shot learning,
it is comparable in the full-shot scenario.
This study opens up avenues for efficient
self-supervised learning methods that are more
robust than current contrastive methods for
sentence embedding.1

1 Introduction

Measuring sentence similarity has been challenging
due to the ambiguity and variability of linguistic ex-
pressions. The community’s strong interest in the
topic can be attributed to its applicability in numer-
ous language processing applications, such as sen-
timent analysis, information retrieval, and semantic
search (Pilehvar and Navigli, 2015; Iyyer et al.,
2015). Language models perform well on these
tasks but typically require fine-tuning on the down-
stream task and corpora (Reimers and Gurevych,
2019; Devlin et al., 2018; Pfeiffer et al., 2020; Mos-
bach et al., 2021). In terms of sentence embed-
dings, contrastive learning schemes have already
been adopted successfully (van den Oord et al.,
2018; Liu et al., 2021; Gao et al., 2021; Carlsson
et al., 2021). The idea of contrastive learning is
that positive and negative pairs are generated given

1Source code and pre-trained models are available at:
https://github.com/SAP-samples/acl2023-micse/

a batch of samples. Whereas the positive pairs
are obtained via augmentation, negative pairs are
often created by random collation of sentences.
Following the construction of pairs, contrastive
learning forces the network to learn feature rep-
resentations by pushing apart different samples
(negative pairs) or pulling together similar ones
(positive pairs). While some methods seek to op-
timize for selecting “hard” negative for negative
pair generation (Zhou et al., 2022a), others investi-
gated better augmentation techniques for positive
pair creation. In this regard, many methods have
been proposed to create augmentations to boost
representation learning. Standard approaches for
the augmentation aim at input data level (a.k.a dis-
crete augmentation), which comprises word level
operations such as swapping, insertion, deletion,
and substitution (Xie et al., 2017; Coulombe, 2018;
Wei and Zou, 2019). In contrast to that, contin-
uous augmentation operates at the representation
level, comprising approaches like interpolation or
“mixup” on the embedding space (Chen et al., 2020;
Cheng et al., 2020; Guo et al., 2019). Most re-
cently, augmentation was also proposed in a more
continuous fashion operating in a parameter level
via simple techniques such as drop-out (Gao et al.,
2021; Liu et al., 2021; Klein and Nabi, 2022) or ran-
dom span masking (Liu et al., 2021). The intuition
is that “drop-out” acts as minimal data augmenta-
tion, providing an expressive semantic variation.
However, it will likely affect structural alignment
across views. Since positive pairs are constructed
from identical sentences, we hypothesize that the
structural dependency over the views should be pre-
served by utilizing drop-out noise. Building on this
idea, we maximize the structural dependence by
enforcing distributional similarity over the atten-
tion values across the augmentation views. To this
end, we employ maximization of the mutual infor-
mation (MI) on the attention tensors of the positive
pairs. However, since attention tensors can be very
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high-dimensional, computing MI can quickly be-
come a significant burden if not intractable. This
paper proposes a simple solution to alleviate the
computational burden of MI computation, which
can be deployed efficiently. Similar to (Fan et al.,
2020), we adopt the Log-Normal distribution to
model attention. Empirical evidence confirms this
model as a good fit while facilitating the optimiza-
tion objective to be defined in closed form. In
this case, mutual information can be provably re-
formulated as a function of correlation, allowing
native GPU implementation. As discussed above,
the proposed approach builds upon the contrastive
learning paradigm known to suffer from model col-
lapse. This issue becomes even more problematic
when enforcing MI on the attention level, as it tight-
ens the positive pairs via regularizing the attention.
Therefore the selection of negative pairs becomes
more critical in our setup. To this end, we utilize
momentum contrastive learning to generate harder
negatives (He et al., 2020). A “tighter” binding on
positive pairs and repulsion on ”harder” negative
pairs empowers the proposed contrastive objective,
yielding more powerful representations.

Combining ideas from momentum contrastive
learning and attention regularization, we propose
miCSE, a conceptually simple yet empirically pow-
erful method for sentence embedding, with the
goal of integrating semantic and structural informa-
tion of a sentence in an information-theoretic and
Transformer-specific manner. We conjecture the
relation between attention maps and a form of syn-
tax to be the main driver behind the success of our
approach. We speculate that our proposed method
injects structural information into the model as an
inductive bias, facilitating representation learning
with fewer samples. The adopted structural induc-
tive biases provide a “syntactic” prior as an implicit
form of supervision during training (Wilcox et al.,
2020), which promotes few-shot learning capabil-
ities in neural language models. To validate this,
we introduced a low-shot setup for training sen-
tence embeddings. In this benchmark, we finetune
the language model only with a small number of
training samples. Note that this is a very chal-
lenging setup. The inherent difficulty can be at-
tributed to the need to mitigate the domain shift
in the low-shot self-supervised learning scheme.
We emphasize the importance of this task, as in
many real-world applications, only small datasets
are often available. Such cases include NLP for

low-resource languages or expert-produced texts
(e.g., medical records by doctors), personalized LM
for social media analysis (e.g., personalized hate
speed recognition on Twitter), etc. Our proposed
method significantly improves over the state-of-the-
art in the low-shot sentence embedding benchmark.
This is the first work that explores how to combine
semantic and structural information through atten-
tion regularization and empirically demonstrates
this benefit for low-shot sentence embeddings.

Previous works: Recently, VaSCL (Zhang et al.,
2022a), ConSERT (Yan et al., 2021a), PCL (Wu
et al., 2022a) and (Chuang et al., 2022) proposed
contrastive representation learning with diverse
augmentation strategies on positive pair. However,
we proposed a principled approach for enforcing
alignment in positive pairs at contrastive learning
without discretely augmenting the data. Similar to
us, ESimCSE (Wu et al., 2021) and MoCoSE (Cao
et al., 2022a) proposed to exploit a momentum
contrastive learning model with negative sample
queue for sentence embedding to boost uniformity
of the representations. However, unlike us, they
do not enforce any further tightening objective on
the positive pairs nor consider few-shot learning.
Very recently, authors in InforMin-CL (Chen et al.,
2022) and InfoCSE (Wu et al., 2022b)proposed
information minimization-based contrastive learn-
ing. Specifically, the authors propose to minimize
the information entropy between positive embed-
dings generated by drop-out augmentation. Our
model differs from this paper and the method in
(Bachman et al., 2019; Yang et al., 2021; Zhang
et al., 2020; Sordoni et al., 2021; Wu et al., 2020),
which focuses on using mutual information for self-
supervised learning. A key difference compared to
these methods is that they estimate MI directly on
the representation space. In contrast, our method
computes the MI on attention. Other related work
include (Zhang et al., 2022b; Zhou et al., 2022b;
Zhang et al., 2022c; Liu et al., 2022).

The contributions of the proposed work are:
First, we propose to inject structural information
into language models by adding an attention-level
objective. Second, we introduce Attention Mu-
tual Information (AMI), a sample-efficient self-
supervised contrastive learning. Third, we intro-
duce low-shot learning for sentence embedding.
We show that our method performs comparably
to the state-of-the-art in the full-shot scenario and
significantly better in few-shot learning.
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2 Method

The proposed approach aims to exploit the structure
of the sentences in a contrastive learning scheme.
Compared to conventional contrastive learning that
solely operates at the level of semantic similarity
in the embedding space, the proposed approach in-
jects structural information into the model. This is
achieved by regularizing the attention space of the
model during training. We let D denote a dataset
consisting of string sequences (sentences) from cor-
pus X with D = {x1,x2, ...,x|X |}, where we as-
sume xi to be a tokenized sequence of length n with
xi ∈ Nn. For mapping the input data to the embed-
ding space, we use a bi-encoder fθ parametrized
by θ. Bi-encoders entail the computation of em-
beddings for similarity comparison, whereby each
sentence in a pair is encoded separately. Hence, the
instantiation of a bi-encoder on augmented input
data induces multiple views. For the following, we
let v ∈ {1, 2} denote the index of the view, where
each view corresponds to a different augmentation.
Consequently, encoding a data batch Db yields em-
bedding matrices Ev ∈ R|Db|×U , where U denotes
the dimensionality of the embeddings. Employing
a Transformer, encoding the input data yields the
embedding matrices and the associated attention
tensors Wv. Then learning representation of the
proposed approach entails the optimization of a
joint loss:

min
θ
LC(E1,E2) + LD(W1,W2) (1)

with (E1,W1), (E2,W2) = fθ(Db). Here, LC is
responsible for the semantic alignment, correspond-
ing to the standard InfoNCE (van den Oord et al.,
2018) loss that seeks to pull positive pairs close
together while pushing away negative pairs in the
embedding space. In contrast, LD is responsible
for the syntactic alignment, operating on the at-
tention space. However, in comparison to LD is
employed only on positive pairs’ attention tensors.

2.1 Embedding-level Momentum-Contrastive
Learning (InfoNCE)

The InfoNCE-loss seeks to pull positive pairs to-
gether in the embedding space while pushing nega-
tive pairs apart. Specifically, InfoNCE on embed-
dings pushes for the similarity of each sample and
its corresponding augmented embedding. Nega-
tives pairs are constructed in two ways, reflected by
the two terms in the denominator of Eq. 2. First, in-
batch negative pairs are constructed by pairing each

sentence with another random sentence (sharing no
semantic similarity), pushing for dissimilarity. Sec-
ond, using embeddings obtained from a momentum
encoder known as MoCo (He et al., 2020; Cao et al.,
2022a). The momentum encoder is a replication
of the encoder fθ, whose parameters are updated
more slowly. Specifically, while the parameters of
fθ encoder are updated via back-propagation, the
parameters of the momentum encoder are updated
using an exponential moving average from the for-
mer. The negative embeddings are produced from
samples from previous batches, which are stored
in queue Q and are forward-passed through the
momentum encoder. Then the InfoNCE (van den
Oord et al., 2018) loss (LC) is defined as:

−
|Db|∑

i

log
d(ei,

+ei)
|Db|∑
j:i ̸=j

d(ei, ej) +
|Q|∑
j
d(ei, qj)

, (2)

where ei ∈ E1 and +ei ∈ E2 denote the embed-
dings of different augmentations of xi. Further-
more, d(x,y) = exp(sim(x,y)/τ) with sim(.)
the cosine similarity metric, qj denoting repre-
sentations obtained from momentum encoder, and
τ ∈ R is a temperature scalar.

2.2 Attention-level Mutual Information (AMI)
Preliminaries and notations: We first briefly
review the attention mechanism and explain
the notation used in the rest of this section. A
Transformer stack consists of a stack of L layers,
with input data cascading up the layer stack.
Each layer comprises a self-attention module
and a feed-forward network in its simplest form.
Passing sentences through the encoder stack entails
simultaneous computation of attention weights.
These attention weights indicate the relative
importance of every token. To this end, key-value
pairs are computed for each token of the input
sequence within each self-attention module. This
entails the computation of three different matrices:
key matrix K, value matrix V , and query matrix Q.
The values of the attention weights W are obtained
according to W = softmax(f(Q,K)) ∈ Rn×n,
where f(.) is a scaled dot-product. Output features
are then generated as obtained according to WV .
To attend to different sub-spaces (Vaswani et al.,
2017) simultaneously, the attention mechanism
is replicated H times, referred to as multi-head
attention. During training the encoder, the self-
attention tensors W values are subject to a random
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FIGURE 1. Schematic illustration of AMI pipeline: A) Starting from an input sentence, two views are created
by drop-out augmentation (indicated with red and blue). Each view produces a different attention tensor. B)
The attention tensor is sliced into tiles, and sampling is then conducted on aligned tiles. High correlation across
attention-aligned tiles allows sampling without a significant shift in the attention distribution at a modest accuracy
compromise. C) Subsequently, assuming a log-normal distribution of the attention tensor, the joint distribution is
computed, and mutual information is maximized.

deterministic process, with randomness arising due
to drop-out. Hence, the proposed approach seeks
to optimize structural alignment by maximizing
mutual information between the attention tensors
Wv = [w1, ...,w|Db|] of the augmentation views.
We propose a four-step pipeline to regularize the
joint attention space. For a schematic illustration
of the AMI pipeline, see Fig. 1.

1) Attention Tensor Slicing: Given that augmen-
tation has different effects on the attention distri-
bution depending on the depth (layer) and the po-
sition (head) in the Transformer stack, we propose
to slice the attention tensor. Chunking the atten-
tion has multiple advantages. On the one hand,
this allows for preserving the locality of distribu-
tion change. This is important as it can be empiri-
cally observed that distribution divergence between
views decreases with increasing depth in the en-
coding stack. On the other hand, restricting the
space permits using a simple distributional model
such as bivariate distribution compared to a mixture
distribution for the whole stack.

For the sake of economy in notation and
avoid notational clutter, we will restrict the
attention tensor of a single encoded sample in
the following. To this end, a slicing function
π : RL×H×n×n → RR×n×n cuts the attention
tensor for each input sample into R (indexed)
elements: π(wi) = [w1

i , ...,w
R
i ] ∈ Rn×n with

wr
i = (wj,k)1≤j,k≤n and r ∈ R. For a schematic

illustration of how the attention tensor is sliced
into tiles, see Fig. 2.

2) Attention Sampling: Different sentences in
the batch are typically in token sequences of differ-
ent lengths. To accommodate the different lengths
and facilitate efficient training, sequences are typ-
ically padded with [PAD]-token for length equal-
ity. Although this allows for efficient batch encod-
ing on GPU, attentions arising from [PAD]-tokens
have to be discarded when looking at statistical
relationships. To accommodate for the different
lengths of tokenized sequences, perform a sam-
pling step for attention values within each grid cell
wr

i . To this end, we leverage multinomial distribu-
tion Pmult(p1, .., pn2), where s correspond to the
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FIGURE 2. Attention tensor slicing: Instantiating a
transformer stack on an input yields an attention tensor
W comprising token attention weights across layers
and heads. Slicing the attention entails tiling the tensor.
Batch processing of sequences of different lengths is
accommodated by padding ([PAD]).
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FIGURE 3. Few-shot performance of different al-
gorithms. DiffCSE (Chuang et al., 2022) ( ),
miCSE ( ), SCD (Klein and Nabi, 2022) ( ), Sim-
CSE (Gao et al., 2021) ( ), VaSCL (Zhang et al.,
2022a) ( ). Performance is shown in Spearman’s cor-
relation average of STS. Training set size: 0.1%, 1.0%,
10.0%, 100.0% of the data. Best viewed in color.

number of non-padding tokens with 1 ≤ s ≤ n.
Specifically, we sample from the s2 attention val-
ues pool, each with a probability of 1

s2
, with the

remaining elements associated with probability 0.
As a result, we obtain a set Jr = {j1, ..., jm} con-
sisting of m indices of the attention tensors for each
slice r ∈ R:

Jr ∼ Pmult( 1/s
2, ..., 1/s2︸ ︷︷ ︸
1, .., s2

,

(n− s)2, ...,n2

︷ ︸︸ ︷
0, ..., 0 ) (3)

It should be noted that for the same slice r across
the views, the same index set is used for sampling:
w̃r =

⋃
j∈Jr w

r[j] and +w̃
r
=

⋃
j∈Jr

+w
r
[j].

3) Attention Mutual Information Estimation:
We propose using mutual information to measure
the similarity of attention patterns for different
views. Specifically, we follow (Fan et al., 2020)
and adopt the Log-Normal distribution for mod-
eling the attention distribution, which is prudent
for several reasons. First, Empirical observation
confirms attention asymmetry. Second, by utilizing
a non-symmetric distribution, it becomes possible
to break down the attention tensor W into K and
Q, thereby allowing for non-symmetrical attention.
Third, adopting the log-normal models facilitates
the optimization objective to be defined in closed

form and hence easy to optimize, particularly on
GPUs. Mutual information for two normally dis-
tributed tuple vectors (z1, z2) can be written as a
function of correlation (I.M. and A.M., 1957):

I(z1, z2) = −
1

2
log(1− ρ2) (4)

where ρ corresponds to the correlation coefficient
computed from from z1 and z2. Hence, we com-
pute the mutual information for each slice r and
sample xi as MIri = I(log(w̃r

i ), log(
+w̃

r
i )). The

log(.) function accommodates the Log-Normal
to Normal random variable transformation. For
details on the implementation, see Alg. 1.

4) Mutual Information Aggregation: To com-
pute the loss component for attention regulariza-
tion, we need to aggregate the distributional similar-
ities for the entire tensor. Aggregation is obtained
by averaging the individual similarities obtained
for each slice r ∈ R and each sample xi in the
batch. With λ ∈ R some weighting scalar, the
attention alignment loss term is:

LD(W1,W2) = −
λ

|R| · |Db|

Db∑

i

R∑

r

MIri (5)

3 Experiments

In this section, we describe the experimental setting
used for the evaluation, present our main results,
and discuss different aspects of our method by pro-
viding several empirical analyses.

3.1 Experimental Setup
Model and Hyperparameters: Training is started
from a pre-trained transformer LM. Specifically,
we employ the Hugging Face (Wolf et al., 2020)
implementation of BERTbase. For each approach
evaluated, we follow the same hyperparameters pro-
posed by the authors. In the InfoNCE loss, we set
τ = 0.05. In order to determine the hyperparam-
eter λ a coarse grid search {1.0, 0.1, ..., 1.0e−5}
was conducted to assess the magnitude. Upon de-
termination, a fine grid search was conducted once
with 10 steps. We set λ = 2.5e − 3 for training
100% of the data in a single episode with a batch
size of 50 at a learning rate of 3.0e−5 and 250
warm-up steps. The number of optimization steps
is kept constant for training the different dataset
sizes. For the training set of size 106(= 100%),
we train for 1 epoch; for the size of 105(= 10%),
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Semantic Textual Similarity (STS) Benchmark

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

BERT 21.54 32.11 21.28 37.89 44.24 20.29 42.42 31.40
BERT♢(first-last avg) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
GloVe♣(avg.) 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERT-flow♢ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT-whitening♢ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS (Zhang et al., 2020) 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
SG-OPT (Kim et al., 2021) 66.84 80.13 71.23 81.56 77.17 77.23 68.16 74.62
CT (Carlsson et al., 2021) 67.43 79.18 69.05 76.92 74.62 73.24 68.38 72.69
SCD† (Klein and Nabi, 2022) 66.94 78.03 69.89 78.73 76.23 76.30 73.18 74.19
Mirror-BERT† (Liu et al., 2021) 69.10 81.10 73.00 81.90 75.70 78.00 69.10 75.40
SimCSE (Gao et al., 2021) 68.69 82.05 72.91 81.15 79.39 77.93 70.93 76.15
MoCoSE†(Cao et al., 2022b) 71.58 81.40 74.47 83.45 78.99 78.68 72.44 77.27
InforMin-CL† (Chen et al., 2022) 70.22 83.48 75.51 81.72 79.88 79.27 71.03 77.30
MixCSE† (Zhang et al., 2022b) 71.71 83.14 75.49 83.64 79.00 78.48 72.19 77.66
ConSERT†,∗

large (Yan et al., 2021b) 70.69 82.96 74.13 82.78 76.66 77.53 70.37 76.45
VaSCL†,∗ (Wang et al., 2022) 69.08 81.95 74.64 82.64 80.57 80.23 71.23 77.19
DCLR†,∗ (Zhou et al., 2022a) 70.81 83.73 75.11 82.56 78.44 78.31 71.59 77.22
ArcCSE†,∗ (Zhang et al., 2022c) 72.08 84.27 76.25 82.32 79.54 79.92 72.39 78.11
PCL†,∗ (Wu et al., 2022a) 72.74 83.36 76.05 83.07 79.26 79.72 72.75 78.14
ESimCSE†,∗ (Wu et al., 2021) 73.40 83.27 77.25 82.66 78.81 80.17 72.30 78.27
DiffCSE†,∗ (Chuang et al., 2022) 72.28 84.43 76.47 83.90 80.54 80.59 71.29 78.49

miCSE 71.71 83.09 75.46 83.13 80.22 79.70 73.62 78.13

TABLE 1. Sentence embedding performance on STS tasks is measured as Spearman’s correlation using BERTbase,
except for VaSCL, which uses RoBERTa. Unless states otherwise, [CLS]-embedding was used. ♣: results from
(Reimers and Gurevych, 2019); ♢ results from (Gao et al., 2021); † by the respective authors; other results are
by ourselves, denotes the proposed approach, bold denotes the best result, and ∗ denotes the use of discrete
augmentation.

we train for 10 epochs, etc. The training was con-
ducted using an NVIDIA V100 with a training time
of around 1.5h. The overall GPU budget from ex-
perimentation and hyperparameter optimization is
estimated to be around 500 GPU/hours. The mo-
mentum encoder is associated with a sample queue
of size |Q| = 384. The momentum encoder param-
eters are updated with a factor of 0.995, except for
the MLP pooling layer, which is kept identical to
the online network. Additionally, we increase the
drop-out for the momentum encoder network from
the default rate (0.1) to 0.3.
Data and Evaluation: Following (Gao et al.,
2021), we train the model unsupervised on sen-
tences from Wikipedia. We create random sample
sets of different sizes {106, 105, 104, 5.0·103, 103}
to train the model in a few-shot learning scenario.
We repeated the training set creation for each size
5 times with different random seeds.
Mutual Information Estimation: Following the
observations in (Voita et al., 2019), we restrict the
computation of the mutual information to the up-
per part of the layer stack. Specifically, we se-
lect the layers between 8 and 12 (= last layer in

BERTbase). To accommodate input sequences of
varying lengths and make computation more ef-
ficient, we pool together pairs of adjacent heads
(without overlap) while preserving the layer sepa-
ration. From each of the (4× H

2 ) chunks of pooled
attentions, we random sample 150 joint-attention
pairs for each embedding of the bi-encoder.

3.2 Experimental Results

Unsupervised Sentence Embedding: We com-
pare miCSE to previous state-of-the-art sentence em-
bedding methods on STS tasks. For comparisons,
we favored comparable architectures (bi-encoder)
that facilitate seamless integration of the proposed
approach and methods of comparable backbone.
We also added methods that employ explicit dis-
crete augmentation to provide a full picture of ex-
isting techniques for sentence embedding.

For semantic text similarity, we evaluated on
7 STS tasks: (Agirre et al., 2012, 2013, 2014,
2015, 2016), STS Benchmark (Cer et al., 2017)
and SICK-Relatedness (Marelli et al., 2014). These
datasets come in sentence pairs with correlation
labels in the range of 0 and 5, indicating the se-
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Algorithm 1 Mutual Information estimation
Input: Batch Db, encoder fθ, multinomial sampler pmult

Output: Average mutual information 1
|R|·|Db|

∑Db,R
i,r MIri

(E1,W1), (E2,W2)← fθ(Db) ▷ Transformer encoding creating views
for i← 1...|Db| do

wi,
+wi ← EXTRACT(W1,W2, i) ▷ Extract attention tensor for each sample

{(+)w1
i , ...,

(+)wR
i } ← π((+)wi) ▷ Slicing the attention tensors

s← number of text tokens in xi
for r ← 1...|R| do

Jr ← pmult(1/s
2, ...1/s2, 0) ▷ Sampling indices of valid attentions

MIri ← AMI(
⋃

j∈Jr w
r
i [j],

⋃
j∈Jr

+wr
i [j])

end for
end for
procedure AMI(w1,w2)

z1, z2 ← log(w1), log(w2) ▷ Log-Normal to Normal transform
ρ← cos(z1 − z̄1, z2 − z̄2) ▷ Compute correlation coefficient on centered

attentions
Return −1

2(1− ρ2) ▷ Mutual information for tensor slice
end procedure

mantic relatedness of the pairs. Specifically, we
employ the SentEval toolkit (Conneau and Kiela,
2018) for evaluation. All our STS experiments
are conducted in a fully unsupervised setup, not
involving any STS training data. The benchmark
measures the relatedness of two sentences based
on the cosine similarity of their embeddings. The
evaluation criterion is Spearman’s rank correlation
(ρ). For comparability, we follow the evaluation
protocol of (Gao et al., 2021), employing Spear-
man’s rank correlation and aggregation on all the
topic subsets. Results for the sentence similarity
experiment are presented in Tab. 1. As can be
seen, the proposed approach is slightly lower in
terms of average performance than state-of-the-art
algorithms such as DiffCSE. However, it should
be noted that these aforementioned methods use
extensive discrete augmentation techniques, such
as word repetition, deletion, and others, while the
proposed method in this work does not employ
any form of discrete data augmentation. This ren-
ders the proposed method more general and less
ad-hoc in nature. While it is technically feasible for
our method to incorporate discrete augmentation,
it was deliberately excluded in this study for the
sake of generalization with the intention of further
exploration in future research. A more in-depth
analysis shows the best performance on the SICK-
R benchmark, where it outperforms the second-best

approach SCD by (+0.44) and third-best PCL by
(+0.87). We highlight the comparison to the clos-
est method SimCSE, where the proposed approach
has an average gain of (+3.94). This improvement
is due to the two additional components (i.e., AMI
and MoCo) we add to this baseline method.

Low-shot Sentence Embedding: In this experi-
ment, the performance of several SOTA sentence
embedding approaches is benchmarked elabora-
tively. Similar to Sec. 3.2, we evaluate 7 STS
tasks, STS Benchmark, and SICK-Relatedness
with Spearman’s ρ rank correlation as the evalu-
ation metric. However, in contrast to the previous
section, models are trained on different subsets of
the data, namely {100%, 10%, 1%, 0.1%} of the
Wikipedia dataset used in (Gao et al., 2021). Re-
sults for the low-shot sentence similarity experi-
ment can be presented in Fig. 3. As can be seen, the
proposed approach gains by increasing the training
set size and consistently outperforms all the base-
lines in all training subsets. Interestingly, our pro-
posed method reaches the performance of SimCSE
trained on the entire dataset with only 0.5% of the
data. We believe it shows the impact of exploiting
structural information for data augmentation during
training. It should be noted that the performance
gain is most significant when conducted on a single
token rather than token averaging. We attribute
this to token averaging, which to a certain degree,
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Model 0.1% 1% 10% 100%

CT (Carlsson et al., 2021) 68.46± 2.33 66.21± 4.06 72.06± 1.46 72.69
AMI+CT 71.12± 1.11 72.20± 0.49 73.20± 0.78 73.55
Mirror-BERT (Liu et al., 2021) 40.13± 5.08 42.17± 1.69 42.47± 3.66 43.32
AMI+Mirror-BERT 43.99± 1.26 45.26± 2.60 44.72± 1.36 47.48
Mirror (avg.) (Liu et al., 2021) 71.48± 1.19 71.80± 1.18 70.38± 1.18 69.81
AMI+Mirror-BERT (avg.) 71.49± 0.95 72.54± 0.49 70.68± 1.19 71.34
SimCSE (Gao et al., 2021) 67.94± 1.16 74.96± 0.65 75.76± 0.24 76.15
AMI+SimCSE 73.85± 0.49 76.21± 0.28 76.31± 0.46 76.88
miCSE 73.68± 0.89 76.40± 0.48 76.38± 0.35 78.13

TABLE 2. Sentence embedding few-shot learning performance on STS tasks measured as Spearman’s correlation
using BERTbase. Unless states otherwise, [CLS]-embedding was used, the number corresponds to the average
performance, bold denotes best performance, ( ) denotes the integration of the proposed approach.
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FIGURE 4. Few-shot performance analysis of models trained with different ratios of dataset size. Performance is
shown in Spearman’s correlation average of the STS benchmark. Left: Few-shot performance of SimCSE (Gao
et al., 2021) ( ) and the proposed approach miCSE ( ). Right: Few-shot ablation study with y-axis showing
change (∆) in Spearman’s rank correlation ρ, showing the effect of adding components w.r.t. the SimCSE baseline.

is equivalent to attention regularization. On the
extremely low data regime, the proposed approach
shows very strong performance up (+11) compared
to SimCSE - see Fig. 4a. It suggests resilience of
our method to very small batch training.

3.3 Experimental Analysis of components

Given that AMI is a regularizer on Transformer
attention, we evaluate the applicability in conjunc-
tion with other contrastive learning methods. We
evaluate the following approaches CT (Carlsson
et al., 2021), Mirror-BERT (Liu et al., 2021), and
SimCSE (Gao et al., 2021). Evaluation is con-
ducted on 7 STS tasks, STS Benchmark, and SICK-
Relatedness with Spearman’s ρ rank correlation as
a metric. Results for the low-shot sentence simi-
larity experiment are presented in Tab. 2. As can
be seen, our proposed AMI can boost the perfor-

mances of all approaches in all settings. Addition-
ally, it shows the most significant boost in perfor-
mance in combination with SimCSE. In addition,
we observe that the impact of AMI grows with de-
clining training set size. Combined with SimCSE,
AMI leads to a performance gain of up to (+5.91)
at 0.1% of the data. We also observe that adding
AMI to all the approaches significantly reduces the
variance for all methods. This can probably be
attributed to the regularization effect of the pro-
posed AMI component. In addition, we conducted
an ablation study to assess the effect of AMI and
MoCo w.r.t. the baseline SimCSE - see Tab. 3.
As shown in Fig. 4b, AMI and MoCo improve the
baseline at different data ratios. Again, AMI pro-
vides a particularly strong performance boost in
the low-data regime. In contrast, the impact of
MoCo diminishes with decreasing training set size.
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Model 0.1% 1% 10% 100%

SimCSE (Gao et al., 2021) 67.94± 1.16 74.96± 0.65 75.76± 0.24 76.15
AMI+SimCSE 73.85± 0.49 76.21± 0.28 76.31± 0.46 76.88
MoCo+SimCSE 69.54± 1.61 75.73± 0.91 76.73± 0.29 76.81
miCSE 73.68± 0.89 76.40± 0.48 76.38± 0.35 78.13

TABLE 3. Few-shot ablation study using [CLS]-embedding on STS tasks measured as Spearman’s correlation using
BERTbase. Performance corresponds to the average across all STS benchmarks, bold denotes best performance.

We emphasize that our approach gets the best of
both worlds by integrating these two components.
This can be directly exploited for different few-shot
setups by adjusting the hyper-parameter λ.

Discussion on the Structure and Attention: The
proposed approach aligns the attention patterns
for drop-out augmented input pairs. We posit
that conducting such a regularization enforces con-
straints w.r.t. the structure (e.g., syntax) of the
sentence embeddings. This is motivated by recent
literature findings, which suggest that the Trans-
former's attention captures structural information
such as syntactic grammatical relationships of the
sentences (Ravishankar et al., 2021; Clark et al.,
2019; Raganato et al., 2018; Voita et al., 2019).
Additionally, recent research explicitly targets the
extraction of topologies from attention maps for
diverse tasks on syntactic and grammatical struc-
ture (Kushnareva et al., 2021; Cherniavskii et al.,
2022; Perez and Reinauer, 2022). Although no
“one-to-one” mapping connects syntactic structures
and attention patterns, the attention tensor, at the
bare minimum, encodes a “holistic notion” of the
syntactic structure of sentences. While this study
refrains from making any definitive claim on the
matter, a preliminary analysis wrt. role of syntax in
our proposed method is conducted (see Appendix).

Discussion on the discrete argumentation: Dis-
crete augmentation serves as a suitable strategy
for expanding datasets to enhance learning robust-
ness and partially address the issue of data scarcity.
Although augmentation contributes to improved ro-
bustness, additional measures are required to tackle
the information gap challenge in few-shot learning
scenarios. Therefore, our current study deliber-
ately excluded discrete augmentation to minimize
any interference it may have with our low-shot
learning algorithm. The primary rationale behind
this decision is that while discrete augmentation
is known to alleviate data scarcity by replicating

missing information, it often leads to a superficial
correlation between test and training data, rather
than enhancing the model’s few-shot learning ca-
pability. Consequently, we excluded augmentation
to maintain control over miCSE’s behavior and val-
idate its effectiveness without any negative con-
sequences. The significant superiority of miCSE
over augmentation-based approaches (such as Dif-
fCSE) in the low-shot setup is evident from Fig.
3. Nevertheless, the proposed approach inherently
facilitates the integration of discrete augmentation,
offering the potential to enhance results in both
few and full-shot learning scenarios. However, it is
crucial to acknowledge that their structural similari-
ties must be respected when applying augmentation
strategies to positive pairs. One promising option is
to utilize the augmentation strategies proposed by
ESimCSE (Wu et al., 2021), which involve word
duplication and deletion to address length biases.
This can be followed by enforcing AMI on the
shared attention subspaces of the augmented in-
stances. Although we do not explore this approach
in our current paper, it presents an intriguing av-
enue for future research.

4 Conclusion

We proposed a method to inject structural similarity
into language models for self-supervised represen-
tation learning for sentence embeddings. The pro-
posed approach integrates the inductive bias at the
level of Transformer attention by enforcing mutual
information on positive pairs obtained by drop-out
augmentation. Leveraging attention regularization
makes the proposed approach much more sample
efficient. Consequently, it outperforms methods
with a significant margin in low-shot learning sce-
narios while having state-of-the-art performance in
full-shot to comparable approaches.
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5 Limitations

The proposed AMI component is effective in the
low-data regime but cannot be generalized to all
cases. Future work will investigate the role of syn-
tax in the structural regularization of attention and
the extension of the proposed approach to discrete
augmentation.
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A Appendix

In the following sections, we add additional details
omitted in the main paper due to space restrictions.
First, we show an analysis of the relationship be-
tween syntactic structure and semantics. Next, we
illustrate the cosine similarity distribution accord-
ing to human judgment (ground truth) in Sec. C.
Next, in Sec. D, we visualize the 2D histogram
of joint distributions between views. In Sec. E,
we present detailed results of the few-shot perfor-
mance of miCSE in contrastive and non-contrastive
setup. Finally, the exact relation between mutual
information and correlation is presented in Sec. F.

B Analysis on Structure vs. Semantic

In light of the lack of a rigorous benchmark for
analyzing structure(syntax) in sentence embedding,
we performed two qualitative analyses visualized
in Fig. 5 and Fig 6.

Let us consider the following three sentences
and their linearized syntax tree to understand bet-
ter the notions of negatives and (dis-)similar syntax.

Anchor / Positive:
Life is good
Negative (similar Syntax):
Good is expensive
Negative (dissimilar Syntax):
Live a good life

For each sentence, we computed the depen-
dency tree. Subsequently, we linearize the tree
structure for comparison, as can be done with tools
such as spaCy2. Positive samples have an identical
tree and negative samples have non-identical trees
with their part-of-speech tags:

Anchor / Positive:
nsubj(1,0) – ROOT(1,1) – acomp(1,2) –
punct(1,3).
Negative (similar Syntax):

2https://spacy.io/

nsubj(1,0) – ROOT(1,1) – acomp(1,2) –
punct(1,3).
Negative (dissimilar Syntax):
ROOT(0,0) – det(3,1) – amod(3,2) –
npadvmod(0,3) – punct(0,4).

Here nsubj corresponds to "nominal sub-
ject," acomp to "adjectival complement," det to
"determiner," npadv to "noun phrase as adverbial
modifier" and punct to "punctuation."

Our empirical observations are:

Observation (i) There is a higher semantic and
syntactic similarity between positive pairs com-
pared to the negative pairs: Our contrastive learn-
ing approach assumes that positive pairs exhibit
more syntactic similarity than negative pairs (i.e.,
syntactic inductive bias). To validate this hypothe-
sis, we plot the semantic similarity against syntac-
tic similarity for both positive and negative pairs.
Specifically, we analyzed the embeddings and atten-
tion values of the trained model with SimCSE and
the proposed approach. Input to the models was
randomly sampled sentences from Wikipedia. In-
terestingly enough, although training the proposed
model involves maximization of MI over the at-
tention w.r.t. positive pairs, we also observe the
reflection of syntactic information in the negative
pairs. As shown in Fig. 5, the negative pairs end
up in the low left corner, whereas the positive pairs
are in the upper right corner.

Observation (ii): Negative pairs with similar
syntax show higher attention similarity, compared
to pairs with dissimilar syntax: For a more in-depth
analysis of this, we further sub-divided the nega-
tive pairs into two groups: a) negative pairs with
similar dependency trees, b) negative pairs with
dissimilar dependency trees. For simplicity, we
adopted a binary similarity scheme - “similar” im-
plies an identical dependency tree, whereas “dis-
similar” corresponds to a non-identical dependency
tree. To highlight the inter-group syntax similarity,
samples of each group were normalized w.r.t. the
centroid of the opposite group. As shown in Fig 6
(by the increased distance between the cluster cen-
ters), the proposed approach encodes a notion of
syntactic similarity. Note that this margin appeared
solely due to enforcing the AMI on attention for
the positive pairs, leading to a notion of “syntax”
on negative pairs.
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FIGURE 5. Sentence embeddings of positive and negative contrastive pairs in terms of semantic and syntax,
comparing SimCSE and miCSE. Semantic similarity is measured in terms of cosine similarity, syntactic similarity
measured with mutual information on attention-level. ( ) and ( ) denote centroids of positive and negative centroids,
(↔) their distance.
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FIGURE 6. Comparison of negative contrastive pairs sentence embeddings in terms of semantic and syntax. Left:
SimCSE Right: miCSE. Semantic similarity measured in terms of cosine similarity, syntactic similary measured
with mutual information on attentions. Negative pairs sub-divided into pairs with similar/dissimilar dependency
trees. ( ) denote cluster centroids, (↔) distance between centroids. Ranges are aligned.

C Cosine-similarity Distribution

To directly show the strengths of our approaches
on STS tasks, we illustrate the cosine similarity on
embeddings distributions of STS-B pairs in com-
bination with human ratings in Fig. 7. The STS
dataset comes in sentence pairs with correlation
labels in the range of 0 and 5, indicating the seman-
tic relatedness of the pairs. Here, the x-axis is the
sample similarity of sentences according to human
judgment (ground truth), and the y-axis represents
the cosine similarity between pairs using embed-
dings. Color coding corresponds to ground-truth
similarity. Compared to the baseline model (Sim-
CSE), miCSE better distinguishes sentence pairs
with different levels of similarities, as can be seen
from the stronger correlation between embedding
distance and human rating. This property leads to
better performance on STS tasks. In addition, we
observe that miCSE generally shows a more scat-
tered distribution while preserving a lower variance
on semantically similar sentence pairs. This obser-
vation further validates that miCSE can potentially
achieve a better alignment-uniformity balance.

D Visualization of Joint Distribution

To analyze the impact of the proposed approach
compared to the baseline SimCSE at the attention
level, we visualized the joint distribution of the at-
tention values created by the two views created by
the bi-encoder. The joint distribution and mutual
information are closely related. More specifically,
given two random variables X and Y , the associ-
ated mutual information can be expressed in terms
of the joint distribution as:

I(X,Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
, (6)

where p(x, y) denotes the joint-distribution and
p(x), p(y) the marginals. Assuming random vari-
ables are normally distributed, the joint distribution
of random variables is distinctly shaped depending
on the correlation coefficient ρ. See Sec. F details
on the relationship between entropy and the cor-
relation coefficient. In the extreme case of totally
unrelated marginals ρ = 0, the joint distribution
assumes a circular shape having the lowest possi-
ble mutual information. On the other end of the
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FIGURE 7. Scatter plots of cosine similarities between sentence pairs in STS. Pairs are shown based on ground-truth
human scores (higher means more similar) along the x-axis; the y-axis is the cosine similarity. Color coding
corresponds to ground-truth similarity. Left: SimCSE, Right: miCSE (best viewed in color)

spectrum, in the case of perfect correlation, the
joint distribution assumes collinearity (45◦ diago-
nal), with mutual information assuming maximal
value. We sliced the attention tensor into 12 slices
to avoid visual clutter, pooling together every 3
adjacent heads and every 4 adjacent layers. Slicing
the tensor at a higher resolution leads to visually
very similar results. The axes of the joint distribu-
tion (2d histogram) correspond to the marginals’
distribution. As miCSE maximizes the mutual infor-
mation, one can observe a reduction in the scatter
of the joint distribution compared to SimCSE.

E Detailed Comparison with SimCSE

Our proposed method is built on top of contrastive
learning. Thus it intrinsically relies on the exis-
tence of the negative pairs. To complement the
performance comparison of contrastive learning
in Fig. 4a, we designed an experiment to analyze
the extent to which attention regularization alone
(AMI) can compensate for the lack of negative
pairs. To that end, we conducted training with pos-
itive pairs only. See Tab. 4 and Fig. 9 for results.
The integration of mutual attention information
boosts the performance by up to (+15) across all
training set sizes. It suggests the potential appli-
cation of our proposed attention regularization for
non-contrastive learning.

F Bivariate Normal Mutual Information

General Log-Normal Properties: Similar to
the normal distribution, the log-normal distribu-
tion logN (w|µw,σ

2
w) has two parameters µw and

σw capturing mean and variance. It follows that ap-
plying the log transformation on a random variable
w, we yield random variable z = log(w), which is

normally distributed: z ∼ N (µz,σ
2
z).

Mutual Information: Given a vectors of tuples
(X1,X2) containing i.i.d. points sampled the
joint bivariate normal distribution of p(A,B) =
N (µ, Σ) with µ ∈ R2, Σ ∈ R2×2. It can be
shown that there exists an exact relationship be-
tween mutual information and the correlation co-
efficient ρ (I.M. and A.M., 1957) derived from X1

and X2. To that end, we expand the notation:

µ =
(
µ1 µ2

)
, Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(7)

The marginal and the joint entropy terms for
Gaussian distributed variables can be written as:

H(Xi) =
1

2
log(2πeσ2

i ) =

1

2
+

1

2
log(2π) + log(σi), i ∈ {1, 2}

(8)

H(X1,X2) =
1

2
log

[
(2πe)2|Σ|

]
=

1 + log(2π) + log(σ1σ2) +
1

2
(1− ρ2).

(9)

Given that Mutual Information can be written in
terms of entropy as:

I(X1,X2) = H(X1) +H(X2)−H(X1,X2)
(10)

Then it follows by inserting Eq. 8,9 in Eq. 10:

I(X1,X2) = −
1

2
(1− ρ2) (11)
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MI: 1.282 nats MI: 1.275 nats MI: 1.346 nats MI: 1.355 nats MI: 1.406 nats MI: 1.328 nats

MI: 1.142 nats MI: 1.14 nats MI: 1.509 nats MI: 1.633 nats MI: 1.491 nats MI: 1.678 nats

MI: 1.462 nats MI: 1.685 nats MI: 1.445 nats MI: 1.692 nats MI: 1.115 nats MI: 1.498 nats

MI: 0.843 nats MI: 1.482 nats MI: 0.8783 nats MI: 1.511 nats MI: 0.8376 nats MI: 1.363 nats

FIGURE 8. Joint distribution between two augmentation induced views. Images depict 12 attention slices per
methods, obtained by slicing the attention tensor for the input sentence “the best thing you can do is to know your
stuff.” Increasing depth in layer stack from left to right, top to bottom. ( ) SimCSE, ( ): miCSE (best viewed in
color)

Semantic Textual Similarity

Model 0.1% 1% 10% 100%

SimCSE (with negatives) 66.69± 1.03 74.08± 0.81 75.01± 0.23 76.15
∗ miCSE (with negatives) 73.85± 0.49 76.21± 0.28 76.31± 0.46 78.13

SimCSE (w/o negatives) 43.02± 4.48 41.30± 1.63 42.56± 6.87 40.18
∗ miCSE (w/o negatives) 57.00± 1.32 56.41± 3.38 53.38± 4.70 54.34

TABLE 4. Sentence embedding few-shot learning performance on STS tasks measured as Spearman’s correlation.
Top: performance in contrastive setup with in-batch negatives. Bottom: performance with positive samples only.
The number corresponds to the average performance across all benchmarks.
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FIGURE 9. Few-shot performance of SimCSE (Gao et al., 2021) ( ) and the proposed approach AMI in
combination with SimCSE ( ). Performance is shown in Spearman’s correlation average of the STS benchmark
at different ratios of dataset sizes used for training. Training in non-contrastive setting with positive-only pairs.
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